Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51.759
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 398, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940906

RESUMO

Grey mould caused by Botrytis cinerea is a devastating disease responsible for large losses to agricultural production, and B. cinerea is a necrotrophic model fungal plant pathogen. Membrane proteins are important targets of fungicides and hotspots in the research and development of fungicide products. Wuyiencin affects the permeability and pathogenicity of B. cinerea, parallel reaction monitoring revealed the association of membrane protein Bcsdr2, and the bacteriostatic mechanism of wuyiencin was elucidated. In the present work, we generated and characterised ΔBcsdr2 deletion and complemented mutant B. cinerea strains. The ΔBcsdr2 deletion mutants exhibited biofilm loss and dissolution, and their functional activity was illustrated by reduced necrotic colonisation on strawberry and grape fruits. Targeted deletion of Bcsdr2 also blocked several phenotypic defects in aspects of mycelial growth, conidiation and virulence. All phenotypic defects were restored by targeted gene complementation. The roles of Bcsdr2 in biofilms and pathogenicity were also supported by quantitative real-time RT-PCR results showing that phosphatidylserine decarboxylase synthesis gene Bcpsd and chitin synthase gene BcCHSV II were downregulated in the early stages of infection for the ΔBcsdr2 strain. The results suggest that Bcsdr2 plays important roles in regulating various cellular processes in B. cinerea. KEY POINTS: • The mechanism of wuyiencin inhibits B. cinerea is closely associated with membrane proteins. • Wuyiencin can downregulate the expression of the membrane protein Bcsdr2 in B. cinerea. • Bcsdr2 is involved in regulating B. cinerea virulence, growth and development.


Assuntos
Biofilmes , Botrytis , Fragaria , Proteínas Fúngicas , Hifas , Proteínas de Membrana , Doenças das Plantas , Botrytis/patogenicidade , Botrytis/genética , Botrytis/crescimento & desenvolvimento , Botrytis/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Virulência , Hifas/crescimento & desenvolvimento , Hifas/efeitos dos fármacos , Doenças das Plantas/microbiologia , Fragaria/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Vitis/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/genética , Deleção de Genes
2.
Methods Mol Biol ; 2820: 139-153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38941021

RESUMO

Our understanding of how fungi respond and adapt to external environments can be increased by the comprehensive data sets of fungal-secreted proteins. Fungi produce a variety of secreted proteins, and environmental conditions can easily influence the fungal secretome. However, the low abundance of secreted proteins and their post-translational modifications make protein extraction more challenging. Hence, the enrichment of secreted proteins is a crucial procedure for secretome analysis. This chapter illustrates a protocol for iTRAQ-based quantitative secretome analysis describing the example of fungi exposed to different environmental conditions. The fungal-secreted proteins can be extracted by combining ultrafiltration and TCA-acetone precipitation. Subsequently, the secreted proteins can be identified and quantified by the iTRAQ-based quantitative proteomics approach.


Assuntos
Proteínas Fúngicas , Proteômica , Proteômica/métodos , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Espectrometria de Massas em Tandem/métodos , Proteoma , Ultrafiltração/métodos , Cromatografia Líquida/métodos
3.
Commun Biol ; 7(1): 768, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918572

RESUMO

Myeloblastosis (MYB)-like proteins are a family of highly conserved transcription factors in animals, plants, and fungi and are involved in the regulation of mRNA expression of genes. In this study, we identified and characterized one MYB-like protein in the model organism Aspergillus nidulans. We screened the mRNA levels of genes encoding MYB-like proteins containing two MYB repeats in conidia and found that the mRNA levels of four genes including flbD, cicD, and two uncharacterized genes, were high in conidia. To investigate the roles of two uncharacterized genes, AN4618 and AN10944, deletion mutants for each gene were generated. Our results revealed that AN4618 was required for fungal development. Therefore, we further investigated the role of AN4618, named as mylA, encoding the MYB-like protein containing two MYB repeats. Functional studies revealed that MylA was essential for normal fungal growth and development. Phenotypic and transcriptomic analyses demonstrated that deletion of mylA affected stress tolerance, cell wall integrity, and long-term viability in A. nidulans conidia. In addition, the germination rate of the mylA deletion mutant conidia was decreased compared with that of the wild-type conidia. Overall, this study suggests that MylA is critical for appropriate development, conidial maturation, dormancy, and germination in A. nidulans.


Assuntos
Aspergillus nidulans , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Esporos Fúngicos , Aspergillus nidulans/genética , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/metabolismo , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Toxins (Basel) ; 16(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38922130

RESUMO

Fusarium verticillioides produces fumonisins, which are mycotoxins inhibiting sphingolipid biosynthesis in humans, animals, and other eukaryotes. Fumonisins are presumed virulence factors of plant pathogens, but may also play a role in interactions between competing fungi. We observed higher resistance to added fumonisin B1 (FB1) in fumonisin-producing Fusarium verticillioides than in nonproducing F. graminearum, and likewise between isolates of Aspergillus and Alternaria differing in production of sphinganine-analog toxins. It has been reported that in F. verticillioides, ceramide synthase encoded in the fumonisin biosynthetic gene cluster is responsible for self-resistance. We reinvestigated the role of FUM17 and FUM18 by generating a double mutant strain in a fum1 background. Nearly unchanged resistance to added FB1 was observed compared to the parental fum1 strain. A recently developed fumonisin-sensitive baker's yeast strain allowed for the testing of candidate ceramide synthases by heterologous expression. The overexpression of the yeast LAC1 gene, but not LAG1, increased fumonisin resistance. High-level resistance was conferred by FUM18, but not by FUM17. Likewise, strong resistance to FB1 was caused by overexpression of the presumed F. verticillioides "housekeeping" ceramide synthases CER1, CER2, and CER3, located outside the fumonisin cluster, indicating that F. verticillioides possesses a redundant set of insensitive targets as a self-resistance mechanism.


Assuntos
Fumonisinas , Fusarium , Oxirredutases , Fumonisinas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Fusarium/enzimologia , Oxirredutases/metabolismo , Oxirredutases/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Aspergillus/enzimologia , Alternaria/genética , Alternaria/enzimologia
5.
Microb Biotechnol ; 17(6): e14512, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923821

RESUMO

Beauveria bassiana is an entomopathognic fungus, which is widely employed in the biological control of pests. Gene disruption is a common method for studying the functions of genes involved in fungal development or its interactions with hosts. However, generating gene deletion mutants was a time-consuming work. The transcriptional factor OpS3 has been identified as a positive regulator of a red secondary metabolite oosporein in B. bassiana. In this study, we have designed a new screening system by integrating a constitutive OpS3 expression cassette outside one of the homologous arms of target gene. Ectopic transformants predominantly exhibit a red colour with oosporein production, while knockout mutants appear as white colonies due to the loss of the OpS3 expression cassette caused by recombinant events. This screening strategy was used to obtain the deletion mutants of both tenS and NRPS genes. Correct mutants were obtained by screening fewer than 10 mutants with a positive efficiency ranging from 50% to 75%. This system significantly reduces the workload associated with DNA extraction and PCR amplification, thereby enhancing the efficiency of obtaining correct transformants in B. bassiana.


Assuntos
Beauveria , Técnicas de Inativação de Genes , Beauveria/genética , Animais , Deleção de Genes , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Insetos/microbiologia , Genética Microbiana/métodos
6.
Microb Cell Fact ; 23(1): 185, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926702

RESUMO

BACKGROUND: Currently, industrial fermentation of Botrytis cinerea is a significant source of abscisic acid (ABA). The crucial role of ABA in plants and its wide range of applications in agricultural production have resulted in the constant discovery of new derivatives and analogues. While modifying the ABA synthesis pathway of existing strains to produce ABA derivatives is a viable option, it is hindered by the limited synthesis capacity of these strains, which hinders further development and application. RESULTS: In this study, we knocked out the bcaba4 gene of B. cinerea TB-31 to obtain the 1',4'-trans-ABA-diol producing strain ZX2. We then studied the fermentation broth of the batch-fed fermentation of the ZX2 strain using metabolomic analysis. The results showed significant accumulation of 3-hydroxy-3-methylglutaric acid, mevalonic acid, and mevalonolactone during the fermentation process, indicating potential rate-limiting steps in the 1',4'-trans-ABA-diol synthesis pathway. This may be hindering the flow of the synthetic pathway. Additionally, analysis of the transcript levels of terpene synthesis pathway genes in this strain revealed a correlation between the bchmgr, bcerg12, and bcaba1-3 genes and 1',4'-trans-ABA-diol synthesis. To further increase the yield of 1',4'-trans-ABA-diol, we constructed a pCBg418 plasmid suitable for the Agrobacterium tumefaciens-mediated transformation (ATMT) system and transformed it to obtain a single-gene overexpression strain. We found that overexpression of bchmgr, bcerg12, bcaba1, bcaba2, and bcaba3 genes increased the yield of 1',4'-trans-ABA-diol. The highest yielding ZX2 A3 strain was eventually screened, which produced a 1',4'-trans-ABA-diol concentration of 7.96 mg/g DCW (54.4 mg/L) in 144 h of shake flask fermentation. This represents a 2.1-fold increase compared to the ZX2 strain. CONCLUSIONS: We utilized metabolic engineering techniques to alter the ABA-synthesizing strain B. cinerea, resulting in the creation of the mutant strain ZX2, which has the ability to produce 1',4'-trans-ABA-diol. By overexpressing the crucial genes involved in the 1',4'-trans-ABA-diol synthesis pathway in ZX2, we observed a substantial increase in the production of 1',4'-trans-ABA-diol.


Assuntos
Ácido Abscísico , Botrytis , Fermentação , Engenharia Metabólica , Botrytis/metabolismo , Botrytis/genética , Ácido Abscísico/metabolismo , Engenharia Metabólica/métodos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
7.
Curr Microbiol ; 81(7): 213, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847863

RESUMO

The antimalarial drug Mefloquine has demonstrated antifungal activity against growth and virulence factors of Candida albicans. The current study focused on the identification of Mefloquine's mode of action in C. albicans by performing cell susceptibility assay, biofilm assay, live and dead assay, propidium iodide uptake assay, ergosterol quantification assay, cell cycle study, and gene expression studies by RT-PCR. Mefloquine inhibited the virulence factors in C. albicans, such as germ tube formation and biofilm formation at 0.125 and 1 mg/ml, respectively. Mefloquine-treated cells showed a decrease in the quantity of ergosterol content of cell membrane in a concentration-dependent manner. Mefloquine (0.25 mg/ml) arrested C. albicans cells at the G2/M phase and S phase of the cell cycle thereby preventing the progression of the normal yeast cell cycle. ROS level was measured to find out oxidative stress in C. albicans in the presence of mefloquine. The study revealed that, mefloquine was found to enhance the ROS level and subsequently oxidative stress. Gene expression studies revealed that mefloquine treatment upregulates the expressions of SOD1, SOD2, and CAT1 genes in C. albicans. In vivo, the antifungal efficacy of mefloquine was confirmed in mice for systemic candidiasis and it was found that there was a decrease in the pathogenesis of C. albicans after the treatment of mefloquine in mice. In conclusion, mefloquine can be used as a repurposed drug as an alternative drug against Candidiasis.


Assuntos
Antifúngicos , Candida albicans , Candidíase , Mefloquina , Fatores de Virulência , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/patogenicidade , Candida albicans/crescimento & desenvolvimento , Animais , Mefloquina/farmacologia , Camundongos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Candidíase/microbiologia , Candidíase/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Testes de Sensibilidade Microbiana , Estresse Oxidativo/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Ergosterol/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
8.
Curr Microbiol ; 81(7): 217, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852107

RESUMO

The application of enzymes in agricultural fields has been little explored. One potential application of fungal lytic enzymes (chitinases, lipases, and proteases) is as an additive to current biopesticides to increase their efficacy and reduce the time of mortality. For this, a screening of lytic overproducer fungi under submerged fermentation with a chemical-defined medium was performed. Then, the enzymatic crude extract (ECE) was concentrated and partially characterized. This characterization consisted of measuring the enzymatic activity (lipase, protease and, chitinase) and determining the enzyme stability after storage at temperatures of - 80, - 20 and, 4 °C. And lastly, the application of these concentrated enzymatic crude extracts (C-ECE) as an enhancer of spores-based fungal biopesticide was proven. Beauveria were not as good producers of lytic enzymes as the strains from Trichoderma and Metarhizium. The isolate M. robertsii Mt015 was selected for the co-production of chitinases and proteases; and the isolate T. harzianum Th180 for co-production of chitinases, lipases, and proteases. The C-ECE of Mt015 had a protease activity of 18.6 ± 1.1 U ml-1, chitinase activity of 0.28 ± 0.01 U ml-1, and no lipase activity. Meanwhile, the C-ECE of Th180 reached a chitinase activity of 0.75 U ml-1, lipase activity of 0.32 U ml-1, and protease activity of 0.24 U ml-1. Finally, an enhancing effect of the enzymatic extracts of M. robertsii (66.7%) and T. harzianum (43.5%) on the efficacy of B. bassiana Bv064 against Diatraea saccharalis larvae was observed. This work demonstrates the non-species-specific enhancing effect of enzymatic extracts on the insecticidal activity of conidial-based biopesticides, which constitutes a contribution to the improvement of biological control agents' performance.


Assuntos
Quitinases , Fermentação , Peptídeo Hidrolases , Quitinases/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Lipase/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Agentes de Controle Biológico/farmacologia , Agentes de Controle Biológico/metabolismo , Fungos/metabolismo , Controle Biológico de Vetores/métodos , Beauveria/enzimologia , Beauveria/metabolismo , Estabilidade Enzimática
9.
J Proteomics ; 303: 105228, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878881

RESUMO

Candida albicans, a significant human pathogenic fungus, employs hydrolytic proteases for host invasion. Conventional antifungal agents are reported with resistance issues from around the world. This study investigates the role of Bacillus licheniformis extracellular proteins (ECP) as effective antifungal peptides (AFPs). The aim was to identify and characterize the ECP of B. licheniformis through LC-MS/MS and bioinformatics analysis. LC-MS/MS analysis identified 326 proteins with 69 putative ECP, further analyzed in silico. Of these, 21 peptides exhibited antifungal properties revealed by classAMP tool and are predominantly anionic. Peptide-protein docking revealed interactions between AFPs like Peptide chain release factor 1 (Q65DV1_Seq1: SASEQLSDAK) and Putative carboxy peptidase (Q65IF0_Seq7: SDSSLEDQDFILESK) with C. albicans virulent SAP5 proteins (PDB ID 2QZX), forming hydrogen bonds and significant Pi-Pi interactions. The identification of B. licheniformis ECP is the novelty of the study that sheds light on their antifungal potential. The identified AFPs, particularly those interacting with bonafide pharmaceutical targets SAP5 of C. albicans represent promising avenues for the development of antifungal treatments with AFPs that could be the pursuit of a novel therapeutic strategy against C. albicans. SIGNIFICANCE OF STUDY: The purpose of this work was to carry out proteomic profiling of the secretome of B. licheniformis. Previously, the efficacy of Bacillus licheniformis extracellular proteins against Candida albicans was investigated and documented in a recently communicated manuscript, showcasing the antifungal activity of these proteins. In order to achieve high-throughput identification of ES (Excretory-secretory) proteins, the utilization of liquid chromatography tandem mass spectrometry (LC-MS) was utilized. There was a lack of comprehensive research on AFPs in B. licheniformis, nevertheless. The proteins secreted by B. licheniformis in liquid medium were initially discovered using liquid chromatography-tandem mass spectrometry (LC-MS) analysis and identification in order to immediately characterize the unidentified active metabolites in fermentation broth.


Assuntos
Antifúngicos , Bacillus licheniformis , Proteínas de Bactérias , Candida albicans , Espectrometria de Massas em Tandem , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Antifúngicos/farmacologia , Bacillus licheniformis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Cromatografia Líquida , Humanos , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Espectrometria de Massa com Cromatografia Líquida
10.
Open Biol ; 14(6): 240033, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38919062

RESUMO

Aspergillus fumigatus is the predominant mould pathogen for humans. Adaption to host-imposed iron limitation has previously been demonstrated to be essential for its virulence. [2Fe-2S] clusters are crucial as cofactors of several metabolic pathways and mediate cytosolic/nuclear iron sensing in fungi including A. fumigatus. [2Fe-2S] cluster trafficking has been shown to involve BolA family proteins in both mitochondria and the cytosol/nucleus. Interestingly, both A. fumigatus homologues, termed Bol1 and Bol3, possess mitochondrial targeting sequences, suggesting the lack of cytosolic/nuclear versions. Here, we show by the combination of mutational, proteomic and fluorescence microscopic analyses that expression of the Bol3 encoding gene leads to dual localization of gene products to mitochondria and the cytosol/nucleus via alternative translation initiation downstream of the mitochondrial targeting sequence, which appears to be highly conserved in various Aspergillus species. Lack of either mitochondrial Bol1 or Bol3 was phenotypically inconspicuous while lack of cytosolic/nuclear Bol3 impaired growth during iron limitation but not iron sensing which indicates a particular importance of [2Fe-2S] cluster trafficking during iron limitation. Remarkably, cytosolic/nuclear Bol3 differs from the mitochondrial version only by N-terminal acetylation, a finding that was only possible by mutational hypothesis testing.


Assuntos
Aspergillus fumigatus , Citosol , Proteínas Fúngicas , Ferro , Mitocôndrias , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Citosol/metabolismo , Mitocôndrias/metabolismo , Ferro/metabolismo , Adaptação Fisiológica , Núcleo Celular/metabolismo , Transporte Proteico , Proteômica/métodos , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Regulação Fúngica da Expressão Gênica , Acetilação
11.
Arch Microbiol ; 206(7): 327, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922442

RESUMO

Lignocellulose biomass raw materials have a high value in energy conversion. Recently, there has been growing interest in using microorganisms to secret a series of enzymes for converting low-cost biomass into high-value products such as biofuels. We previously isolated a strain of Penicillium oxalicun 5-18 with promising lignocellulose-degrading capability. However, the mechanisms of lignocellulosic degradation of this fungus on various substrates are still unclear. In this study, we performed transcriptome-wide profiling and comparative analysis of strain 5-18 cultivated in liquid media with glucose (Glu), xylan (Xyl) or wheat bran (WB) as sole carbon source. In comparison to Glu culture, the number of differentially expressed genes (DEGs) induced by WB and Xyl was 4134 and 1484, respectively, with 1176 and 868 genes upregulated. Identified DEGs were enriched in many of the same pathways in both comparison groups (WB vs. Glu and Xly vs. Glu). Specially, 118 and 82 CAZyme coding genes were highly upregulated in WB and Xyl cultures, respectively. Some specific pathways including (Hemi)cellulose metabolic processes were enriched in both comparison groups. The high upregulation of these genes also confirmed the ability of strain 5-18 to degrade lignocellulose. Co-expression and co-upregulated of genes encoding CE and AA CAZy families, as well as other (hemi)cellulase revealed a complex degradation strategy in this strain. Our findings provide new insights into critical genes, key pathways and enzyme arsenal involved in the biomass degradation of P. oxalicum 5-18.


Assuntos
Perfilação da Expressão Gênica , Lignina , Penicillium , Transcriptoma , Xilanos , Penicillium/genética , Penicillium/metabolismo , Lignina/metabolismo , Xilanos/metabolismo , Biomassa , Glucose/metabolismo , Fibras na Dieta/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
12.
Biomolecules ; 14(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38927033

RESUMO

It is known that selenium (Se) is an essential trace element, important for the growth and other biological functions of fish. One of its most important functions is to contribute to the preservation of certain biological components, such as DNA, proteins, and lipids, providing protection against free radicals resulting from normal metabolism. The objective of this study was to evaluate and optimize selenium accumulation in the native yeast Rhodotorula mucilaginosa 6S. Sodium selenite was evaluated at different concentrations (5-10-15-20-30-40 mg/L). Similarly, the effects of different concentrations of nitrogen sources and pH on cell growth and selenium accumulation in the yeast were analyzed. Subsequently, the best cultivation conditions were scaled up to a 2 L reactor with constant aeration, and the proteome of the yeast cultured with and without sodium selenite was evaluated. The optimal conditions for biomass generation and selenium accumulation were found with ammonium chloride and pH 5.5. Incorporating sodium selenite (30 mg/L) during the exponential phase in the bioreactor after 72 h of cultivation resulted in 10 g/L of biomass, with 0.25 mg total Se/g biomass, composed of 25% proteins, 15% lipids, and 0.850 mg total carotenoids/g biomass. The analysis of the proteomes associated with yeast cultivation with and without selenium revealed a total of 1871 proteins. The results obtained showed that the dynamic changes in the proteome, in response to selenium in the experimental medium, are directly related to catalytic activity and oxidoreductase activity in the yeast. R. mucilaginosa 6S could be an alternative for the generation of selenium-rich biomass with a composition of other nutritional compounds also of interest in aquaculture, such as proteins, lipids, and pigments.


Assuntos
Proteômica , Rhodotorula , Selênio , Rhodotorula/metabolismo , Rhodotorula/crescimento & desenvolvimento , Rhodotorula/efeitos dos fármacos , Selênio/metabolismo , Selênio/farmacologia , Proteômica/métodos , Biomassa , Reatores Biológicos/microbiologia , Selenito de Sódio/metabolismo , Selenito de Sódio/farmacologia , Concentração de Íons de Hidrogênio , Proteoma/metabolismo , Proteínas Fúngicas/metabolismo
13.
Microbiol Res ; 285: 127784, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824820

RESUMO

Fusarium crown rot (FCR) caused by Fusarium pseudograminearum poses a significant threat to wheat production in the Huang-Huai-Hai region of China. However, the pathogenic mechanism of F. pseudograminearum is still poorly understood. Zn2Cys6 transcription factors, which are exclusive to fungi, play pivotal roles in regulating fungal development, drug resistance, pathogenicity, and secondary metabolism. In this study, we present the functional characterization of a Zn2Cys6 transcription factor F. pseudograminearum, designated Fp487. In F. pseudograminearum, Fp487 is shown to be required for mycelial growth through gene knockout and phenotypic analyses. Compared with wild-type CF14047, the ∆Fp487 mutant displayed a slight reduction in growth rate but a significant decrease in conidiogenesis, pathogenicity and 3-acetyl-deoxynivalenol (3AcDON) production. Moreover, the mutant exhibited heightened sensitivity to oxidative and cytomembrane stress. Furthermore, we synthesized dsRNA from the Fp487 gene in vitro, resulting in a reduction in the growth rate of F. pseudograminearum and its virulence on barley leaves through spray-induced gene silencing (SIGS). Notably, this study makes the first instance of inducing the expression of abundant dsRNA from F. pseudograminearum by engineering the Escherichia coli strain HT115 (DE3) and utilizing the SIGS technique to evaluate the virulence effect of dsRNA on F. pseudograminearum. In conclusion, our findings revealed the crucial role of Fp487 in regulating pathogenicity, stress responses, DON production, and conidiogenesis in F. pseudograminearum. Furthermore, Fp487 is a potential RNAi-based target for FCR control.


Assuntos
Proteínas Fúngicas , Fusarium , Regulação Fúngica da Expressão Gênica , Hordeum , Doenças das Plantas , Fatores de Transcrição , Fusarium/genética , Fusarium/patogenicidade , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Doenças das Plantas/microbiologia , Virulência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Hordeum/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/genética , Triticum/microbiologia , Folhas de Planta/microbiologia , Técnicas de Inativação de Genes , China , Micélio/crescimento & desenvolvimento , Inativação Gênica
14.
Nat Plants ; 10(6): 994-1004, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38834685

RESUMO

Blast disease caused by the fungus Magnaporthe oryzae is one of the most devastating rice diseases. Disease resistance genes such as Pi-ta or Pi-ta2 are critical in protecting rice production from blast. Published work reports that Pi-ta codes for a nucleotide-binding and leucine-rich repeat domain protein (NLR) that recognizes the fungal protease-like effector AVR-Pita by direct binding. However, this model was challenged by the recent discovery that Pi-ta2 resistance, which also relies on AVR-Pita detection, is conferred by the unconventional resistance gene Ptr, which codes for a membrane protein with a cytoplasmic armadillo repeat domain. Here, using NLR Pi-ta and Ptr RNAi knockdown and CRISPR/Cas9 knockout mutant rice lines, we found that AVR-Pita recognition relies solely on Ptr and that the NLR Pi-ta has no role in it, indicating that it is not the Pi-ta resistance gene. Different alleles of Ptr confer different recognition specificities. The A allele of Ptr (PtrA) detects all natural sequence variants of the effector and confers Pi-ta2 resistance, while the B allele of Ptr (PtrB) recognizes a restricted set of AVR-Pita alleles and, thereby, confers Pi-ta resistance. Analysis of the natural diversity in AVR-Pita and of mutant and transgenic strains identified one specific polymorphism in the effector sequence that controls escape from PtrB-mediated resistance. Taken together, our work establishes that the M. oryzae effector AVR-Pita is detected in an allele-specific manner by the unconventional rice resistance protein Ptr and that the NLR Pi-ta has no function in Pi-ta resistance and the recognition of AVR-Pita.


Assuntos
Alelos , Resistência à Doença , Oryza , Doenças das Plantas , Proteínas de Plantas , Oryza/microbiologia , Oryza/genética , Oryza/imunologia , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Resistência à Doença/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ascomicetos , Magnaporthe
15.
PLoS Genet ; 20(6): e1011302, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829899

RESUMO

Cryptococcus neoformans is an opportunistic, human fungal pathogen which undergoes fascinating switches in cell cycle control and ploidy when it encounters stressful environments such as the human lung. Here we carry out a mechanistic analysis of the spindle checkpoint which regulates the metaphase to anaphase transition, focusing on Mps1 kinase and the downstream checkpoint components Mad1 and Mad2. We demonstrate that Cryptococcus mad1Δ or mad2Δ strains are unable to respond to microtubule perturbations, continuing to re-bud and divide, and die as a consequence. Fluorescent tagging of Chromosome 3, using a lacO array and mNeonGreen-lacI fusion protein, demonstrates that mad mutants are unable to maintain sister-chromatid cohesion in the absence of microtubule polymers. Thus, the classic checkpoint functions of the SAC are conserved in Cryptococcus. In interphase, GFP-Mad1 is enriched at the nuclear periphery, and it is recruited to unattached kinetochores in mitosis. Purification of GFP-Mad1 followed by mass spectrometric analysis of associated proteins show that it forms a complex with Mad2 and that it interacts with other checkpoint signalling components (Bub1) and effectors (Cdc20 and APC/C sub-units) in mitosis. We also demonstrate that overexpression of Mps1 kinase is sufficient to arrest Cryptococcus cells in mitosis, and show that this arrest is dependent on both Mad1 and Mad2. We find that a C-terminal fragment of Mad1 is an effective in vitro substrate for Mps1 kinase and map several Mad1 phosphorylation sites. Some sites are highly conserved within the C-terminal Mad1 structure and we demonstrate that mutation of threonine 667 (T667A) leads to loss of checkpoint signalling and abrogation of the GAL-MPS1 arrest. Thus Mps1-dependent phosphorylation of C-terminal Mad1 residues is a critical step in Cryptococcus spindle checkpoint signalling. We conclude that CnMps1 protein kinase, Mad1 and Mad2 proteins have all conserved their important, spindle checkpoint signalling roles helping ensure high fidelity chromosome segregation.


Assuntos
Proteínas de Ciclo Celular , Cryptococcus neoformans , Proteínas Mad2 , Fuso Acromático , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Mad2/metabolismo , Proteínas Mad2/genética , Fuso Acromático/metabolismo , Fuso Acromático/genética , Transdução de Sinais , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Mitose/genética , Cinetocoros/metabolismo , Segregação de Cromossomos/genética , Microtúbulos/metabolismo , Microtúbulos/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
16.
Proc Natl Acad Sci U S A ; 121(25): e2322765121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865263

RESUMO

Antiviral RNA interference (RNAi) is conserved from yeasts to mammals. Dicer recognizes and cleaves virus-derived double-stranded RNA (dsRNA) and/or structured single-stranded RNA (ssRNA) into small-interfering RNAs, which guide effector Argonaute to homologous viral RNAs for digestion and inhibit virus replication. Thus, Argonaute is believed to be essential for antiviral RNAi. Here, we show Argonaute-independent, Dicer-dependent antiviral defense against dsRNA viruses using Cryphonectria parasitica (chestnut blight fungus), which is a model filamentous ascomycetous fungus and hosts a variety of viruses. The fungus has two dicer-like genes (dcl1 and dcl2) and four argonaute-like genes (agl1 to agl4). We prepared a suite of single to quadruple agl knockout mutants with or without dcl disruption. We tested these mutants for antiviral activities against diverse dsRNA viruses and ssRNA viruses. Although both DCL2 and AGL2 worked as antiviral players against some RNA viruses, DCL2 without argonaute was sufficient to block the replication of other RNA viruses. Overall, these results indicate the existence of a Dicer-alone defense and different degrees of susceptibility to it among RNA viruses. We discuss what determines the great difference in susceptibility to the Dicer-only defense.


Assuntos
Vírus de RNA , Ribonuclease III , Ribonuclease III/metabolismo , Ribonuclease III/genética , Vírus de RNA/imunologia , Vírus de RNA/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Ascomicetos/virologia , Interferência de RNA , Replicação Viral/genética , RNA Viral/metabolismo , RNA Viral/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , RNA de Cadeia Dupla/metabolismo
17.
BMC Microbiol ; 24(1): 196, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849761

RESUMO

Biofilms produced by Candida albicans present a challenge in treatment with antifungal drug. Enhancing the sensitivity to fluconazole (FLC) is a reasonable method for treating FLC-resistant species. Moreover, several lines of evidence have demonstrated that berberine (BBR) can have antimicrobial effects. The aim of this study was to clarify the underlying mechanism of these effects. We conducted a comparative study of the inhibition of FLC-resistant strain growth by FLC treatment alone, BBR treatment alone, and the synergistic effect of combined FLC and BBR treatment. Twenty-four isolated strains showed distinct biofilm formation capabilities. The antifungal effect of combined FLC and BBR treatment in terms of the growth and biofilm formation of Candida albicans species was determined via checkerboard, time-kill, and fluorescence microscopy assays. The synergistic effect of BBR and FLC downregulated the expression of the efflux pump genes CDR1 and MDR, the hyphal gene HWP1, and the adhesion gene ALS3; however, the gene expression of the transcriptional repressor TUP1 was upregulated following treatment with this drug combination. Furthermore, the addition of BBR led to a marked reduction in cell surface hydrophobicity. To identify resistance-related genes and virulence factors through genome-wide sequencing analysis, we investigated the inhibition of related resistance gene expression by the combination of BBR and FLC, as well as the associated signaling pathways and metabolic pathways. The KEGG metabolic map showed that the metabolic genes in this strain are mainly involved in amino acid and carbon metabolism. The metabolic pathway map showed that several ergosterol (ERG) genes were involved in the synthesis of cell membrane sterols, which may be related to drug resistance. In this study, BBR + FLC combination treatment upregulated the expression of the ERG1, ERG3, ERG4, ERG5, ERG24, and ERG25 genes and downregulated the expression of the ERG6 and ERG9 genes compared with fluconazole treatment alone (p < 0.05).


Assuntos
Antifúngicos , Berberina , Biofilmes , Candida albicans , Biologia Computacional , Farmacorresistência Fúngica , Fluconazol , Testes de Sensibilidade Microbiana , Berberina/farmacologia , Fluconazol/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Antifúngicos/farmacologia , Farmacorresistência Fúngica/genética , Biologia Computacional/métodos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Sinergismo Farmacológico , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos
18.
Arch Microbiol ; 206(7): 291, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849576

RESUMO

Biomass-degrading enzymes produced by microorganisms have a great potential in the processing of agricultural wastes. In order to produce suitable biomass-degrading enzymes for releasing sugars and aroma compounds from tobacco scraps, the feasibility of directly using the scraps as a carbon source for enzyme production was investigated in this study. By comparative studies of ten fungal strains isolated from tobacco leaves, Aspergillus brunneoviolaceus Ab-10 was found to produce an efficient enzyme mixture for the saccharification of tobacco scraps. Proteomic analysis identified a set of plant biomass-degrading enzymes in the enzyme mixture, including amylases, hemicellulases, cellulases and pectinases. At a substrate concentration of 100 g/L and enzyme dosage of 4 mg/g, glucose of 17.6 g/L was produced from tobacco scraps using the crude enzyme produced by A. brunneoviolaceus Ab-10. In addition, the contents of 23 volatile molecules, including the aroma compounds 4-ketoisophorone and benzyl alcohol, were significantly increased after the enzymatic treatment. The results provide a strategy for valorization of tobacco waste by integrating the production of biomass-degrading enzymes into the tobacco scrap processing system.


Assuntos
Aspergillus , Biomassa , Nicotiana , Nicotiana/microbiologia , Nicotiana/metabolismo , Aspergillus/enzimologia , Aspergillus/metabolismo , Açúcares/metabolismo , Odorantes/análise , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Amilases/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Folhas de Planta/microbiologia , Celulases/metabolismo , Poligalacturonase/metabolismo
19.
Appl Microbiol Biotechnol ; 108(1): 358, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829381

RESUMO

Biosurfactants are in demand by the global market as natural commodities suitable for incorporation into commercial products or utilization in environmental applications. Fungi are promising producers of these molecules and have garnered interest also for their metabolic capabilities in efficiently utilizing recalcitrant and complex substrates, like hydrocarbons, plastic, etc. Within this framework, biosurfactants produced by two Fusarium solani fungal strains, isolated from plastic waste-contaminated landfill soils, were analyzed. Mycelia of these fungi were grown in the presence of 5% olive oil to drive biosurfactant production. The characterization of the emulsifying and surfactant capacity of these extracts highlighted that two different components are involved. A protein was purified and identified as a CFEM (common in fungal extracellular membrane) containing domain, revealing a good propensity to stabilize emulsions only in its aggregate form. On the other hand, an unidentified cationic smaller molecule exhibits the ability to reduce surface tension. Based on the 3D structural model of the protein, a plausible mechanism for the formation of very stable aggregates, endowed with the emulsifying ability, is proposed. KEY POINTS: • Two Fusarium solani strains are analyzed for their surfactant production. • A cationic surfactant is produced, exhibiting the ability to remarkably reduce surface tension. • An identified protein reveals a good propensity to stabilize emulsions only in its aggregate form.


Assuntos
Proteínas Fúngicas , Fusarium , Tensoativos , Fusarium/metabolismo , Fusarium/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Tensoativos/metabolismo , Tensoativos/química , Emulsificantes/metabolismo , Emulsificantes/química , Microbiologia do Solo , Emulsões/química , Emulsões/metabolismo , Tensão Superficial , Cisteína/metabolismo , Cisteína/química , Azeite de Oliva/metabolismo , Azeite de Oliva/química , Micélio/metabolismo
20.
Arch Microbiol ; 206(7): 286, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829426

RESUMO

Controlling the hazard of sclerotia produced by the Sclerotinia sclerotiorum is very complex, and it is urgent to adopt an effective method that is harmonious environmentally to control the disease. Among the six isolates isolated from the rhizosphere of lettuce, the isolate HZA84 demonstrated a high activity in its antagonism towards Sclerotinia sclerotiorum in vitro, and produces siderophore. By amplification of internal transcribed spacer (ITS), translation elongation factor 1-alpha (TEF1-α), and RNA polymerase II subunit (RPB2) genes, the isolate HZA84 was identified as Trichoderma asperellum, which was confirmed by analysis of phylogenetic tree. The Scanning electron microscope monitoring detected that the isolate HZA84 spread over the sclerotial surface, thus, damaging, decomposing, and distorting the globular cells of the outer cortex of the sclerotia. The Real-time polymerase chain reaction (RT-qPCR) analysis disclosed the overexpression of two genes (chit33 and chit37) encoding the endochitinase in addition to one gene (prb1) encoding the proteinase during 4 and 8 days of the parasitism behavior of isolate HZA84 on the sclerotia surface. These enzymes aligned together in the sclerotia destruction by hyperparasitism. On the other hand, the pots trial revealed that spraying of isolate HZA84 reduced the drop disease symptoms of lettuce. The disease severity was decreased by 19.33 and the biocontrol efficiency was increased by 80.67% within the fourth week of inoculation. These findings magnify the unique role of Trichoderma in disrupting the development of plant diseases in sustainable ways.


Assuntos
Ascomicetos , Lactuca , Filogenia , Doenças das Plantas , Lactuca/microbiologia , Ascomicetos/genética , Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Rizosfera , Antibiose , Hypocreales/genética , Hypocreales/metabolismo , Hypocreales/isolamento & purificação , Microbiologia do Solo , Trichoderma/genética , Trichoderma/isolamento & purificação , Trichoderma/fisiologia , Trichoderma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA