Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nat Commun ; 15(1): 3523, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664421

RESUMO

Organismal physiology is widely regulated by the molecular circadian clock, a feedback loop composed of protein complexes whose members are enriched in intrinsically disordered regions. These regions can mediate protein-protein interactions via SLiMs, but the contribution of these disordered regions to clock protein interactions had not been elucidated. To determine the functionality of these disordered regions, we applied a synthetic peptide microarray approach to the disordered clock protein FRQ in Neurospora crassa. We identified residues required for FRQ's interaction with its partner protein FRH, the mutation of which demonstrated FRH is necessary for persistent clock oscillations but not repression of transcriptional activity. Additionally, the microarray demonstrated an enrichment of FRH binding to FRQ peptides with a net positive charge. We found that positively charged residues occurred in significant "blocks" within the amino acid sequence of FRQ and that ablation of one of these blocks affected both core clock timing and physiological clock output. Finally, we found positive charge clusters were a commonly shared molecular feature in repressive circadian clock proteins. Overall, our study suggests a mechanistic purpose for positive charge blocks and yielded insights into repressive arm protein roles in clock function.


Assuntos
Relógios Circadianos , Proteínas Fúngicas , Neurospora crassa , Neurospora crassa/genética , Neurospora crassa/metabolismo , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Ligação Proteica , Ritmo Circadiano/fisiologia , Ritmo Circadiano/genética , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/química , Mutação , Sequência de Aminoácidos , Regulação Fúngica da Expressão Gênica , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Análise Serial de Proteínas
2.
J Mol Biol ; 436(3): 168341, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924861

RESUMO

Circadian rhythms are genetically encoded molecular clocks for internal biological timekeeping. Organisms from single-cell bacteria to humans use these clocks to adapt to the external environment and synchronize their physiology and behavior to solar light/dark cycles. Although the proteins that constitute the molecular 'cogs' and give rise to circadian rhythms are now known, we still lack a detailed understanding of how these proteins interact to generate and sustain the ∼24-hour circadian clock. Structural studies have helped to expand the architecture of clock proteins and have revealed the abundance of the only well-defined structured regions in the mammalian clock called Per-ARNT-Sim (PAS) domains. PAS domains are modular, evolutionarily conserved sensory and signaling domains that typically mediate protein-protein interactions. In the mammalian circadian clock, PAS domains modulate homo and heterodimerization of several core clock proteins that assemble into transcription factors or repressors. This review will focus on the functional importance of the PAS domains in the circadian clock from a biophysical and biochemical standpoint and describe their roles in clock protein interactions and circadian timekeeping.


Assuntos
Proteínas CLOCK , Relógios Circadianos , Animais , Humanos , Ritmo Circadiano , Proteínas CLOCK/química , Fotoperíodo , Multimerização Proteica , Domínios Proteicos
3.
Nature ; 619(7969): 385-393, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407816

RESUMO

The basic helix-loop-helix (bHLH) family of transcription factors recognizes DNA motifs known as E-boxes (CANNTG) and includes 108 members1. Here we investigate how chromatinized E-boxes are engaged by two structurally diverse bHLH proteins: the proto-oncogene MYC-MAX and the circadian transcription factor CLOCK-BMAL1 (refs. 2,3). Both transcription factors bind to E-boxes preferentially near the nucleosomal entry-exit sites. Structural studies with engineered or native nucleosome sequences show that MYC-MAX or CLOCK-BMAL1 triggers the release of DNA from histones to gain access. Atop the H2A-H2B acidic patch4, the CLOCK-BMAL1 Per-Arnt-Sim (PAS) dimerization domains engage the histone octamer disc. Binding of tandem E-boxes5-7 at endogenous DNA sequences occurs through direct interactions between two CLOCK-BMAL1 protomers and histones and is important for circadian cycling. At internal E-boxes, the MYC-MAX leucine zipper can also interact with histones H2B and H3, and its binding is indirectly enhanced by OCT4 elsewhere on the nucleosome. The nucleosomal E-box position and the type of bHLH dimerization domain jointly determine the histone contact, the affinity and the degree of competition and cooperativity with other nucleosome-bound factors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , DNA , Histonas , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA/genética , DNA/metabolismo , Sequências Hélice-Alça-Hélice/genética , Histonas/química , Histonas/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação Alostérica , Zíper de Leucina , Fator 3 de Transcrição de Octâmero/metabolismo , Multimerização Proteica
4.
Cell Commun Signal ; 18(1): 182, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33198762

RESUMO

Cryptochrome (CRY) proteins play an essential role in regulating mammalian circadian rhythms. CRY is composed of a structured N-terminal domain known as the photolyase homology region (PHR), which is tethered to an intrinsically disordered C-terminal tail. The PHR domain is a critical hub for binding other circadian clock components such as CLOCK, BMAL1, PERIOD, or the ubiquitin ligases FBXL3 and FBXL21. While the isolated PHR domain is necessary and sufficient to generate circadian rhythms, removing or modifying the cryptochrome tails modulates the amplitude and/or periodicity of circadian rhythms, suggesting that they play important regulatory roles in the molecular circadian clock. In this commentary, we will discuss how recent studies of these intrinsically disordered tails are helping to establish a general and evolutionarily conserved model for CRY function, where the function of PHR domains is modulated by reversible interactions with their intrinsically disordered tails. Video abstract.


Assuntos
Relógios Circadianos , Criptocromos/química , Criptocromos/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Mamíferos/metabolismo , Sequência de Aminoácidos , Animais , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Ritmo Circadiano , Humanos
5.
J Biol Chem ; 295(50): 17187-17199, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33028638

RESUMO

Mammalian circadian clocks are driven by transcription/translation feedback loops composed of positive transcriptional activators (BMAL1 and CLOCK) and negative repressors (CRYPTOCHROMEs (CRYs) and PERIODs (PERs)). CRYs, in complex with PERs, bind to the BMAL1/CLOCK complex and repress E-box-driven transcription of clock-associated genes. There are two individual CRYs, with CRY1 exhibiting higher affinity to the BMAL1/CLOCK complex than CRY2. It is known that this differential binding is regulated by a dynamic serine-rich loop adjacent to the secondary pocket of both CRYs, but the underlying features controlling loop dynamics are not known. Here we report that allosteric regulation of the serine-rich loop is mediated by Arg-293 of CRY1, identified as a rare CRY1 SNP in the Ensembl and 1000 Genomes databases. The p.Arg293His CRY1 variant caused a shortened circadian period in a Cry1-/-Cry2-/- double knockout mouse embryonic fibroblast cell line. Moreover, the variant displayed reduced repressor activity on BMAL1/CLOCK driven transcription, which is explained by reduced affinity to BMAL1/CLOCK in the absence of PER2 compared with CRY1. Molecular dynamics simulations revealed that the p.Arg293His CRY1 variant altered a communication pathway between Arg-293 and the serine loop by reducing its dynamicity. Collectively, this study provides direct evidence that allosterism in CRY1 is critical for the regulation of circadian rhythm.


Assuntos
Proteínas CLOCK , Ritmo Circadiano , Criptocromos , Simulação de Dinâmica Molecular , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Regulação Alostérica , Substituição de Aminoácidos , Animais , Arginina/química , Arginina/genética , Arginina/metabolismo , Proteínas CLOCK/química , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Criptocromos/química , Criptocromos/genética , Criptocromos/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Proteínas Circadianas Period/química , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Estrutura Secundária de Proteína , Transcrição Gênica
6.
Chem Commun (Camb) ; 56(76): 11203-11206, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32969426

RESUMO

Essential components of the human circadian clock, BMAL1 and CLOCK, which are intrinsically disordered transcription factors, were expressed and subjected to a fluorescent in vitro binding assay using an E-box DNA fragment. Screening of a chemical library identified 5,8-quinoxalinedione (1), which was found to inhibit binding of the heterodimer BMAL1/CLOCK to E-box at low micromolar concentrations.


Assuntos
Fatores de Transcrição ARNTL/antagonistas & inibidores , Proteínas CLOCK/antagonistas & inibidores , Relógios Circadianos , DNA/metabolismo , Proteínas Intrinsicamente Desordenadas/antagonistas & inibidores , Quinoxalinas/farmacologia , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , DNA/química , Relação Dose-Resposta a Droga , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos
7.
Elife ; 92020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32101164

RESUMO

Mammalian circadian rhythms are generated by a transcription-based feedback loop in which CLOCK:BMAL1 drives transcription of its repressors (PER1/2, CRY1/2), which ultimately interact with CLOCK:BMAL1 to close the feedback loop with ~24 hr periodicity. Here we pinpoint a key difference between CRY1 and CRY2 that underlies their differential strengths as transcriptional repressors. Both cryptochromes bind the BMAL1 transactivation domain similarly to sequester it from coactivators and repress CLOCK:BMAL1 activity. However, we find that CRY1 is recruited with much higher affinity to the PAS domain core of CLOCK:BMAL1, allowing it to serve as a stronger repressor that lengthens circadian period. We discovered a dynamic serine-rich loop adjacent to the secondary pocket in the photolyase homology region (PHR) domain that regulates differential binding of cryptochromes to the PAS domain core of CLOCK:BMAL1. Notably, binding of the co-repressor PER2 remodels the serine loop of CRY2, making it more CRY1-like and enhancing its affinity for CLOCK:BMAL1.


Assuntos
Fatores de Transcrição ARNTL/fisiologia , Proteínas CLOCK/fisiologia , Ritmo Circadiano , Criptocromos/metabolismo , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Ritmo Circadiano/fisiologia , Criptocromos/química , Criptocromos/fisiologia , Camundongos , Estrutura Terciária de Proteína , Serina/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(40): 19911-19916, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527239

RESUMO

The circadian clock is an endogenous time-keeping system that is ubiquitous in animals and plants as well as some bacteria. In mammals, the clock regulates the sleep-wake cycle via 2 basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) domain proteins-CLOCK and BMAL1. There is emerging evidence to suggest that heme affects circadian control, through binding of heme to various circadian proteins, but the mechanisms of regulation are largely unknown. In this work we examine the interaction of heme with human CLOCK (hCLOCK). We present a crystal structure for the PAS-A domain of hCLOCK, and we examine heme binding to the PAS-A and PAS-B domains. UV-visible and electron paramagnetic resonance spectroscopies are consistent with a bis-histidine ligated heme species in solution in the oxidized (ferric) PAS-A protein, and by mutagenesis we identify His144 as a ligand to the heme. There is evidence for flexibility in the heme pocket, which may give rise to an additional Cys axial ligand at 20K (His/Cys coordination). Using DNA binding assays, we demonstrate that heme disrupts binding of CLOCK to its E-box DNA target. Evidence is presented for a conformationally mobile protein framework, which is linked to changes in heme ligation and which has the capacity to affect binding to the E-box. Within the hCLOCK structural framework, this would provide a mechanism for heme-dependent transcriptional regulation.


Assuntos
Proteínas CLOCK/química , Elementos E-Box , Heme/química , Transdução de Sinais , Fatores de Transcrição ARNTL/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Catálise , Relógios Circadianos , Criptocromos/química , DNA/química , Elétrons , Escherichia coli/metabolismo , Humanos , Ligantes , Proteínas do Tecido Nervoso/química , Oxigênio/química , Proteínas Circadianas Period/química , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Transcrição Gênica
9.
Proc Natl Acad Sci U S A ; 115(52): E12305-E12312, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530698

RESUMO

Either expression level or transcriptional activity of various nuclear receptors (NRs) have been demonstrated to be under circadian control. With a few exceptions, little is known about the roles of NRs as direct regulators of the circadian circuitry. Here we show that the nuclear receptor HNF4A strongly transrepresses the transcriptional activity of the CLOCK:BMAL1 heterodimer. We define a central role for HNF4A in maintaining cell-autonomous circadian oscillations in a tissue-specific manner in liver and colon cells. Not only transcript level but also genome-wide chromosome binding of HNF4A is rhythmically regulated in the mouse liver. ChIP-seq analyses revealed cooccupancy of HNF4A and CLOCK:BMAL1 at a wide array of metabolic genes involved in lipid, glucose, and amino acid homeostasis. Taken together, we establish that HNF4A defines a feedback loop in tissue-specific mammalian oscillators and demonstrate its recruitment in the circadian regulation of metabolic pathways.


Assuntos
Proteínas CLOCK/metabolismo , Ritmo Circadiano , Fator 4 Nuclear de Hepatócito/metabolismo , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/química , Proteínas CLOCK/genética , Linhagem Celular , Colo/metabolismo , Dimerização , Regulação para Baixo , Regulação da Expressão Gênica , Fator 4 Nuclear de Hepatócito/genética , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Transcrição Gênica
10.
Nat Commun ; 9(1): 1138, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29556064

RESUMO

Mammalian circadian clocks are driven by a transcription/translation feedback loop composed of positive regulators (CLOCK/BMAL1) and repressors (CRYPTOCHROME 1/2 (CRY1/2) and PER1/2). To understand the structural principles of regulation, we used evolutionary sequence analysis to identify co-evolving residues within the CRY/PHL protein family. Here we report the identification of an ancestral secondary cofactor-binding pocket as an interface in repressive CRYs, mediating regulation through direct interaction with CLOCK and BMAL1. Mutations weakening binding between CLOCK/BMAL1 and CRY1 lead to acceleration of the clock, suggesting that subtle sequence divergences at this site can modulate clock function. Divergence between CRY1 and CRY2 at this site results in distinct periodic output. Weaker interactions between CRY2 and CLOCK/BMAL1 at this pocket are strengthened by co-expression of PER2, suggesting that PER expression limits the length of the repressive phase in CRY2-driven rhythms. Overall, this work provides a model for the mechanism and evolutionary variation of clock regulatory mechanisms.


Assuntos
Criptocromos/genética , Criptocromos/metabolismo , Evolução Molecular , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Sítio Alostérico/genética , Animais , Proteínas CLOCK/química , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Linhagem Celular , Relógios Circadianos/genética , Criptocromos/química , Células HEK293 , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Camundongos , Camundongos Knockout , Modelos Moleculares , Proteínas Circadianas Period/química , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Domínios e Motivos de Interação entre Proteínas/genética , Homologia Estrutural de Proteína
11.
Structure ; 25(8): 1187-1194.e3, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28669630

RESUMO

In the canonical clock model, CLOCK:BMAL1-mediated transcriptional activation is feedback regulated by its repressors CRY and PER and, in association with other coregulators, ultimately generates oscillatory gene expression patterns. How CLOCK:BMAL1 interacts with coregulator(s) is not well understood. Here we report the crystal structures of the mouse CLOCK transactivating domain Exon19 in complex with CIPC, a potent circadian repressor that functions independently of CRY and PER. The Exon19:CIPC complex adopts a three-helical coiled-coil bundle conformation containing two Exon19 helices and one CIPC. Unique to Exon19:CIPC, three highly conserved polar residues, Asn341 of CIPC and Gln544 of the two Exon19 helices, are located at the mid-section of the coiled-coil bundle interior and form hydrogen bonds with each other. Combining results from protein database search, sequence analysis, and mutagenesis studies, we discovered for the first time that CLOCK Exon19:CIPC interaction is a conserved transcription regulatory mechanism among mammals, fish, flies, and other invertebrates.


Assuntos
Fatores de Transcrição ARNTL/química , Proteínas CLOCK/química , Proteínas de Transporte/química , Proteínas de Drosophila/química , Simulação de Acoplamento Molecular , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Sequência Conservada , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Éxons , Camundongos , Ligação Proteica
12.
Proc Natl Acad Sci U S A ; 114(7): 1560-1565, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28143926

RESUMO

The basic helix-loop-helix PAS domain (bHLH-PAS) transcription factor CLOCK:BMAL1 (brain and muscle Arnt-like protein 1) sits at the core of the mammalian circadian transcription/translation feedback loop. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the ∼24-h periodicity of gene expression. Formation of a repressive complex, defined by the core clock proteins cryptochrome 1 (CRY1):CLOCK:BMAL1, plays an important role controlling the switch from repression to activation each day. Here we show that CRY1 binds directly to the PAS domain core of CLOCK:BMAL1, driven primarily by interaction with the CLOCK PAS-B domain. Integrative modeling and solution X-ray scattering studies unambiguously position a key loop of the CLOCK PAS-B domain in the secondary pocket of CRY1, analogous to the antenna chromophore-binding pocket of photolyase. CRY1 docks onto the transcription factor alongside the PAS domains, extending above the DNA-binding bHLH domain. Single point mutations at the interface on either CRY1 or CLOCK disrupt formation of the ternary complex, highlighting the importance of this interface for direct regulation of CLOCK:BMAL1 activity by CRY1.


Assuntos
Fatores de Transcrição ARNTL/genética , Proteínas CLOCK/genética , Relógios Circadianos/genética , Criptocromos/genética , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Criptocromos/química , Criptocromos/metabolismo , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Mutação , Ligação Proteica , Domínios Proteicos , Células Sf9 , Spodoptera
13.
Cell Metab ; 25(1): 118-127, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27818261

RESUMO

Circadian clocks are self-sustainable endogenous oscillators, present in virtually every cell, driving daily cycles of metabolism and physiology. The molecular mechanism of the circadian clock is based on interconnected transcriptional and translational feedback loops. While many studies have addressed circadian rhythms of the transcriptome and, to a lesser extent, the proteome, none have investigated the phosphoproteome. We apply mass spectrometry-based phosphoproteomics to obtain the first global in vivo quantification of circadian phosphorylation in mammals. Of more than 20,000 phosphosites, 25% significantly oscillate in the mouse liver, including novel sites on core clock proteins. The extent and amplitude of phosphorylation cycles far exceeds those observed in RNA and protein abundance. Our data indicate a dominant regulatory role for phosphorylation-dependent circadian tuning of signaling pathways. This allows the organism to integrate different signals and rapidly and economically respond to daily changes in nutrient availability and physiological states.


Assuntos
Relógios Circadianos/fisiologia , Redes e Vias Metabólicas , Sequência de Aminoácidos , Animais , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Ritmo Circadiano , Ativação Enzimática , Feminino , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Transdução de Sinais , Fatores de Tempo
14.
BMC Genomics ; 17(1): 1008, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27931190

RESUMO

BACKGROUND: Clock genes are considered to be the molecular core of biological clock in vertebrates and they are directly involved in the regulation of daily rhythms in vertebrate tissues such as skeletal muscles. Fish myotomes are composed of anatomically segregated fast and slow muscle fibers that possess different metabolic and contractile properties. To date, there is no report on the characterization of the circadian clock system components of slow muscles in fish. RESULTS: In the present study, the molecular clock components (clock, arntl1/2, cry1/2/3, cry-dash, npas2, nr1d1/2, per1/2/3, rorα and tim genes) and their daily transcription levels were characterized in slow and fast muscles of Chinese perch (Siniperca chuatsi). Among the 15 clock genes, nrld2 and per3 had no daily rhythmicity in slow muscles, and cry2/3 and tim displayed no daily rhythmicity in fast muscles of the adult fish. In the slow muscles, the highest expression of the most clock paralogs occurred at the dark period except arntl1, nr1d1, nr1d2 and tim. With the exception of nr1d2 and tim, the other clock genes had an acrophase at the light period in fast muscles. The circadian expression of the myogenic regulatory factors (mrf4 and myf5), mstn and pnca showed either a positive or a negative correlation with the transcription pattern of the clock genes in both types of muscles. CONCLUSIONS: It was the first report to unravel the molecular clock components of the slow and fast muscles in vertebrates. The expressional pattern differences of the clock genes between the two types of muscle fibers suggest that the clock system may play key roles on muscle type-specific tissue maintenance and function.


Assuntos
Ritmo Circadiano/genética , Fibras Musculares Esqueléticas/metabolismo , Percas/genética , Sequência de Aminoácidos , Animais , Proteínas CLOCK/química , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , China , Ritmo Circadiano/fisiologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Dados de Sequência Molecular , Fatores de Regulação Miogênica/química , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Percas/metabolismo , Alinhamento de Sequência
15.
Semin Immunol ; 28(5): 478-490, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27884543

RESUMO

Molecular clocks allow an organism to track time of day, providing the means to anticipate and respond to the daily changes within the environment. In mammals the molecular clock consists of a network of proteins that form auto-regulatory feedback loops that drive rhythms in physiology and behavior. In recent times the extent to which the molecular clock controls key metabolic and immune pathways has begun to emerge. For example, the main clock protein BMAL1 has been linked to mitochondrial metabolism, mitochondrial dynamics and various host defense pathways. The molecular clock may function to integrate daily metabolic changes driven by feeding-fasting to immune function and output. Understanding how the clock intersects with metabolic pathways within immune cells to affect immune phenotypes will have broad implications for the management of metabolic, inflammatory and infectious diseases.


Assuntos
Relógios Biológicos , Metabolismo Energético , Imunidade , Animais , Proteínas CLOCK/química , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Regulação da Expressão Gênica , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunidade Inata , Imunomodulação , Transdução de Sinais
16.
J Biol Rhythms ; 31(3): 308-17, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26873744

RESUMO

The circadian clock system has been linked to the onset and development of obesity and some accompanying comorbidities. Epigenetic mechanisms, such as DNA methylation, are putatively involved in the regulation of the circadian clock system. The aim of this study was to investigate the influence of a weight loss intervention based on an energy-controlled Mediterranean dietary pattern in the methylation levels of 3 clock genes, BMAL1, CLOCK, and NR1D1, and the association between the methylation levels and changes induced in the serum lipid profile with the weight loss treatment. The study sample enrolled 61 women (body mass index = 28.6 ± 3.4 kg/m(2); age: 42.2 ± 11.4 years), who followed a nutritional program based on a Mediterranean dietary pattern. DNA was isolated from whole blood obtained at the beginning and end point. Methylation levels at different CpG sites of BMAL1, CLOCK, and NR1D1 were analyzed by Sequenom's MassArray. The energy-restricted intervention modified the methylation levels of different CpG sites in BMAL1 (CpGs 5, 6, 7, 9, 11, and 18) and NR1D1 (CpGs 1, 10, 17, 18, 19, and 22). Changes in cytosine methylation in the CpG 5 to 9 region of BMAL1 with the intervention positively correlated with the eveningness profile (p = 0.019). The baseline methylation of the CpG 5 to 9 region in BMAL1 positively correlated with energy (p = 0.047) and carbohydrate (p = 0.017) intake and negatively correlated with the effect of the weight loss intervention on total cholesterol (p = 0.032) and low-density lipoprotein cholesterol (p = 0.005). Similar significant and positive correlations were found between changes in methylation levels in the CpG 5 to 9 region of BMAL1 due to the intervention and changes in serum lipids (p < 0.05). This research describes apparently for the first time an association between changes in the methylation of the BMAL1 gene with the intervention and the effects of a weight loss intervention on blood lipids levels.


Assuntos
Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/genética , Colesterol/sangue , Ritmo Circadiano/genética , Triglicerídeos/sangue , Redução de Peso/genética , Adulto , Proteínas CLOCK/química , Proteínas CLOCK/genética , Dieta Mediterrânea , Epigenômica , Feminino , Humanos , Metilação , Pessoa de Meia-Idade , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/química , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Obesidade , Oligodesoxirribonucleotídeos
17.
PLoS One ; 11(1): e0146066, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26727491

RESUMO

Understanding of multidrug binding at the atomic level would facilitate drug design and strategies to modulate drug metabolism, including drug transport, oxidation, and conjugation. Therefore we explored the mechanism of promiscuous binding of small molecules by studying the ligand binding domain, the PAS-B domain of the aryl hydrocarbon receptor (AhR). Because of the low sequence identities of PAS domains to be used for homology modeling, structural features of the widely employed HIF-2α and a more recent suitable template, CLOCK were compared. These structures were used to build AhR PAS-B homology models. We performed molecular dynamics simulations to characterize dynamic properties of the PAS-B domain and the generated conformational ensembles were employed in in silico docking. In order to understand structural and ligand binding features we compared the stability and dynamics of the promiscuous AhR PAS-B to other PAS domains exhibiting specific interactions or no ligand binding function. Our exhaustive in silico binding studies, in which we dock a wide spectrum of ligand molecules to the conformational ensembles, suggest that ligand specificity and selection may be determined not only by the PAS-B domain itself, but also by other parts of AhR and its protein interacting partners. We propose that ligand binding pocket and access channels leading to the pocket play equally important roles in discrimination of endogenous molecules and xenobiotics.


Assuntos
Receptores de Hidrocarboneto Arílico/química , Xenobióticos/metabolismo , Fatores de Transcrição ARNTL/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Sítios de Ligação , Proteínas CLOCK/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Modelos Químicos , Modelos Moleculares , Simulação de Acoplamento Molecular , Complexos Multiproteicos , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Receptores de Hidrocarboneto Arílico/metabolismo , Especificidade por Substrato
18.
Sci Rep ; 5: 15212, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26471974

RESUMO

The mammalian clock system is composed of a master clock and peripheral clocks. At the molecular level, the rhythm-generating mechanism is controlled by a molecular clock composed of positive and negative feedback loops. However, the underlying mechanisms for molecular clock regulation that affect circadian clock function remain unclear. Here, we show that Egr1 (early growth response 1), an early growth response gene, is expressed in mouse liver in a circadian manner. Consistently, Egr1 is transactivated by the CLOCK/BMAL1 heterodimer through a conserved E-box response element. In hepatocytes, EGR1 regulates the transcription of several core clock genes, including Bmal1, Per1, Per2, Rev-erbα and Rev-erbß, and the rhythm amplitude of their expression is dependent on EGR1's transcriptional function. Further mechanistic studies indicated that EGR1 binds to the proximal region of the Per1 promoter to activate its transcription directly. When the peripheral clock is altered by light or feeding behavior transposition in Egr1-deficient mice, the expression phase of hepatic clock genes shifts normally, but the amplitude is also altered. Our data reveal a critical role for EGR1 in the regulation of hepatic clock circuitry, which may contribute to the rhythm stability of peripheral clock oscillators.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fígado/metabolismo , Proteínas Circadianas Period/metabolismo , Fatores de Transcrição ARNTL/deficiência , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/química , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Imunoprecipitação da Cromatina , Proteína 1 de Resposta de Crescimento Precoce/antagonistas & inibidores , Proteína 1 de Resposta de Crescimento Precoce/genética , Retroalimentação Fisiológica , Camundongos , Camundongos Knockout , Proteínas Circadianas Period/antagonistas & inibidores , Proteínas Circadianas Period/genética , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Elementos de Resposta , Ativação Transcricional
19.
Cell Metab ; 22(6): 1009-19, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26387865

RESUMO

The MYC oncogene encodes MYC, a transcription factor that binds the genome through sites termed E-boxes (5'-CACGTG-3'), which are identical to the binding sites of the heterodimeric CLOCK-BMAL1 master circadian transcription factor. Hence, we hypothesized that ectopic MYC expression perturbs the clock by deregulating E-box-driven components of the circadian network in cancer cells. We report here that deregulated expression of MYC or N-MYC disrupts the molecular clock in vitro by directly inducing REV-ERBα to dampen expression and oscillation of BMAL1, and this could be rescued by knockdown of REV-ERB. REV-ERBα expression predicts poor clinical outcome for N-MYC-driven human neuroblastomas that have diminished BMAL1 expression, and re-expression of ectopic BMAL1 in neuroblastoma cell lines suppresses their clonogenicity. Further, ectopic MYC profoundly alters oscillation of glucose metabolism and perturbs glutaminolysis. Our results demonstrate an unsuspected link between oncogenic transformation and circadian and metabolic dysrhythmia, which we surmise to be advantageous for cancer.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/genética , Sequência de Bases , Sítios de Ligação , Proteínas CLOCK/química , Proteínas CLOCK/genética , Linhagem Celular Tumoral , Ritmo Circadiano , Dimerização , Genes Reporter , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
20.
Nature ; 524(7565): 303-8, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26245371

RESUMO

The hypoxia-inducible factors (HIFs) coordinate cellular adaptations to low oxygen stress by regulating transcriptional programs in erythropoiesis, angiogenesis and metabolism. These programs promote the growth and progression of many tumours, making HIFs attractive anticancer targets. Transcriptionally active HIFs consist of HIF-α and ARNT (also called HIF-1ß) subunits. Here we describe crystal structures for each of mouse HIF-2α-ARNT and HIF-1α-ARNT heterodimers in states that include bound small molecules and their hypoxia response element. A highly integrated quaternary architecture is shared by HIF-2α-ARNT and HIF-1α-ARNT, wherein ARNT spirals around the outside of each HIF-α subunit. Five distinct pockets are observed that permit small-molecule binding, including PAS domain encapsulated sites and an interfacial cavity formed through subunit heterodimerization. The DNA-reading head rotates, extends and cooperates with a distal PAS domain to bind hypoxia response elements. HIF-α mutations linked to human cancers map to sensitive sites that establish DNA binding and the stability of PAS domains and pockets.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/metabolismo , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Hipóxia Celular/genética , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Modelos Moleculares , Mutação/genética , Neoplasias/genética , Fosforilação , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Elementos de Resposta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA