Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.645
Filtrar
1.
PeerJ ; 12: e17362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766486

RESUMO

Backgrounds: TBC1D family members (TBC1Ds) are a group of proteins that contain the Tre2-Bub2-Cdc16 (TBC) domain. Recent studies have shown that TBC1Ds are involved in tumor growth, but no analysis has been done of expression patterns and prognostic values of TBC1Ds in hepatocellular carcinoma (HCC). Methods: The expression levels of TBC1Ds were evaluated in HCC using the TIMER, UALCN and Protein Atlas databases. The correlation between the mRNA levels of TBC1Ds and the prognosis of patients with HCC in the GEPIA database was then analyzed. An enrichment analysis then revealed genes that potentially interact with TBC1Ds. The correlation between levels of TBC1Ds and tumor-infiltrating immune cells (TIICs) in HCC were studied using the TIMER 2.0 database. Finally, a series of in vitro assays verified the role of TBC1Ds in HCC progression. Results: This study revealed the upregulated expression of TBC1Ds in HCC and the strong positive correlation between the mRNA levels of TBC1Ds and poor prognosis of patients with HCC. The functions of TBC1Ds were mainly related to autophagy and the AMPK pathway. There was also a significant correlation between level of TBC1Ds and tumor-infiltrating immune cells (TIICs) in HCC. The promoting role of TBC1Ds in HCC progression was verified in vitro assays. Conclusion: The results of this analysis indicate that TBC1Ds may serve as new biomarkers for early diagnosis and treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Proteínas Ativadoras de GTPase , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Prognóstico , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Autofagia/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linhagem Celular Tumoral
2.
Cancer Biol Ther ; 25(1): 2343450, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38742566

RESUMO

The potential function and mechanism of circRNAs in regulating malignant performances of Osteosarcoma (OS) cells have not been well investigated. The expression level of CircLMO7, miR-21-5p and ARHGAP24 were detected by RT-qPCR. The relationship between miR-21-5p and circ-LMO7, as well as between miR-21-5p and ARHGAP24, was predicted and examined through bioinformatics analysis and luciferase reporter gene experiments. Moreover, OS cell growth, invasion, migration, and apoptosis were detected using the cell counting kit-8 (CCK-8), transwell and flow cytometry assays, respectively. ARHGAP24 protein level was measured using western blotting. In present study, we choose to investigate the role and mechanism of circ-LOM7 on OS cell proliferation, migration and invasion. circ-LOM7 was found to be down-regulated in OS tissues and cell lines. Enforced expression of circ-LOM7 suppressed the growth, invasion, and migration of OS cells. In contrast, decreasing circ-LMO7 expression had opposite effects. Furthermore, miR-21-5p was predicted to be sponged by circ-LMO7, and had an opposite role of circ-LMO7 in OS. Moreover, ARHGAP24 served as miR-21-5p's downstream target. Mechanistically, circ-LMO7 was packed in exosomes and acted as a cancer-suppresser on OS by sponging miR-21-5p and upregulating the expression of ARHGAP24. The exosomal circ-LMO7 expression was significantly decreased in OS cell exosomes, and co-culture experiments showed that exosomal circ-LMO7 suppressed the proliferation ability of OS cells. Circ-LMO7 exerts as a tumor suppressor in OS, and the circ-LMO7/miR-21-5P/ARHGAP24 axis is involved in OS progression.


Assuntos
Progressão da Doença , Exossomos , Proteínas Ativadoras de GTPase , MicroRNAs , Osteossarcoma , RNA Circular , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Exossomos/metabolismo , Exossomos/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Proliferação de Células , Camundongos , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Apoptose/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Regulação Neoplásica da Expressão Gênica , Masculino , Feminino
3.
Commun Biol ; 7(1): 596, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762629

RESUMO

Apicomplexan parasites harbor a complex endomembrane system as well as unique secretory organelles. These complex cellular structures require an elaborate vesicle trafficking system, which includes Rab GTPases and their regulators, to assure the biogenesis and secretory of the organelles. Here we exploit the model apicomplexan organism Toxoplasma gondii that encodes a family of Rab GTPase Activating Proteins, TBC (Tre-2/Bub2/Cdc16) domain-containing proteins. Functional profiling of these proteins in tachyzoites reveals that TBC9 is the only essential regulator, which is localized to the endoplasmic reticulum (ER) in T. gondii strains. Detailed analyses demonstrate that TBC9 is required for normal distribution of proteins targeting to the ER, and the Golgi apparatus in the parasite, as well as for the normal formation of daughter inner membrane complexes (IMCs). Pull-down assays show a strong protein interaction between TBC9 and specific Rab GTPases (Rab11A, Rab11B, and Rab2), supporting the role of TBC9 in daughter IMC formation and early vesicular transport. Thus, this study identifies the only essential TBC domain-containing protein TBC9 that regulates early vesicular transport and IMC formation in T. gondii and potentially in closely related protists.


Assuntos
Retículo Endoplasmático , Proteínas Ativadoras de GTPase , Proteínas de Protozoários , Toxoplasma , Proteínas rab de Ligação ao GTP , Toxoplasma/metabolismo , Toxoplasma/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Retículo Endoplasmático/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Complexo de Golgi/metabolismo , Transporte Proteico , Animais , Vesículas Transportadoras/metabolismo
4.
Commun Biol ; 7(1): 602, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762624

RESUMO

The role of endothelial cells in promoting cancer cell extravasation to the brain during the interaction of cancer cells with the vasculature is not well characterised. We show that brain endothelial cells activate EGFR signalling in triple-negative breast cancer cells with propensity to metastasise to the brain. This activation is dependent on soluble factors secreted by brain endothelial cells, and occurs via the RAC1 GEF DOCK4, which is required for breast cancer cell extravasation to the brain in vivo. Knockdown of DOCK4 inhibits breast cancer cell entrance to the brain without affecting cancer cell survival or growth. Defective extravasation is associated with loss of elongated morphology preceding intercalation into brain endothelium. We also show that brain endothelial cells promote paracrine stimulation of mesenchymal-like morphology of breast cancer cells via DOCK4, DOCK9, RAC1 and CDC42. This stimulation is accompanied by EGFR activation necessary for brain metastatic breast cancer cell elongation which can be reversed by the EGFR inhibitor Afatinib. Our findings suggest that brain endothelial cells promote metastasis through activation of cell signalling that renders breast cancer cells competent for extravasation. This represents a paradigm of brain endothelial cells influencing the signalling and metastatic competency of breast cancer cells.


Assuntos
Neoplasias Encefálicas , Encéfalo , Células Endoteliais , Receptores ErbB , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP , Receptores ErbB/metabolismo , Receptores ErbB/genética , Humanos , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Feminino , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Linhagem Celular Tumoral , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Camundongos , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética
5.
Curr Biol ; 34(10): 2132-2146.e5, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38688282

RESUMO

Actin cortex patterning and dynamics are critical for cell shape changes. These dynamics undergo transitions during development, often accompanying changes in collective cell behavior. Although mechanisms have been established for individual cells' dynamic behaviors, the mechanisms and specific molecules that result in developmental transitions in vivo are still poorly understood. Here, we took advantage of two developmental systems in Drosophila melanogaster to identify conditions that altered cortical patterning and dynamics. We identified a Rho guanine nucleotide exchange factor (RhoGEF) and Rho GTPase activating protein (RhoGAP) pair required for actomyosin waves in egg chambers. Specifically, depletion of the RhoGEF, Ect2, or the RhoGAP, RhoGAP15B, disrupted actomyosin wave induction, and both proteins relocalized from the nucleus to the cortex preceding wave formation. Furthermore, we found that overexpression of a different RhoGEF and RhoGAP pair, RhoGEF2 and Cumberland GAP (C-GAP), resulted in actomyosin waves in the early embryo, during which RhoA activation precedes actomyosin assembly by ∼4 s. We found that C-GAP was recruited to actomyosin waves, and disrupting F-actin polymerization altered the spatial organization of both RhoA signaling and the cytoskeleton in waves. In addition, disrupting F-actin dynamics increased wave period and width, consistent with a possible role for F-actin in promoting delayed negative feedback. Overall, we showed a mechanism involved in inducing actomyosin waves that is essential for oocyte development and is general to other cell types, such as epithelial and syncytial cells.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Proteínas Ativadoras de GTPase , Animais , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Actomiosina/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Feminino , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Embrião não Mamífero/metabolismo , Padronização Corporal
6.
Int Immunopharmacol ; 133: 112050, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38636370

RESUMO

Thyroid cancer (THCA) is the most common endocrine malignancy worldwide and has been rising at the fastest rate in recent years. Long-stranded non-coding RNAs (lncRNAs) and N6-methyladenosine (m6A) have been associated with immunotherapy efficacy and cancer prognosis. However, how m6A-associated lncRNAs (mrlncRNAs) affect the prognosis of patients with thyroid cancer is unclear. Therefore, this study utilized The Cancer Genome Atlas (TCGA) database to provide thyroid cancer-related transcriptomic data and related clinical data. The R program was used to identify m6A-related lncRNAs, and a risk model consisting of two lncRNAs (LINC02471 and DOCK9-DT) was obtained using least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Kaplan-Meier survival analysis and transient subject operating characteristics (ROC) were used for analysis. The results showed a substantial association between immune cell infiltration and risk scores. Independent analyses confirmed that the expression of LINC02471 and DOCK9-DT was significantly higher in thyroid cancer tissues than in normal tissues, suggesting that they may be useful biomarkers for thyroid cancer.


Assuntos
Adenosina , Biomarcadores Tumorais , RNA Longo não Codificante , Neoplasias da Glândula Tireoide , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Biomarcadores Tumorais/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/imunologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Regulação Neoplásica da Expressão Gênica , Prognóstico , Masculino , Feminino , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Pessoa de Meia-Idade
8.
Nat Commun ; 15(1): 3468, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658571

RESUMO

Metabolism has recently emerged as a major target of genes implicated in the evolutionary expansion of human neocortex. One such gene is the human-specific gene ARHGAP11B. During human neocortex development, ARHGAP11B increases the abundance of basal radial glia, key progenitors for neocortex expansion, by stimulating glutaminolysis (glutamine-to-glutamate-to-alpha-ketoglutarate) in mitochondria. Here we show that the ape-specific protein GLUD2 (glutamate dehydrogenase 2), which also operates in mitochondria and converts glutamate-to-αKG, enhances ARHGAP11B's ability to increase basal radial glia abundance. ARHGAP11B + GLUD2 double-transgenic bRG show increased production of aspartate, a metabolite essential for cell proliferation, from glutamate via alpha-ketoglutarate and the TCA cycle. Hence, during human evolution, a human-specific gene exploited the existence of another gene that emerged during ape evolution, to increase, via concerted changes in metabolism, progenitor abundance and neocortex size.


Assuntos
Proteínas Ativadoras de GTPase , Glutamato Desidrogenase , Neocórtex , Neocórtex/metabolismo , Neocórtex/embriologia , Neocórtex/crescimento & desenvolvimento , Neocórtex/citologia , Humanos , Animais , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Ácidos Cetoglutáricos/metabolismo , Neuroglia/metabolismo , Ácido Glutâmico/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Camundongos , Ciclo do Ácido Cítrico/genética , Feminino
9.
Medicine (Baltimore) ; 103(16): e37702, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640279

RESUMO

RATIONALE: Hereditary hearing loss is known to exhibit a significant degree of genetic heterogeneity. Herein, we present a case report of a novel mutation in the tenascin-C (TNC) gene in Chinese patients with nonsyndromic hearing loss (NSHL). PATIENT CONCERNS: This includes a young deaf couple and their 2-year-old baby. DIAGNOSES: Based on the clinical information, hearing test, metagenomic next-generation sequencing (mNGS), Sanger sequencing, protein function and structure analysis, and model prediction, in our case, the study results revealed 2 heterozygous mutations in the TNC gene (c.2852C>T, p.Thr951Ile) and the TBC1 domain family member 24 (TBC1D24) gene (c.1570C>T, p.Arg524Trp). These mutations may be responsible for the hearing loss observed in this family. Notably, the heterozygous mutations in the TNC gene (c.2852C>T, p.Thr951Ile) have not been previously reported in the literature. INTERVENTIONS: Avoid taking drugs that can cause deafness, wearing hearing AIDS, and cochlear implants. OUTCOMES: Regular follow-up of family members is ongoing. LESSONS: The genetic diagnosis of NSHL holds significant importance as it helps in making informed treatment decisions, providing prognostic information, and offering genetic counseling for the patient's family.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Tenascina , Pré-Escolar , Humanos , China , Surdez/genética , Proteínas Ativadoras de GTPase/genética , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Mutação , Linhagem , Tenascina/genética
10.
J Cell Sci ; 137(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563084

RESUMO

Angiogenesis is a tightly controlled dynamic process demanding a delicate equilibrium between pro-angiogenic signals and factors that promote vascular stability. The spatiotemporal activation of the transcriptional co-factors YAP (herein referring to YAP1) and TAZ (also known WWTR1), collectively denoted YAP/TAZ, is crucial to allow for efficient collective endothelial migration in angiogenesis. The focal adhesion protein deleted-in-liver-cancer-1 (DLC1) was recently described as a transcriptional downstream target of YAP/TAZ in endothelial cells. In this study, we uncover a negative feedback loop between DLC1 expression and YAP activity during collective migration and sprouting angiogenesis. In particular, our study demonstrates that signaling via the RhoGAP domain of DLC1 reduces nuclear localization of YAP and its transcriptional activity. Moreover, the RhoGAP activity of DLC1 is essential for YAP-mediated cellular processes, including the regulation of focal adhesion turnover, traction forces, and sprouting angiogenesis. We show that DLC1 restricts intracellular cytoskeletal tension by inhibiting Rho signaling at the basal adhesion plane, consequently reducing nuclear YAP localization. Collectively, these findings underscore the significance of DLC1 expression levels and its function in mitigating intracellular tension as a pivotal mechanotransductive feedback mechanism that finely tunes YAP activity throughout the process of sprouting angiogenesis.


Assuntos
Adesões Focais , Proteínas Ativadoras de GTPase , Mecanotransdução Celular , Proteínas Supressoras de Tumor , Proteínas de Sinalização YAP , Animais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Movimento Celular , Retroalimentação Fisiológica , Adesões Focais/metabolismo , Adesões Focais/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Mecanotransdução Celular/genética , Neovascularização Fisiológica , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas de Sinalização YAP/metabolismo
11.
Curr Biol ; 34(10): 2049-2065.e6, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38677281

RESUMO

Plants rely on autophagy and membrane trafficking to tolerate stress, combat infections, and maintain cellular homeostasis. However, the molecular interplay between autophagy and membrane trafficking is poorly understood. Using an AI-assisted approach, we identified Rab3GAP-like (Rab3GAPL) as a key membrane trafficking node that controls plant autophagy negatively. Rab3GAPL suppresses autophagy by binding to ATG8, the core autophagy adaptor, and deactivating Rab8a, a small GTPase essential for autophagosome formation and defense-related secretion. Rab3GAPL reduces autophagic flux in three model plant species, suggesting that its negative regulatory role in autophagy is conserved in land plants. Beyond autophagy regulation, Rab3GAPL modulates focal immunity against the oomycete pathogen Phytophthora infestans by preventing defense-related secretion. Altogether, our results suggest that Rab3GAPL acts as a molecular rheostat to coordinate autophagic flux and defense-related secretion by restraining Rab8a-mediated trafficking. This unprecedented interplay between a RabGAP-Rab pair and ATG8 sheds new light on the intricate membrane transport mechanisms underlying plant autophagy and immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Autofagia , Proteínas Ativadoras de GTPase , Imunidade Vegetal , Autofagia/fisiologia , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Transporte Proteico
12.
Nat Commun ; 15(1): 2053, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448435

RESUMO

SARS-CoV-2, the causative agent of COVID-19, uses the host endolysosomal system for entry, replication, and egress. Previous studies have shown that the SARS-CoV-2 virulence factor ORF3a interacts with the lysosomal tethering factor HOPS complex and blocks HOPS-mediated late endosome and autophagosome fusion with lysosomes. Here, we report that SARS-CoV-2 infection leads to hyperactivation of the late endosomal and lysosomal small GTP-binding protein Rab7, which is dependent on ORF3a expression. We also observed Rab7 hyperactivation in naturally occurring ORF3a variants encoded by distinct SARS-CoV-2 variants. We found that ORF3a, in complex with Vps39, sequesters the Rab7 GAP TBC1D5 and displaces Rab7 from this complex. Thus, ORF3a disrupts the GTP hydrolysis cycle of Rab7, which is beneficial for viral production, whereas the Rab7 GDP-locked mutant strongly reduces viral replication. Hyperactivation of Rab7 in ORF3a-expressing cells impaired CI-M6PR retrieval from late endosomes to the trans-Golgi network, disrupting the biosynthetic transport of newly synthesized hydrolases to lysosomes. Furthermore, the tethering of the Rab7- and Arl8b-positive compartments was strikingly reduced upon ORF3a expression. As SARS-CoV-2 egress requires Arl8b, these findings suggest that ORF3a-mediated hyperactivation of Rab7 serves a multitude of functions, including blocking endolysosome formation, interrupting the transport of lysosomal hydrolases, and promoting viral egress.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Lisossomos , Hidrolases , Fatores de Virulência , Proteínas Ativadoras de GTPase/genética
13.
J Biol Chem ; 300(4): 107197, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508314

RESUMO

Cell polarity oscillations in Myxococcus xanthus motility are driven by a prokaryotic small Ras-like GTPase, mutual gliding protein A (MglA), which switches from one cell pole to the other in response to extracellular signals. MglA dynamics is regulated by MglB, which functions both as a GTPase activating protein (GAP) and a guanine nucleotide exchange factor (GEF) for MglA. With an aim to dissect the asymmetric role of the two MglB protomers in the dual GAP and GEF activities, we generated a functional MglAB complex by coexpressing MglB with a linked construct of MglA and MglB. This strategy enabled us to generate mutations of individual MglB protomers (MglB1 or MglB2 linked to MglA) and delineate their role in GEF and GAP activities. We establish that the C-terminal helix of MglB1, but not MglB2, stimulates nucleotide exchange through a site away from the nucleotide-binding pocket, confirming an allosteric mechanism. Interaction between the N-terminal ß-strand of MglB1 and ß0 of MglA is essential for the optimal GEF activity of MglB. Specific residues of MglB2, which interact with Switch-I of MglA, partially contribute to its GAP activity. Thus, the role of the MglB2 protomer in the GAP activity of MglB is limited to restricting the conformation of MglA active site loops. The direct demonstration of the allosteric mechanism of GEF action provides us new insights into the regulation of small Ras-like GTPases, a feature potentially present in many uncharacterized GEFs.


Assuntos
Proteínas de Bactérias , Proteínas Ativadoras de GTPase , Myxococcus xanthus , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ativação Enzimática , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Myxococcus xanthus/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/enzimologia , Multimerização Proteica , Modelos Moleculares , Estrutura Quaternária de Proteína
14.
Hum Genet ; 143(3): 455-469, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526744

RESUMO

Neurons form the basic anatomical and functional structure of the nervous system, and defects in neuronal differentiation or formation of neurites are associated with various psychiatric and neurodevelopmental disorders. Dynamic changes in the cytoskeleton are essential for this process, which is, inter alia, controlled by the dedicator of cytokinesis 4 (DOCK4) through the activation of RAC1. Here, we clinically describe 7 individuals (6 males and one female) with variants in DOCK4 and overlapping phenotype of mild to severe global developmental delay. Additional symptoms include coordination or gait abnormalities, microcephaly, nonspecific brain malformations, hypotonia and seizures. Four individuals carry missense variants (three of them detected de novo) and three individuals carry null variants (two of them maternally inherited). Molecular modeling of the heterozygous missense variants suggests that the majority of them affect the globular structure of DOCK4. In vitro functional expression studies in transfected Neuro-2A cells showed that all missense variants impaired neurite outgrowth. Furthermore, Dock4 knockout Neuro-2A cells also exhibited defects in promoting neurite outgrowth. Our results, including clinical, molecular and functional data, suggest that loss-of-function variants in DOCK4 probable cause a variable spectrum of a novel neurodevelopmental disorder with microcephaly.


Assuntos
Proteínas Ativadoras de GTPase , Heterozigoto , Microcefalia , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Humanos , Microcefalia/genética , Feminino , Masculino , Pré-Escolar , Proteínas Ativadoras de GTPase/genética , Criança , Transtornos do Neurodesenvolvimento/genética , Mutação com Perda de Função , Animais , Deficiências do Desenvolvimento/genética , Camundongos , Lactente , Fenótipo , Adolescente
15.
J Biol Chem ; 300(4): 107127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432633

RESUMO

Regulators of G protein signaling (RGS) proteins constrain G protein-coupled receptor (GPCR)-mediated and other responses throughout the body primarily, but not exclusively, through their GTPase-activating protein activity. Asthma is a highly prevalent condition characterized by airway hyper-responsiveness (AHR) to environmental stimuli resulting in part from amplified GPCR-mediated airway smooth muscle contraction. Rgs2 or Rgs5 gene deletion in mice enhances AHR and airway smooth muscle contraction, whereas RGS4 KO mice unexpectedly have decreased AHR because of increased production of the bronchodilator prostaglandin E2 (PGE2) by lung epithelial cells. Here, we found that knockin mice harboring Rgs4 alleles encoding a point mutation (N128A) that sharply curtails RGS4 GTPase-activating protein activity had increased AHR, reduced airway PGE2 levels, and augmented GPCR-induced bronchoconstriction compared with either RGS4 KO mice or WT controls. RGS4 interacted with the p85α subunit of PI3K and inhibited PI3K-dependent PGE2 secretion elicited by transforming growth factor beta in airway epithelial cells. Together, these findings suggest that RGS4 affects asthma severity in part by regulating the airway inflammatory milieu in a G protein-independent manner.


Assuntos
Asma , Proteínas RGS , Animais , Humanos , Camundongos , Asma/metabolismo , Asma/genética , Asma/patologia , Broncoconstrição/genética , Dinoprostona/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/genética , Hipersensibilidade Respiratória/patologia , Proteínas RGS/metabolismo , Proteínas RGS/genética , Linhagem Celular
16.
Front Immunol ; 15: 1372113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529286

RESUMO

Background: Glioma, an aggressive brain tumor, poses a challenge in understanding the mechanisms of treatment resistance, despite promising results from immunotherapy. Methods: We identified genes associated with immunotherapy resistance through an analysis of The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO) databases. Subsequently, qRT-PCR and western blot analyses were conducted to measure the mRNA and protein levels of TBC1 Domain Family Member 1 (TBC1D1), respectively. Additionally, Gene Set Enrichment Analysis (GSEA) was employed to reveal relevant signaling pathways, and the expression of TBC1D1 in immune cells was analyzed using single-cell RNA sequencing (scRNA-seq) data from GEO database. Tumor Immune Dysfunction and Exclusion (TIDE) database was utilized to assess T-cell function, while Tumor Immunotherapy Gene Expression Resource (TIGER) database was employed to evaluate immunotherapy resistance in relation to TBC1D1. Furthermore, the predictive performance of molecules on prognosis was assessed using Kaplan-Meier plots, nomograms, and ROC curves. Results: The levels of TBC1D1 were significantly elevated in tumor tissue from glioma patients. Furthermore, high TBC1D1 expression was observed in macrophages compared to other cells, which negatively impacted T cell function, impaired immunotherapy response, promoted treatment tolerance, and led to poor prognosis. Inhibition of TBC1D1 was found to potentially synergistically enhance the efficacy of immunotherapy and prolong the survival of cancer patients with gliomas. Conclusion: Heightened expression of TBC1D1 may facilitate an immunosuppressive microenvironment and predict a poor prognosis. Blocking TBC1D1 could minimize immunotherapy resistance in cancer patients with gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Imunoterapia , Humanos , Biomarcadores , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/genética , Glioma/imunologia , Glioma/terapia , Proteínas Ativadoras de GTPase/genética , Prognóstico , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
17.
Dev Biol ; 511: 12-25, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38556137

RESUMO

During epithelial morphogenesis, the apical junctions connecting cells must remodel as cells change shape and make new connections with their neighbors. In the C. elegans embryo, new apical junctions form when epidermal cells migrate and seal with one another to encase the embryo in skin ('ventral enclosure'), and junctions remodel when epidermal cells change shape to squeeze the embryo into a worm shape ('elongation'). The junctional cadherin-catenin complex (CCC), which links epithelial cells to each other and to cortical actomyosin, is essential for C. elegans epidermal morphogenesis. RNAi genetic enhancement screens have identified several genes encoding proteins that interact with the CCC to promote epidermal morphogenesis, including the scaffolding protein Afadin (AFD-1), whose depletion alone results in only minor morphogenesis defects. Here, by creating a null mutation in afd-1, we show that afd-1 provides a significant contribution to ventral enclosure and elongation on its own. Unexpectedly, we find that afd-1 mutant phenotypes are strongly modified by diet, revealing a previously unappreciated parental nutritional input to morphogenesis. We identify functional interactions between AFD-1 and the CCC by demonstrating that E-cadherin is required for the polarized distribution of AFD-1 to cell contact sites in early embryos. Finally, we show that afd-1 promotes the enrichment of polarity regulator, and CCC-interacting protein, PAC-1/ARHGAP21 to cell contact sites, and we identify genetic interactions suggesting that afd-1 and pac-1 regulate epidermal morphogenesis at least in part through parallel mechanisms. Our findings reveal that C. elegans AFD-1 makes a significant contribution to epidermal morphogenesis and functionally interfaces with core and associated CCC proteins.


Assuntos
Caderinas , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Epiderme , Morfogênese , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Caderinas/metabolismo , Caderinas/genética , Epiderme/metabolismo , Epiderme/embriologia , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Cateninas/metabolismo , Cateninas/genética , Células Epidérmicas/metabolismo
18.
Mol Plant Pathol ; 25(3): e13448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38502297

RESUMO

Ras GTPase-activating proteins (Ras GAPs) act as negative regulators for Ras proteins and are involved in various signalling processes that influence cellular functions. Here, the function of four Ras GAPs, UvGap1 to UvGap4, was identified and analysed in Ustilaginoidea virens, the causal agent of rice false smut disease. Disruption of UvGAP1 or UvGAP2 resulted in reduced mycelial growth and an increased percentage of larger or dumbbell-shaped conidia. Notably, the mutant ΔUvgap1 completely lost its pathogenicity. Compared to the wild-type strain, the mutants ΔUvgap1, ΔUvgap2 and ΔUvgap3 exhibited reduced tolerance to H2 O2 oxidative stress. In particular, the ΔUvgap1 mutant was barely able to grow on the H2 O2 plate, and UvGAP1 was found to influence the expression level of genes involved in reactive oxygen species synthesis and scavenging. The intracellular cAMP level in the ΔUvgap1 mutant was elevated, as UvGap1 plays an important role in maintaining the intracellular cAMP level by affecting the expression of phosphodiesterases, which are linked to cAMP degradation in U. virens. In a yeast two-hybrid assay, UvRas1 and UvRasGef (Ras guanyl nucleotide exchange factor) physically interacted with UvGap1. UvRas2 was identified as an interacting partner of UvGap1 through a bimolecular fluorescence complementation assay and affinity capture-mass spectrometry analysis. Taken together, these findings suggest that the UvGAP1-mediated Ras pathway is essential for the development and pathogenicity of U. virens.


Assuntos
Hypocreales , Oryza , Proteínas Ativadoras de GTPase/genética , Oryza/microbiologia , Proteínas Ativadoras de ras GTPase , Doenças das Plantas/microbiologia
19.
Eur J Hum Genet ; 32(5): 558-566, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374468

RESUMO

Biallelic loss-of-function variants in TBC1D2B have been reported in five subjects with cognitive impairment and seizures with or without gingival overgrowth. TBC1D2B belongs to the family of Tre2-Bub2-Cdc16 (TBC)-domain containing RAB-specific GTPase activating proteins (TBC/RABGAPs). Here, we report five new subjects with biallelic TBC1D2B variants, including two siblings, and delineate the molecular and clinical features in the ten subjects known to date. One of the newly reported subjects was compound heterozygous for the TBC1D2B variants c.2584C>T; p.(Arg862Cys) and c.2758C>T; p.(Arg920*). In subject-derived fibroblasts, TBC1D2B mRNA level was similar to control cells, while the TBC1D2B protein amount was reduced by about half. In one of two siblings with a novel c.360+1G>T splice site variant, TBC1D2B transcript analysis revealed aberrantly spliced mRNAs and a drastically reduced TBC1D2B mRNA level in leukocytes. The molecular spectrum included 12 different TBC1D2B variants: seven nonsense, three frameshifts, one splice site, and one missense variant. Out of ten subjects, three had fibrous dysplasia of the mandible, two of which were diagnosed as cherubism. Most subjects developed gingival overgrowth. Half of the subjects had developmental delay. Seizures occurred in 80% of the subjects. Six subjects showed a progressive disease with mental deterioration. Brain imaging revealed cerebral and/or cerebellar atrophy with or without lateral ventricle dilatation. The TBC1D2B disorder is a progressive neurological disease with gingival overgrowth and abnormal mandible morphology. As TBC1D2B has been shown to positively regulate autophagy, defects in autophagy and the endolysosomal system could be associated with neuronal dysfunction and the neurodegenerative disease in the affected individuals.


Assuntos
Proteínas Ativadoras de GTPase , Crescimento Excessivo da Gengiva , Adulto , Feminino , Humanos , Crescimento Excessivo da Gengiva/genética , Crescimento Excessivo da Gengiva/patologia , Proteínas Ativadoras de GTPase/genética , Mutação com Perda de Função , Linhagem , Convulsões/genética , Convulsões/patologia
20.
Science ; 383(6686): eadk1291, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422154

RESUMO

SynGAP is an abundant synaptic GTPase-activating protein (GAP) critical for synaptic plasticity, learning, memory, and cognition. Mutations in SYNGAP1 in humans result in intellectual disability, autistic-like behaviors, and epilepsy. Heterozygous Syngap1-knockout mice display deficits in synaptic plasticity, learning, and memory and exhibit seizures. It is unclear whether SynGAP imparts structural properties at synapses independently of its GAP activity. Here, we report that inactivating mutations within the GAP domain do not inhibit synaptic plasticity or cause behavioral deficits. Instead, SynGAP modulates synaptic strength by physically competing with the AMPA-receptor-TARP excitatory receptor complex in the formation of molecular condensates with synaptic scaffolding proteins. These results have major implications for developing therapeutic treatments for SYNGAP1-related neurodevelopmental disorders.


Assuntos
Cognição , Plasticidade Neuronal , Proteínas Ativadoras de ras GTPase , Animais , Humanos , Camundongos , Transtorno Autístico/genética , Proteínas Ativadoras de GTPase/genética , Aprendizagem , Camundongos Knockout , Plasticidade Neuronal/genética , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA