Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Phys Chem Lett ; 11(12): 4597-4602, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32420744

RESUMO

The active site of [FeFe] hydrogenase features a binuclear iron cofactor Fe2ADT(CO)3(CN)2, where ADT represents the bridging ligand aza-propane-dithiolate. The terminal diatomic ligands all coordinate in a basal configuration, and one CO bridges the two irons leaving an open coordination site at which the hydrogen species and the competitive inhibitor CO bind. Externally supplied CO is expected to coordinate in an apical configuration. However, an alternative configuration has been proposed in which, due to ligand rotation, the CN- bound to the distal Fe becomes apical. Using selective 13C isotope labeling of the CN- and COext ligands in combination with pulsed 13C electron-nuclear-nuclear triple resonance spectroscopy, spin polarization effects are revealed that, according to density functional theory calculations, are consistent with only the "unrotated" apical COext configuration.


Assuntos
Monóxido de Carbono/química , Complexos de Coordenação/química , Inibidores Enzimáticos/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Ferro/química , Proteínas de Algas/antagonistas & inibidores , Proteínas de Algas/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Isótopos de Carbono/química , Domínio Catalítico , Chlamydomonas reinhardtii/enzimologia , Clostridium/enzimologia , Teoria da Densidade Funcional , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogenase/antagonistas & inibidores , Proteínas Ferro-Enxofre/antagonistas & inibidores , Ligantes , Modelos Químicos , Estrutura Molecular
2.
Biochimie ; 152: 211-218, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30031876

RESUMO

Human de novo iron-sulfur (Fe-S) assembly complex consists of cysteine desulfurase NFS1, accessory protein ISD11, acyl carrier protein ACP, scaffold protein ISCU, and allosteric activator frataxin (FXN). FXN binds the NFS1-ISD11-ACP-ISCU complex (SDAU), to activate the desulfurase activity and Fe-S cluster biosynthesis. In the absence of FXN, the NFS1-ISD11-ACP (SDA) complex was reportedly inhibited by binding of recombinant ISCU. Recent studies also reported a substitution at position Met141 on the yeast ISCU orthologue Isu, to Ile, Leu, Val, or Cys, could bypass the requirement of FXN for Fe-S cluster biosynthesis and cell viability. Here, we show that recombinant human ISCU binds zinc(II) ion, as previously demonstrated with the E. coli orthologue IscU. Surprisingly, the relative proportion between zinc-bound and zinc-depleted forms varies among purification batches. Importantly the presence of zinc in ISCU impacts SDAU desulfurase activity. Indeed, removal of zinc(II) ion from ISCU causes a moderate but significant increase in activity compared to SDA alone, and FXN can activate both zinc-depleted and zinc-bound forms of ISCU complexed to SDA. Taking into consideration the inhibition of desulfurase activity by zinc-bound ISCU, we characterized wild type ISCU and the M140I, M140L, and M140V variants under both zinc-bound and zinc-depleted conditions, and did not observe significant differences in the biochemical and biophysical properties between wild-type and variants. Importantly, in the absence of FXN, ISCU variants behaved like wild-type and did not stimulate the desulfurase activity of the SDA complex. This study therefore identifies an important regulatory role for zinc-bound ISCU in modulation of the human Fe-S assembly system in vitro and reports no 'FXN bypass' effect on mutations at position Met140 in human ISCU. Furthermore, this study also calls for caution in interpreting studies involving recombinant ISCU by taking into consideration the influence of the bound zinc(II) ion on SDAU complex activity.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Metionina/genética , Zinco/metabolismo , Regulação Alostérica , Sítios de Ligação , Liases de Carbono-Enxofre/genética , Escherichia coli/metabolismo , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/antagonistas & inibidores , Proteínas Ferro-Enxofre/genética , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Frataxina
3.
Nucleic Acids Res ; 46(13): 6642-6669, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29860357

RESUMO

Mitochondrial DNA (mtDNA) mutations become more prevalent with age and are postulated to contribute to the ageing process. Point mutations of mtDNA have been suggested to originate from two main sources, i.e. replicative errors and oxidative damage, but the contribution of each of these processes is much discussed. To elucidate the origin of mtDNA mutations, we measured point mutation load in mice with deficient mitochondrial base-excision repair (BER) caused by knockout alleles preventing mitochondrial import of the DNA repair glycosylases OGG1 and MUTYH (Ogg1 dMTS, Mutyh dMTS). Surprisingly, we detected no increase in the mtDNA mutation load in old Ogg1 dMTS mice. As DNA repair is especially important in the germ line, we bred the BER deficient mice for five consecutive generations but found no increase in the mtDNA mutation load in these maternal lineages. To increase reactive oxygen species (ROS) levels and oxidative damage, we bred the Ogg1 dMTS mice with tissue specific Sod2 knockout mice. Although increased superoxide levels caused a plethora of changes in mitochondrial function, we did not detect any changes in the mutation load of mtDNA or mtRNA. Our results show that the importance of oxidative damage as a contributor of mtDNA mutations should be re-evaluated.


Assuntos
Reparo do DNA , DNA Mitocondrial/química , Estresse Oxidativo , Mutação Puntual , Animais , Núcleo Celular/enzimologia , DNA Glicosilases/metabolismo , Replicação do DNA , Proteínas Ferro-Enxofre/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/enzimologia , Proteômica , Superóxido Dismutase/genética , Transcrição Gênica
4.
J Inorg Biochem ; 177: 190-197, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28972933

RESUMO

The effects of cyanide on enzymatic activity and absorption spectra in the visible and mid-IR (2150-1850cm-1) regions were characterized for purified HydSL hydrogenase from the purple sulfur bacterium Thiocapsa (T.) roseopersicina BBS. Prolonged incubation (over hours) of T. roseopersicina hydrogenase with exogenous cyanide was shown to result in an irreversible loss of activity of the enzyme in both the oxidized (as isolated) and H2-reduced states. The frequency position of the active site CO and CN- ligand stretching bands in the Fourier transform infrared (FTIR) spectrum of the oxidized form of hydrogenase was not influenced by cyanide treatment. The 410-nm absorption band characteristic of hydrogenase iron­sulfur clusters showed a bleaching concomitantly with cyanide inactivation. A new band at 2038cm-1 was present in the FTIR spectrum of the cyanide-inactivated preparation, which band is assignable to ferrocyanide as a possible product of a destructive interaction of hydrogenase with cyanide. The results are interpreted in terms of a slow destruction of iron­sulfur clusters of hydrogenase in the presence of cyanide accompanied by a release of iron ions in the form of ferrocyanide into the surrounding solution. Such a slow and irreversible cyanide-dependent inactivation seems to be complementary to a recently described rapid, reversible inhibitory reaction of cyanide with the active site of hydrogenases [S.V. Hexter, M.-W. Chung, K.A. Vincent, F.A. Armstrong, J. Am. Chem. Soc. 136 (2014) 10470-10477].


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Cianetos/química , Hidrogenase/antagonistas & inibidores , Proteínas Ferro-Enxofre/antagonistas & inibidores , Ferro/química , Enxofre/química , Proteínas de Bactérias/química , Domínio Catalítico/efeitos dos fármacos , Inibidores Enzimáticos/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Thiocapsa roseopersicina
5.
Biochim Biophys Acta Bioenerg ; 1858(9): 771-778, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28647463

RESUMO

Hydrogenases from green algae are linked to the photosynthetic electron transfer chain via the plant-type ferredoxin PetF. In this work the [FeFe]-hydrogenase from the Trebouxiophycean alga Chlorella variabilis NC64A (CvHydA1), which in contrast to other green algal hydrogenases contains additional FeS-cluster binding domains, was purified and specific enzyme activities for both hydrogen (H2) production and H2 oxidation were determined. Interestingly, although C. variabilis NC64A, like many Chlorophycean algal strains, exhibited light-dependent H2 production activity upon sulfur deprivation, CvHydA1 did not interact in vitro with several plant-type [2Fe-2S]-ferredoxins, but only with a bacterial2[4Fe4S]-ferredoxin. In an electrochemical characterization, the enzyme exhibited features typical of bacterial [FeFe]-hydrogenases (e.g. minor anaerobic oxidative inactivation), as well as of algal enzymes (very high oxygen sensitivity).


Assuntos
Proteínas de Algas/metabolismo , Chlorella/enzimologia , Ferredoxinas/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Algas/química , Proteínas de Algas/isolamento & purificação , Sequência de Aminoácidos , Monóxido de Carbono/farmacologia , Chlamydomonas reinhardtii/química , Chlorella/efeitos da radiação , Técnicas Eletroquímicas , Transporte de Elétrons , Hidrogênio/metabolismo , Hidrogenase/antagonistas & inibidores , Hidrogenase/química , Hidrogenase/isolamento & purificação , Proteínas Ferro-Enxofre/antagonistas & inibidores , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/isolamento & purificação , Luz , Modelos Moleculares , Oxirredução , Oxigênio/farmacologia , Fotossíntese , Conformação Proteica , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Enxofre/metabolismo
6.
J Am Chem Soc ; 137(39): 12580-7, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26352172

RESUMO

The mechanism of reaction of FeFe hydrogenases with oxygen has been debated. It is complex, apparently very dependent on the details of the protein structure, and difficult to study using conventional kinetic techniques. Here we build on our recent work on the anaerobic inactivation of the enzyme [Fourmond et al. Nat. Chem. 2014, 4, 336-342] to propose and apply a new method for studying this reaction. Using electrochemical measurements of the turnover rate of hydrogenase, we could resolve the first steps of the inhibition reaction and accurately determine their rates. We show that the two most studied FeFe hydrogenases, from Chlamydomonas reinhardtii and Clostridium acetobutylicum, react with O2 according to the same mechanism, despite the fact that the former is much more O2 sensitive than the latter. Unlike often assumed, both enzymes are reversibly inhibited by a short exposure to O2. This will have to be considered to elucidate the mechanism of inhibition, before any prediction can be made regarding which mutations will improve oxygen resistance. We hope that the approach described herein will prove useful in this respect.


Assuntos
Hidrogenase/antagonistas & inibidores , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/antagonistas & inibidores , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Oxigênio/química , Domínio Catalítico , Eletroquímica , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Cinética
7.
J Am Chem Soc ; 137(28): 8998-9005, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26091969

RESUMO

The preparation and spectroscopic characterization of a CO-inhibited [FeFe] hydrogenase with a selectively (57)Fe-labeled binuclear subsite is described. The precursor [(57)Fe2(adt)(CN)2(CO)4](2-) was synthesized from the (57)Fe metal, S8, CO, (NEt4)CN, NH4Cl, and CH2O. (Et4N)2[(57)Fe2(adt)(CN)2(CO)4] was then used for the maturation of the [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii, to yield the enzyme selectively labeled at the [2Fe]H subcluster. Complementary (57)Fe enrichment of the [4Fe-4S]H cluster was realized by reconstitution with (57)FeCl3 and Na2S. The Hox-CO state of [2(57)Fe]H and [4(57)Fe-4S]H HydA1 was characterized by Mössbauer, HYSCORE, ENDOR, and nuclear resonance vibrational spectroscopy.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogenase/química , Compostos de Ferro/química , Proteínas Ferro-Enxofre/química , Espectroscopia de Mossbauer , Monóxido de Carbono/metabolismo , Domínio Catalítico , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Hidrogenase/antagonistas & inibidores , Hidrogenase/metabolismo , Isótopos de Ferro/química , Proteínas Ferro-Enxofre/antagonistas & inibidores , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares
8.
Biochim Biophys Acta ; 1847(6-7): 656-79, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25868872

RESUMO

A computational mechanistic model of superoxide (O2•-) formation in the mitochondrial electron transport chain (ETC) was developed to facilitate the quantitative analysis of factors controlling mitochondrial O2•- production and assist in the interpretation of experimental studies. The model takes into account all individual electron transfer reactions in Complexes I and III. The model accounts for multiple, often seemingly contradictory observations on the effects of ΔΨ and ΔpH, and for the effects of multiple substrate and inhibitor conditions, including differential effects of Complex III inhibitors antimycin A, myxothiazol and stigmatellin. Simulation results confirm that, in addition to O2•- formation in Complex III and at the flavin site of Complex I, the quinone binding site of Complex I is an additional superoxide generating site that accounts for experimental observations on O2•- production during reverse electron transfer. However, our simulation results predict that, when cytochrome c oxidase is inhibited during oxidation of succinate, ROS production at this site is eliminated and almost all superoxide in Complex I is generated by reduced FMN, even when the redox pressure for reverse electron transfer from succinate is strong. In addition, the model indicates that conflicting literature data on the kinetics of electron transfer in Complex III involving the iron-sulfur protein-cytochrome bL complex can be resolved in favor of a dissociation of the protein only after electron transfer to cytochrome bH. The model predictions can be helpful in understanding factors driving mitochondrial superoxide formation in intact cells and tissues.


Assuntos
Simulação por Computador , Mitocôndrias/metabolismo , Modelos Teóricos , Complexos Multienzimáticos/antagonistas & inibidores , Quinonas/metabolismo , Superóxidos/metabolismo , Grupo dos Citocromos b/metabolismo , Citocromos c/metabolismo , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Proteínas Ferro-Enxofre/antagonistas & inibidores , Proteínas Ferro-Enxofre/metabolismo , Cinética , Potencial da Membrana Mitocondrial , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/metabolismo , Oxirredução , Consumo de Oxigênio
9.
Inorg Chem ; 53(22): 11890-902, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25345467

RESUMO

Oxygen activation at the active sites of [FeFe] hydrogenases has been proposed to be the initial step of irreversible oxygen-induced inhibition of these enzymes. On the basis of a first theoretical study into the thermodynamics of O2 activation [Inorg. Chem. 2009, 48, 7127] we here investigate the kinetics of possible reaction paths at the distal iron atom of the active site by means of density functional theory. A sequence of steps is proposed to either form a reactive oxygen species (ROS) or fully reduce O2 to water. In this reaction cascade, two branching points are identified where water formation directly competes with harmful oxygen activation reactions. The latter are water formation by O-O bond cleavage of a hydrogen peroxide-bound intermediate competing with H2O2 dissociation and CO2 formation by a putative iron-oxo species competing with protonation of the iron-oxo species to form a hydroxyo ligand. Furthermore, we show that proton transfer to activated oxygen is fast and that proton supply to the active site is vital to prevent ROS dissociation. If sufficiently many reduction equivalents are available, oxygen activation reactions are accelerated, and oxygen reduction to water becomes possible.


Assuntos
Biologia Computacional , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Oxigênio/química , Sítios de Ligação , Clostridium/enzimologia , Transferência de Energia , Peróxido de Hidrogênio/química , Hidrogenase/antagonistas & inibidores , Proteínas Ferro-Enxofre/antagonistas & inibidores , Prótons , Espécies Reativas de Oxigênio/química , Água/química
10.
Antimicrob Agents Chemother ; 58(6): 3389-98, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24709262

RESUMO

The plastid of the malaria parasite, the apicoplast, is essential for parasite survival. It houses several pathways of bacterial origin that are considered attractive sites for drug intervention. Among these is the sulfur mobilization (SUF) pathway of Fe-S cluster biogenesis. Although the SUF pathway is essential for apicoplast maintenance and parasite survival, there has been limited biochemical investigation of its components and inhibitors of Plasmodium SUFs have not been identified. We report the characterization of two proteins, Plasmodium falciparum SufS (PfSufS) and PfSufE, that mobilize sulfur in the first step of Fe-S cluster assembly and confirm their exclusive localization to the apicoplast. The cysteine desulfurase activity of PfSufS is greatly enhanced by PfSufE, and the PfSufS-PfSufE complex is detected in vivo. Structural modeling of the complex reveals proximal positioning of conserved cysteine residues of the two proteins that would allow sulfide transfer from the PLP (pyridoxal phosphate) cofactor-bound active site of PfSufS. Sulfide release from the l-cysteine substrate catalyzed by PfSufS is inhibited by the PLP inhibitor d-cycloserine, which forms an adduct with PfSufS-bound PLP. d-Cycloserine is also inimical to parasite growth, with a 50% inhibitory concentration close to that reported for Mycobacterium tuberculosis, against which the drug is in clinical use. Our results establish the function of two proteins that mediate sulfur mobilization, the first step in the apicoplast SUF pathway, and provide a rationale for drug design based on inactivation of the PLP cofactor of PfSufS.


Assuntos
Apicoplastos/metabolismo , Liases de Carbono-Enxofre/antagonistas & inibidores , Proteínas Ferro-Enxofre/metabolismo , Plasmodium falciparum/metabolismo , Enxofre/metabolismo , Antimetabólitos/farmacologia , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Ciclosserina/farmacologia , Cisteína/metabolismo , Concentração Inibidora 50 , Proteínas Ferro-Enxofre/antagonistas & inibidores , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Modelos Estruturais , Mutagênese , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Mapeamento de Interação de Proteínas , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Fosfato de Piridoxal/metabolismo , Sulfetos/metabolismo
11.
Nat Chem ; 6(4): 336-42, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24651202

RESUMO

Nature is a valuable source of inspiration in the design of catalysts, and various approaches are used to elucidate the mechanism of hydrogenases, the enzymes that oxidize or produce H2. In FeFe hydrogenases, H2 oxidation occurs at the H-cluster, and catalysis involves H2 binding on the vacant coordination site of an iron centre. Here, we show that the reversible oxidative inactivation of this enzyme results from the binding of H2 to coordination positions that are normally blocked by intrinsic CO ligands. This flexibility of the coordination sphere around the reactive iron centre confers on the enzyme the ability to avoid harmful reactions under oxidizing conditions, including exposure to O2. The versatile chemistry of the diiron cluster in the natural system might inspire the design of novel synthetic catalysts for H2 oxidation.


Assuntos
Hidrogenase/antagonistas & inibidores , Proteínas Ferro-Enxofre/antagonistas & inibidores , Hidrogênio/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Cinética , Mutação , Oxirredução , Fenilalanina/química , Conformação Proteica , Tirosina/química
12.
Angew Chem Int Ed Engl ; 53(17): 4294-310, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24481599

RESUMO

Enzymes of the methylerythritol phosphate pathway of isoprenoid biosynthesis are attractive anti-infective drug targets. The last two enzymes of this pathway, IspG and IspH, are [Fe4 S4 ] proteins that are not produced by humans and catalyze 2 H(+) / 2 e(-) reductions with novel mechanisms. In this Review, we summarize recent advances in structural, mechanistic, and inhibitory studies of these two enzymes. In particular, mechanistic proposals involving bioorganometallic intermediates are presented, and compared with other mechanistic possibilities. In addition, inhibitors based on substrate analogues as well as developed by rational design and compound-library screening, are discussed. The results presented support bioorganometallic catalytic mechanisms for IspG and IspH, and open up new routes to anti-infective drug design targeting [Fe4 S4 ] clusters in proteins.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/antagonistas & inibidores , Compostos Organometálicos/farmacologia , Oxirredutases/metabolismo , Terpenos/metabolismo , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Humanos
13.
Antimicrob Agents Chemother ; 57(6): 2476-84, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23478970

RESUMO

Metronidazole (MDZ) and related 5-nitroimidazoles are the recommended drugs for treatment of trichomoniasis, a sexually transmitted disease caused by the protozoan parasite Trichomonas vaginalis. However, novel treatment options are needed, as recent reports have claimed resistance to these drugs in T. vaginalis isolates. In this study, we analyzed for the first time the in vitro effects of the natural polyphenol resveratrol (RESV) on T. vaginalis. At concentrations of between 25 and 100 µM, RESV inhibited the in vitro growth of T. vaginalis trophozoites; doses of 25 µM exerted a cytostatic effect, and higher doses exerted a cytotoxic effect. At these concentrations, RESV caused inhibition of the specific activity of a 120-kDa [Fe]-hydrogenase (Tvhyd). RESV did not affect Tvhyd gene expression and upregulated pyruvate-ferredoxin oxidoreductase (a hydrogenosomal enzyme) gene expression only at a high dose (100 µM). At doses of 50 to 100 µM, RESV also caused overexpression of heat shock protein 70 (Hsp70), a protective protein found in the hydrogenosome of T. vaginalis. The results demonstrate the potential of RESV as an antiparasitic treatment for trichomoniasis and suggest that the mechanism of action involves induction of hydrogenosomal dysfunction. In view of the results, we propose hydrogenosomal metabolism as a key target in the design of novel antiparasitic drugs.


Assuntos
Antitricômonas/farmacologia , Hidrogenase/antagonistas & inibidores , Proteínas Ferro-Enxofre/antagonistas & inibidores , Organelas/efeitos dos fármacos , Piruvato Sintase/efeitos dos fármacos , Estilbenos/farmacologia , Trichomonas vaginalis/efeitos dos fármacos , Animais , Feminino , Humanos , Hidrogênio/metabolismo , Organelas/enzimologia , Testes de Sensibilidade Parasitária , Piruvato Sintase/metabolismo , Resveratrol , Vaginite por Trichomonas/parasitologia , Trichomonas vaginalis/crescimento & desenvolvimento , Trichomonas vaginalis/isolamento & purificação , Trichomonas vaginalis/ultraestrutura , Regulação para Cima
14.
Biochemistry ; 51(25): 5061-71, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22656860

RESUMO

The anaerobic global regulator FNR from Escherichia coli is a [4Fe-4S](2+) cluster-containing dimer that is inactivated by O(2) through disruption of the Fe-S cluster and conversion to the monomeric apoprotein. It was shown that apo-FNR is subject to ClpXP proteolysis, and two recognition sites, amino acids 5-11 and amino acids 249 and 250, are responsible for targeting FNR to the protease. However, how the exposure of these sites is mediated such that only apo-FNR is recognized by the ClpXP protease and is degraded in a regulated manner so that a sufficient and similar FNR level is maintained in both anaerobic and aerobic conditions is unknown. To investigate this, we performed three-alanine scanning on amino acids 2-19 and 236-250 that are in the proximity of the two ClpXP recognition sites, and their functions remain unknown. We found that three-alanine substitution of residues 239-241 (LAQ239-241A(3)) and 242-244 (LAG242-244A(3)) caused reduced FNR protein levels, transcription activities, and growth rates under anaerobic conditions. In vivo degradation assays demonstrated that these mutants were degraded significantly faster than the wild type (WT), and either deletion of clpXP or blocking the ClpXP recognition site of amino acids 249 and 250 stabilizes these proteins. Circular dichroism analysis revealed that introduction of LAQ239-241A(3) caused conformational changes with a significant loss of secondary structures in both WT and an O(2) stable FNR dimer, FNR D154A. We propose that the region of amino acids 239-244 plays a negative role in the proteolysis of FNR by promoting a structural fold that limits the exposure of the proximal ClpXP site to the protease.


Assuntos
Regulação para Baixo/fisiologia , Endopeptidase Clp/química , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Proteínas Ferro-Enxofre/antagonistas & inibidores , Proteínas Ferro-Enxofre/química , Fragmentos de Peptídeos/química , Sequência Conservada , Endopeptidase Clp/fisiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Proteínas Ferro-Enxofre/genética , Fragmentos de Peptídeos/fisiologia , Proteólise , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Fatores de Transcrição/fisiologia
15.
Angew Chem Int Ed Engl ; 51(31): 7711-4, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22715136

RESUMO

Stop for NadA! A [4Fe-4S] enzyme, NadA, catalyzes the formation of quinolinic acid in de novo nicotinamide adenine dinucleotide (NAD) biosynthesis. A structural analogue of an intermediate, 4,5-dithiohydroxyphthalic acid (DTHPA), has an in vivo NAD biosynthesis inhibiting activity in E. coli. The inhibitory effect can be explained by the coordination of DTHPA thiolate groups to a unique Fe site of the NadA [4Fe-4S] cluster.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Fosfato de Di-Hidroxiacetona/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas Ferro-Enxofre/antagonistas & inibidores , Alquil e Aril Transferases/metabolismo , Sítios de Ligação/efeitos dos fármacos , Fosfato de Di-Hidroxiacetona/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Proteínas de Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
16.
ACS Chem Biol ; 7(7): 1268-75, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22563793

RESUMO

Designing O(2)-tolerant hydrogenases is a major challenge in applying [Fe-Fe]H(2)ases for H(2) production. The inhibition involves transport of oxygen through the enzyme to the H-cluster, followed by binding and subsequent deactivation of the active site. To explore the nature of the oxygen diffusion channel for the hydrogenases from Desulfovibrio desulfuricans (Dd) and Clostridium pasteurianum (Cp), empirical molecular dynamics simulations were performed. The dynamic nature of the oxygen pathways in Dd and Cp was elucidated, and insight is provided, in part, into the experimental observation on the difference of oxygen inhibition in Dd and the hydrogenase from Clostridium acetobutylicum (Ca, assumed homologous to Cp). Further, to gain an understanding of the mechanism of oxygen inhibition of the [Fe-Fe]H(2)ase, density functional theory calculations of model compounds composed of the H-cluster and proximate amino acids are reported. Confirmation of the experimentally based suppositions on inactivation by oxygen at the [2Fe](H) domain is provided, validating the model compounds used and oxidation state assumptions, further explaining the mode of damage. This unified approach provides insight into oxygen diffusion in the enzyme, followed by deactivation at the H-cluster.


Assuntos
Biocatálise , Hidrogenase/antagonistas & inibidores , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/antagonistas & inibidores , Proteínas Ferro-Enxofre/metabolismo , Simulação de Dinâmica Molecular , Oxigênio/metabolismo , Cristalografia por Raios X , Difusão , Hidrogenase/química , Proteínas Ferro-Enxofre/química
17.
Mol Biol Cell ; 23(7): 1157-66, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22323289

RESUMO

Members of the bacterial and mitochondrial iron-sulfur cluster (ISC) assembly machinery include the so-called A-type ISC proteins, which support the assembly of a subset of Fe/S apoproteins. The human genome encodes two A-type proteins, termed ISCA1 and ISCA2, which are related to Saccharomyces cerevisiae Isa1 and Isa2, respectively. An additional protein, Iba57, physically interacts with Isa1 and Isa2 in yeast. To test the cellular role of human ISCA1, ISCA2, and IBA57, HeLa cells were depleted for any of these proteins by RNA interference technology. Depleted cells contained massively swollen and enlarged mitochondria that were virtually devoid of cristae membranes, demonstrating the importance of these proteins for mitochondrial biogenesis. The activities of mitochondrial [4Fe-4S] proteins, including aconitase, respiratory complex I, and lipoic acid synthase, were diminished following depletion of the three proteins. In contrast, the mitochondrial [2Fe-2S] enzyme ferrochelatase and cellular heme content were unaffected. We further provide evidence against a localization and direct Fe/S protein maturation function of ISCA1 and ISCA2 in the cytosol. Taken together, our data suggest that ISCA1, ISCA2, and IBA57 are specifically involved in the maturation of mitochondrial [4Fe-4S] proteins functioning late in the ISC assembly pathway.


Assuntos
Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas Mitocondriais/metabolismo , Citosol/metabolismo , Células HeLa , Homeostase , Humanos , Ferro/metabolismo , Proteínas Ferro-Enxofre/antagonistas & inibidores , Proteínas Ferro-Enxofre/genética , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais
18.
Antimicrob Agents Chemother ; 55(12): 5753-60, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21947398

RESUMO

Zinc pyrithione (ZPT) is an antimicrobial material with widespread use in antidandruff shampoos and antifouling paints. Despite decades of commercial use, there is little understanding of its antimicrobial mechanism of action. We used a combination of genome-wide approaches (yeast deletion mutants and microarrays) and traditional methods (gene constructs and atomic emission) to characterize the activity of ZPT against a model yeast, Saccharomyces cerevisiae. ZPT acts through an increase in cellular copper levels that leads to loss of activity of iron-sulfur cluster-containing proteins. ZPT was also found to mediate growth inhibition through an increase in copper in the scalp fungus Malassezia globosa. A model is presented in which pyrithione acts as a copper ionophore, enabling copper to enter cells and distribute across intracellular membranes. This is the first report of a metal-ligand complex that inhibits fungal growth by increasing the cellular level of a different metal.


Assuntos
Antifúngicos/farmacologia , Cobre/metabolismo , Proteínas Ferro-Enxofre/antagonistas & inibidores , Malassezia/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Piridinas/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Malassezia/genética , Malassezia/crescimento & desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Deleção de Sequência
19.
Biochemistry ; 50(37): 7953-63, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21859080

RESUMO

Biotin synthase catalyzes the conversion of dethiobiotin (DTB) to biotin through the oxidative addition of sulfur between two saturated carbon atoms, generating a thiophane ring fused to the existing ureido ring. Biotin synthase is a member of the radical SAM superfamily, composed of enzymes that reductively cleave S-adenosyl-l-methionine (SAM or AdoMet) to generate a 5'-deoxyadenosyl radical that can abstract unactivated hydrogen atoms from a variety of organic substrates. In biotin synthase, abstraction of a hydrogen atom from the C9 methyl group of DTB would result in formation of a dethiobiotinyl methylene carbon radical, which is then quenched by a sulfur atom to form a new carbon-sulfur bond in the intermediate 9-mercaptodethiobiotin (MDTB). We have proposed that this sulfur atom is the µ-sulfide of a [2Fe-2S](2+) cluster found near DTB in the enzyme active site. In the present work, we show that formation of MDTB is accompanied by stoichiometric generation of a paramagnetic FeS cluster. The electron paramagnetic resonance (EPR) spectrum is modeled as a 2:1 mixture of components attributable to different forms of a [2Fe-2S](+) cluster, possibly distinguished by slightly different coordination environments. Mutation of Arg260, one of the ligands to the [2Fe-2S] cluster, causes a distinctive change in the EPR spectrum. Furthermore, magnetic coupling of the unpaired electron with (14)N from Arg260, detectable by electron spin envelope modulation (ESEEM) spectroscopy, is observed in WT enzyme but not in the Arg260Met mutant enzyme. Both results indicate that the paramagnetic FeS cluster formed during catalytic turnover is a [2Fe-2S](+) cluster, consistent with a mechanism in which the [2Fe-2S](2+) cluster simultaneously provides and oxidizes sulfide during carbon-sulfur bond formation.


Assuntos
Biotina/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/antagonistas & inibidores , Proteínas Ferro-Enxofre/metabolismo , Sulfurtransferases/metabolismo , Biotina/química , Biotina/metabolismo , Proteínas de Escherichia coli/química , Radicais Livres/química , Radicais Livres/metabolismo , Proteínas Ferro-Enxofre/química , Mutação/fisiologia , Oxirredução , Estrutura Secundária de Proteína , Sulfurtransferases/química
20.
Proc Natl Acad Sci U S A ; 108(15): 6097-102, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21444783

RESUMO

Iron-sulfur clusters are versatile electron transfer cofactors, ubiquitous in metalloenzymes such as hydrogenases. In the oxygen-tolerant Hydrogenase I from Aquifex aeolicus such electron "wires" form a relay to a diheme cytb, an integral part of a respiration pathway for the reduction of O(2) to water. Amino acid sequence comparison with oxygen-sensitive hydrogenases showed conserved binding motifs for three iron-sulfur clusters, the nature and properties of which were unknown so far. Electron paramagnetic resonance spectra exhibited complex signals that disclose interesting features and spin-coupling patterns; by redox titrations three iron-sulfur clusters were identified in their usual redox states, a [3Fe4S] and two [4Fe4S], but also a unique high-potential (HP) state was found. On the basis of (57)Fe Mössbauer spectroscopy we attribute this HP form to a superoxidized state of the [4Fe4S] center proximal to the [NiFe] site. The unique environment of this cluster, characterized by a surplus cysteine coordination, is able to tune the redox potentials and make it compliant with the [4Fe4S](3+) state. It is actually the first example of a biological [4Fe4S] center that physiologically switches between 3+, 2+, and 1+ oxidation states within a very small potential range. We suggest that the (1 + /2+) redox couple serves the classical electron transfer reaction, whereas the superoxidation step is associated with a redox switch against oxidative stress.


Assuntos
Bactérias/enzimologia , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Oxigênio/química , Sequência de Aminoácidos , Transporte de Elétrons , Hidrogenase/antagonistas & inibidores , Proteínas Ferro-Enxofre/antagonistas & inibidores , Anotação de Sequência Molecular , Oxirredução , Oxigênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA