Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Anal Biochem ; 629: 114298, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34252439

RESUMO

To extend the value of biosensor-SPR in the characterization of DNA recognition by nucleoproteins, we report a comparative analysis of DNA-facilitated target search by two ETS-family transcription factors: Elk1 and ETV6. ETS domains represent an attractive system for developing biosensor-based techniques due to a broad range of physicochemical properties encoded within a highly conserved DNA-binding motif. Building on a biosensor approach in which the protein is quantitatively sequestered and presented to immobilized cognate DNA as nonspecific complexes, we assessed the impact of intrinsic cognate and nonspecific affinities on long-range (intersegmental) target search. The equilibrium constants of DNA-facilitated binding were sensitive to the intrinsic binding properties of the proteins such that their relative specificity for cognate DNA were reinforced when binding occurred by transfer vs. without nonspecific DNA. Direct measurement of association and dissociation kinetics revealed ionic features of the activated complex that evidenced DNA-facilitated dissociation, even though Elk1 and ETV6 harbor only a single DNA-binding surface. At salt concentrations that masked the effects of nonspecific pre-binding at equilibrium, the dissociation kinetics of cognate binding were nevertheless distinct from conditions under which nonspecific DNA was absent. These results further strengthen the significance of long-range DNA-facilitated translocation in the physiologic environment.


Assuntos
DNA/análise , Nucleoproteínas/química , Sítios de Ligação , Técnicas Biossensoriais , Escherichia coli/genética , Nucleoproteínas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-ets/química , Proteínas Repressoras/química , Ressonância de Plasmônio de Superfície , Proteínas Elk-1 do Domínio ets/química , Variante 6 da Proteína do Fator de Translocação ETS
2.
Phys Chem Chem Phys ; 23(24): 13490-13502, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34120158

RESUMO

Electrostatic protein/DNA interactions arise from the neutralization of the DNA phosphodiester backbone as well as coupled exchanges by charged protein residues as salt bridges or with mobile ions. Much focus has been and continues to be paid to interfacial ion pairs with DNA. The role of extra-interfacial ionic interactions, particularly as dynamic drivers of DNA sequence selectivity, remain poorly known. The ETS family of transcription factors represents an attractive model for addressing this knowledge gap given their diverse ionic composition in primary structures that fold to a tightly conserved DNA-binding motif. To probe the importance of extra-interfacial salt bridges in DNA recognition, we compared the salt-dependent binding by Elk1 with ETV6, two ETS homologs differing markedly in ionic composition. While both proteins exhibit salt-dependent binding with cognate DNA that corresponds to interfacial phosphate contacts, their nonspecific binding diverges from cognate binding as well as each other. Molecular dynamics simulations in explicit solvent, which generated ionic interactions in agreement with the experimental binding data, revealed distinct salt-bridge dynamics in the nonspecific complexes formed by the two proteins. Impaired DNA contact by ETV6 resulted in fewer backbone contacts in the nonspecific complex, while Elk1 exhibited a redistribution of extra-interfacial salt bridges via residues that are non-conserved between the two ETS relatives. Thus, primary structure variation in ionic residues can encode highly differentiated specificity mechanisms in a highly conserved DNA-binding motif.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas c-ets/química , Proteínas Repressoras/química , Proteínas Elk-1 do Domínio ets/química , Teoria da Densidade Funcional , Humanos , Variante 6 da Proteína do Fator de Translocação ETS
3.
Nat Commun ; 11(1): 1182, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132534

RESUMO

Supramolecular chemistry offers an exciting opportunity to assemble materials with molecular precision. However, there remains an unmet need to turn molecular self-assembly into functional materials and devices. Harnessing the inherent properties of both disordered proteins and graphene oxide (GO), we report a disordered protein-GO co-assembling system that through a diffusion-reaction process and disorder-to-order transitions generates hierarchically organized materials that exhibit high stability and access to non-equilibrium on demand. We use experimental approaches and molecular dynamics simulations to describe the underlying molecular mechanism of formation and establish key rules for its design and regulation. Through rapid prototyping techniques, we demonstrate the system's capacity to be controlled with spatio-temporal precision into well-defined capillary-like fluidic microstructures with a high level of biocompatibility and, importantly, the capacity to withstand flow. Our study presents an innovative approach to transform rational supramolecular design into functional engineering with potential widespread use in microfluidic systems and organ-on-a-chip platforms.


Assuntos
Bioimpressão/métodos , Desenho de Equipamento/métodos , Grafite/química , Dispositivos Lab-On-A-Chip , Proteínas Elk-1 do Domínio ets/química , Animais , Técnicas de Cultura de Células/métodos , Linhagem Celular , Embrião de Galinha , Membrana Corioalantoide , Células Endoteliais da Veia Umbilical Humana , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Impressão Tridimensional , Multimerização Proteica , Estrutura Quaternária de Proteína
4.
PLoS One ; 14(2): e0212518, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30789974

RESUMO

Microtubule severing, which is highly critical for the survival of both mitotic and post-mitotic cells, has to be precisely adjusted by regulating the expression levels of severing proteins, katanin and spastin. Even though severing mechanism is relatively well-studied, there are limited studies for the transcriptional regulation of microtubule severing proteins. In this study, we identified the main regulatory region of KATNA1 gene encoding katanin-p60 as 5' UTR, which has a key role for its expression, and showed Elk1 binding to KATNA1. Furthermore, we identified that Elk1 decreased katanin-p60 and spastin protein expressions, while mRNA levels were increased upon Elk1 overexpression. In addition, SUMOylation is a known post-translational modification regulating Elk1 activity. A previous study suggested that K230, K249, K254 amino acids in the R domain are the main SUMOylation sites; however, we identified that these amino acids are neither essential nor substantial for Elk1 SUMOylation. Also, we determined that KATNA1 methylation results in the reduction of Elk1 binding whereas SPG4 methylation does not. Together, our findings emphasizing the impacts of both transcriptional and post-transcriptional regulations of katanin-p60 and spastin suggest that Elk1 has a key role for differential expression patterns of microtubule severing proteins, thereby regulating cellular functions through alterations of microtubule organization.


Assuntos
Katanina/metabolismo , Espastina/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Linhagem Celular , Metilação de DNA , Humanos , Katanina/química , Katanina/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espastina/química , Espastina/genética , Sumoilação , Transcrição Gênica , Proteínas Elk-1 do Domínio ets/química , Proteínas Elk-1 do Domínio ets/genética
5.
Sci Rep ; 7(1): 17391, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234076

RESUMO

The negatively charged amino acid-dependent sumoylation motif (NDSM) carries an additional stretch of acidic residues downstream of the consensus Ψ-K-x-E/D sumoylation motif. We have previously shown that acetylation of the SUMO E2 conjugase enzyme, Ubc9, at K65 downregulates its binding to the NDSM and renders a selective decrease in sumoylation of substrates with the NDSM motif. Here, we provide detailed structural, thermodynamic, and kinetics results of the interactions between Ubc9 and its K65 acetylated variant (Ac-Ubc9K65) with three NDSMs derived from Elk1, CBP, and Calpain2 to rationalize the mechanism beneath this reduced binding. Our nuclear magnetic resonance (NMR) data rule out a direct interaction between the NDSM and the K65 residue of Ubc9. Similarly, we found that NDSM binding was entropy-driven and unlikely to be affected by the negative charge by K65 acetylation. Moreover our NMR, mutagenesis and molecular dynamics simulation studies defined the sequence of the NDSM as Ψ-K-x-E/D-x1-x2-(x3/E/D)-(x4/E/D)-xn and determined that K74 and K76 were critical Ubc9 residues interacting with the negatively charged residues of the NDSM.


Assuntos
Calpaína/metabolismo , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Sialoglicoproteínas/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo , Acetilação , Calpaína/química , Humanos , Cinética , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Ligação Proteica , Sialoglicoproteínas/química , Termodinâmica , Enzimas de Conjugação de Ubiquitina/química , Proteínas Elk-1 do Domínio ets/química
6.
Chem Commun (Camb) ; 53(2): 376-379, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-27935608

RESUMO

Selectively regulating genes is an important goal in Chemical Biology. We report the development of a peptide-based synthetic transcription factor which binds the targeted DNA sequence with high affinity and single base-pair discrimination capability. When delivered inside a tumor cell, it regulated targeted genes selectively and inhibited cell proliferation.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Peptídeos/síntese química , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-fos/genética , Fator de Resposta Sérica/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-fos/química , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fator de Resposta Sérica/química , Proteínas Elk-1 do Domínio ets/química
7.
Science ; 354(6309): 233-237, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27738173

RESUMO

Multisite phosphorylation regulates many transcription factors, including the serum response factor partner Elk-1. Phosphorylation of the transcriptional activation domain (TAD) of Elk-1 by the protein kinase ERK at multiple sites potentiates recruitment of the Mediator transcriptional coactivator complex and transcriptional activation, but the roles of individual phosphorylation events had remained unclear. Using time-resolved nuclear magnetic resonance spectroscopy, we found that ERK2 phosphorylation proceeds at markedly different rates at eight TAD sites in vitro, which we classified as fast, intermediate, and slow. Mutagenesis experiments showed that phosphorylation of fast and intermediate sites promoted Mediator interaction and transcriptional activation, whereas modification of slow sites counteracted both functions, thereby limiting Elk-1 output. Progressive Elk-1 phosphorylation thus ensures a self-limiting response to ERK activation, which occurs independently of antagonizing phosphatase activity.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo , Animais , Ativação Enzimática , Regulação da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Mutagênese , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Domínios Proteicos , Fator de Resposta Sérica/metabolismo , Proteínas Elk-1 do Domínio ets/química , Proteínas Elk-1 do Domínio ets/genética
8.
FEBS J ; 283(6): 1025-38, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26613204

RESUMO

Metazoans have multiple ETS paralogues with overlapping or indiscriminate biological functions. Elk-1, one of three mammalian ternary complex factors (TCFs), is a well-conserved, ETS domain-containing transcriptional regulator of mitogen-responsive genes that operates in concert with serum response factor (SRF). Nonetheless, its genetic role remains unresolved because the elk-1 gene could be deleted from the mouse genome seemingly without adverse effect. Here we have explored the evolution of Elk-1 to gain insight into its conserved biological role. We identified antecedent Elk-1 proteins in extant early metazoans and used amino acid sequence alignments to chart the appearance of domains characteristic of human Elk-1. We then performed biochemical studies to determine whether putative domains apparent in the Elk-1 protein of a primitive hemichordate were functionally orthologous to those of human Elk-1. Our findings imply the existence of primordial Elk-1 proteins in primitive deuterostomes that could operate as mitogen-responsive ETS transcription factors but not as TCFs. The role of TCF was acquired later, but presumably prior to the whole genome duplications in the basal vertebrate lineage. Thus its evolutionary origins link Elk-1 to the appearance of mesoderm.


Assuntos
Evolução Molecular , Proteínas Elk-1 do Domínio ets/química , Proteínas Elk-1 do Domínio ets/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Sequência Conservada , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Filogenia , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas Elk-1 do Domínio ets/metabolismo
9.
J Gen Physiol ; 146(5): 357-74, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26503718

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PIP2) regulates Shaker K+ channels and voltage-gated Ca2+ channels in a bimodal fashion by inhibiting voltage activation while stabilizing open channels. Bimodal regulation is conserved in hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, but voltage activation is enhanced while the open channel state is destabilized. The proposed sites of PIP2 regulation in these channels include the voltage-sensor domain (VSD) and conserved regions of the proximal cytoplasmic C terminus. Relatively little is known about PIP2 regulation of Ether-á-go-go (EAG) channels, a metazoan-specific family of K+ channels that includes three gene subfamilies, Eag (Kv10), Erg (Kv11), and Elk (Kv12). We examined PIP2 regulation of the Elk subfamily potassium channel human Elk1 to determine whether bimodal regulation is conserved within the EAG K+ channel family. Open-state stabilization by PIP2 has been observed in human Erg1, but the proposed site of regulation in the distal C terminus is not conserved among EAG family channels. We show that PIP2 strongly inhibits voltage activation of Elk1 but also stabilizes the open state. This stabilization produces slow deactivation and a mode shift in voltage gating after activation. However, removal of PIP2 has the net effect of enhancing Elk1 activation. R347 in the linker between the VSD and pore (S4-S5 linker) and R479 near the S6 activation gate are required for PIP2 to inhibit voltage activation. The ability of PIP2 to stabilize the open state also requires these residues, suggesting an overlap in sites central to the opposing effects of PIP2 on channel gating. Open-state stabilization in Elk1 requires the N-terminal eag domain (PAS domain + Cap), and PIP2-dependent stabilization is enhanced by a conserved basic residue (K5) in the Cap. Our data shows that PIP2 can bimodally regulate voltage gating in EAG family channels, as has been proposed for Shaker and HCN channels. PIP2 regulation appears fundamentally different for Elk and KCNQ channels, suggesting that, although both channel types can regulate action potential threshold in neurons, they are not functionally redundant.


Assuntos
Ativação do Canal Iônico , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Oócitos , Estrutura Terciária de Proteína , Proteínas Elk-1 do Domínio ets/química , Proteínas Elk-1 do Domínio ets/genética
10.
Chem Biol ; 21(10): 1370-1380, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25219965

RESUMO

Human ectopic viral integration site 1 (EVI1) is an oncogenic transcription factor known to play a critical role in many aggressive forms of cancer. Its selective modulation is thought to alter the cancer-specific gene regulatory networks. Pyrrole-imidazole polyamides (PIPs) are a class of small DNA binders that can be designed to target any destined DNA sequence. Herein, we report a sequence-specific pyrrole-imidazole polyamide, PIP1, which can target specific base pairs of the REL/ELK1 binding site in the EVI1 minimal promoter. The designed PIP1 significantly inhibited EVI1 in MDA-MB-231 cells. Whole-transcriptome analysis confirmed that PIP1 affected a fraction of EVI1-mediated gene regulation. In vitro assays suggested that this polyamide can also effectively inhibit breast cancer cell migration. Taken together, these results suggest that EVI1-targeted PIP1 is an effective transcriptional regulator in cancer cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Imidazóis/química , Nylons/química , Peptídeos/química , Fatores de Transcrição/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Regulação para Baixo/efeitos dos fármacos , Humanos , Imidazóis/metabolismo , Imidazóis/toxicidade , Proteína do Locus do Complexo MDS1 e EVI1 , Nylons/metabolismo , Nylons/toxicidade , Peptídeos/metabolismo , Peptídeos/toxicidade , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-rel/química , Proteínas Proto-Oncogênicas c-rel/metabolismo , Proto-Oncogenes/genética , Pirróis/química , Pirróis/metabolismo , Pirróis/toxicidade , RNA Mensageiro/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Regulação para Cima/efeitos dos fármacos , Proteínas Elk-1 do Domínio ets/química , Proteínas Elk-1 do Domínio ets/metabolismo
11.
Nucleic Acids Res ; 39(15): 6390-402, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21543455

RESUMO

The ETS (E26) protein Elk-1 serves as a paradigm for mitogen-responsive transcription factors. It is multiply phosphorylated by mitogen-activated protein kinases (MAPKs), which it recruits into pre-initiation complexes on target gene promoters. However, events preparatory to Elk-1 phosphorylation are less well understood. Here, we identify two novel, functional elements in Elk-1 that determine its stability and nuclear accumulation. One element corresponds to a dimerization interface in the ETS domain and the second is a cryptic degron adjacent to the serum response factor (SRF)-interaction domain that marks dimerization-defective Elk-1 for rapid degradation by the ubiquitin-proteasome system. Dimerization appears to be crucial for Elk-1 stability only in the cytoplasm, as latent Elk-1 accumulates in the nucleus and interacts dynamically with DNA as a monomer. These findings define a novel role for the ETS domain of Elk-1 and demonstrate that nuclear accumulation of Elk-1 involves conformational flexibility prior to its phosphorylation by MAPKs.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas Elk-1 do Domínio ets/química , Sequência de Aminoácidos , Linhagem Celular , DNA/metabolismo , Dimerização , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Conformação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Deleção de Sequência , Proteínas Elk-1 do Domínio ets/metabolismo
12.
J Biol Chem ; 286(4): 2477-85, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21098038

RESUMO

Extracellular signal-regulated kinase-1 and -2 (ERK1/2) proteins regulate a variety of cellular functions, including cell proliferation and differentiation, by interacting with and phosphorylating substrate proteins. Two docking sites, common docking (CD/ED) domain and F-site recruitment site (FRS), on ERK proteins have been identified. Specific interactions with the CD/ED domain and the FRS occur with substrates containing a docking site for ERK and JNK, LXL (DEJL) motif (D-domain) and a docking site for ERK, FXF (DEF) motif (F-site), respectively. However, the relative contributions of the ERK docking sites in mediating substrate interactions that allow efficient phosphate transfer are largely unknown. In these studies, we provide a quantitative analysis of ERK2 interactions with substrates using surface plasmon resonance to measure real time protein-protein interactions. ERK2 interacted with ELK-1 (DEF and DEJL motifs), RSK-1 (DEJL motif), and c-Fos (DEF motif) with K(D) values of 0.25, 0.15, and 0.97 µM, respectively. CD/ED domain mutations inhibited interactions with ELK-1 and RSK-1 by 6-fold but had no effect on interactions with c-Fos. Select mutations in FRS residues differentially inhibited ELK-1 or c-Fos interactions with ERK2 but had little effect on RSK-1 interactions. Mutations in both the ED and FRS docking sites completely inhibited ELK-1 interactions but had no effect on interactions with stathmin, an ERK substrate whose docking site is unknown. The phosphorylation status of ERK2 did not affect interactions with RSK-1 or c-Fos but did inhibit interactions with ELK-1 and stathmin. These studies provide a quantitative evaluation of specific docking domains involved in mediating interactions between ERK2 and protein substrates and define the contributions of these interactions to phosphate transfer.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/química , Motivos de Aminoácidos , Sítios de Ligação , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Mutação , Fosforilação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/química , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Estatmina/química , Estatmina/genética , Estatmina/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Proteínas Elk-1 do Domínio ets/química , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo
13.
Nucleic Acids Res ; 37(22): 7368-80, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19789270

RESUMO

ETS-domain transcription factors play important roles in controlling gene expression in a variety of different contexts; however, these proteins bind to very similar sites and it is unclear how in vivo specificity is achieved. In silico analysis is unlikely to reveal specific targets for individual family members and direct experimental approaches are therefore required. Here, we take advantage of an inducible dominant-negative expression system to identify a group of novel target genes for the ETS-domain transcription factor Elk-1. Elk-1 is thought to mainly function through cooperation with a second transcription factor SRF, but the targets we identify are largely SRF-independent. Furthermore, we demonstrate that there is a high degree of overlapping, cell type-specific, target gene binding by Elk-1 and other ETS-domain transcription factors. Our results are therefore consistent with the notion that there is a high degree of functional redundancy in target gene regulation by ETS-domain transcription factors in addition to the specific target gene regulation that can be dictated through heterotypic interactions exemplified by the Elk-1-SRF complex.


Assuntos
Regiões Promotoras Genéticas , Proteínas Elk-1 do Domínio ets/metabolismo , Sítios de Ligação , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-ets/química , Proteínas Proto-Oncogênicas c-ets/metabolismo , Fator de Resposta Sérica/metabolismo , Proteínas Elk-1 do Domínio ets/química
14.
Nucleic Acids Res ; 36(8): 2594-607, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18334532

RESUMO

Many eukaryotic genes are acutely regulated by extra-cellular signals. The c-fos serum response element (SRE) mediates transcriptional activation in response to mitogens through serum response factor (SRF)-dependent recruitment of Elk-1, a mitogen-activated protein kinase (MAPK)-responsive transcription factor. How subsequent events at SRE promoters stimulate initiation of transcription has yet to be fully resolved. Here we show that extra-cellular signal-regulated kinase (ERK) and mitogen and stress-activated kinase (MSK) are recruited to SRE promoter complexes in vitro and in vivo. Their recruitment in vitro correlates with Elk-1 binding and for ERK the D domain/KIM of Elk-1 is specifically involved. In vivo, recruitment of ERK and MSK is stimulated by mitogens, correlates with histone H3 phosphorylation and is impaired by Elk-1 knockdown. Immunocytochemistry and confocal microscopy reveal that ERK appears to associate to some extent with initiating rather than elongating RNA polymerase II. Taken together, our data add to the body of evidence implying that ERK and related MAPKs may fulfil a generic role at the promoters of acutely regulated genes.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Mitógenos/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Elemento de Resposta Sérica , Proteínas Elk-1 do Domínio ets/metabolismo , Motivos de Aminoácidos , Animais , Núcleo Celular/química , Núcleo Celular/enzimologia , Proteína 1 de Resposta de Crescimento Precoce/genética , MAP Quinases Reguladas por Sinal Extracelular/análise , Genes fos , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Regiões Promotoras Genéticas , RNA Polimerase II/análise , Proteínas Elk-1 do Domínio ets/antagonistas & inibidores , Proteínas Elk-1 do Domínio ets/química
15.
Proc Natl Acad Sci U S A ; 104(21): 8869-74, 2007 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-17495026

RESUMO

Mutations in the cylindromatosis (CYLD) gene cause benign tumors of skin appendages, referred to as cylindromas. The CYLD gene encodes a deubiquitinating enzyme that removes Lys-63-linked ubiquitin chains from I kappa B kinase signaling components and thereby inhibits NF-kappaB pathway activation. The dysregulation of NF-kappaB activity has been proposed to promote cell transformation in part by increasing apoptosis resistance, but it is not clear whether this is CYLD's only or predominant tumor-suppressing function. Here, we show that CYLD is also required for timely entry into mitosis. Consistent with a cell-cycle regulatory function, CYLD localizes to microtubules in interphase and the midbody during telophase, and its protein levels decrease as cells exit from mitosis. We identified the protein kinase Plk1 as a potential target of CYLD in the regulation of mitotic entry, based on their physical interaction and similar loss-of-function and overexpression phenotypes. Our findings raise the possibility that, as with other genes regulating tumorigenesis, CYLD has not only tumor-suppressing (apoptosis regulation) but also tumor-promoting activities (enhancer of mitotic entry). We propose that this additional function of CYLD could provide an explanation for the benign nature of most cylindroma lesions.


Assuntos
Mitose , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Enzima Desubiquitinante CYLD , Regulação da Expressão Gênica , Humanos , Dados de Sequência Molecular , NF-kappa B/metabolismo , Ligação Proteica , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Proteínas Elk-1 do Domínio ets/química , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo
16.
Biochem Soc Symp ; (73): 121-9, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16626293

RESUMO

The ETS-domain transcription factor Elk-1 is regulated by phosphorylation in response to activation of the MAPK (mitogen-activated protein kinase) pathways. This phosphorylation triggers a series of molecular events that convert Elk-1 from a transcriptionally silent state into a highly active state and then back to a basal level. At the same time, activation of the ERK (extracellular-signal-regulated kinase) MAPK pathway leads to loss of modification of Elk-1 by SUMO (small ubiquitin-related modifier). As SUMO imparts repressive properties on Elk-1, ERK-mediated SUMO loss leads to de-repression at the same time as the ERK pathway promotes activation of Elk-1. Thus a two-step mechanism is employed to convert Elk-1 into its fully activated state. Here, the molecular events underlying these changes in Elk-1 status, and the role of PIASxalpha [protein inhibitor of activated STAT (signal transducer and activator of transcription) xalpha] as a co-activator that facilitates this process, are discussed.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo , Animais , Camundongos , Modelos Biológicos , Estrutura Molecular , Fosforilação , Proteínas Inibidoras de STAT Ativados/metabolismo , Estrutura Terciária de Proteína , Ativação Transcricional , Proteínas Elk-1 do Domínio ets/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA