Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Toxicon ; 239: 107613, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38218383

RESUMO

Three-finger toxins (3FTxs) have traditionally been obtained via venom fractionation of whole venoms from snakes. This method often yields functional toxins, but it can be difficult to obtain pure isoforms, as it is challenging to separate the many different toxins with similar physicochemical properties that generally exist in many venoms. This issue can be circumvented via the use of recombinant expression. However, achieving the correct disulfide bond formation in recombinant toxins is challenging and requires extensive optimization of expression and purification methods to enhance stability and functionality. In this study, we investigated the expression of α-cobratoxin, a well-characterized 3FTx from the monocled cobra (Naja kaouthia), in three different expression systems, namely Escherichia coli BL21 (DE3) cells with the csCyDisCo plasmid, Escherichia coli SHuffle cells, and Komagataella phaffii (formerly known as Pichia pastoris). While none of the tested systems yielded α-cobratoxin identical to the variant isolated from whole venom, the His6-tagged α-cobratoxin expressed in K. phaffii exhibited a comparable secondary structure according to circular dichroism spectra and similar binding properties to the α7 subunit of the nicotinic acetylcholine receptor. The findings presented here illustrate the advantages and limitations of the different expression systems and can help guide researchers who wish to express 3FTxs.


Assuntos
Proteínas Neurotóxicas de Elapídeos , Receptores Nicotínicos , Toxinas Biológicas , Escherichia coli/genética , Escherichia coli/metabolismo , Toxinas Três Dedos , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/metabolismo , Receptores Nicotínicos/metabolismo , Peçonhas , Venenos Elapídicos/química
2.
J Med Chem ; 63(22): 13709-13718, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33143415

RESUMO

Venomous snakebites cause >100 000 deaths every year, in many cases via potent depression of human neuromuscular signaling by snake α-neurotoxins. Emergency therapy still relies on antibody-based antivenom, hampered by poor access, frequent adverse reactions, and cumbersome production/purification. Combining high-throughput discovery and subsequent structure-function characterization, we present simple peptides that bind α-cobratoxin (α-Cbtx) and prevent its inhibition of nicotinic acetylcholine receptors (nAChRs) as a lead for the development of alternative antivenoms. Candidate peptides were identified by phage display and deep sequencing, and hits were characterized by electrophysiological recordings, leading to an 8-mer peptide that prevented α-Cbtx inhibition of nAChRs. We also solved the peptide:α-Cbtx cocrystal structure, revealing that the peptide, although of unique primary sequence, binds to α-Cbtx by mimicking structural features of the nAChR binding pocket. This demonstrates the potential of small peptides to neutralize lethal snake toxins in vitro, establishing a potential route to simple, synthetic, low-cost antivenoms.


Assuntos
Proteínas Neurotóxicas de Elapídeos/antagonistas & inibidores , Proteínas Neurotóxicas de Elapídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Proteínas Neurotóxicas de Elapídeos/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Feminino , Fragmentos de Peptídeos/química , Estrutura Secundária de Proteína , Receptores Nicotínicos/química , Xenopus laevis
3.
Int J Biol Macromol ; 164: 2953-2963, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32846183

RESUMO

Naja atra cobrotoxin and cardiotoxin 3 (CTX3) exhibit neurotoxicity and cytotoxicity, respectively. In the present study, we aimed to investigate whether the carboxyl groups of cobrotoxin play a role in structural constraints, thereby preventing cobrotoxin from exhibiting cytotoxic activity. Six of the seven carboxyl groups in cobrotoxin were conjugated with semicarbazide. Measurement of circular dichroism spectra and Trp fluorescence quenching showed that the gross conformation of semicarbazide-modified cobrotoxin (SEM-cobrotoxin) and cobrotoxin differed. In sharp contrast to cobrotoxin, SEM-cobrotoxin demonstrated membrane-damaging activity and cytotoxicity, which are feature more characteristic of CTX3. Furthermore, both SEM-cobrotoxin and CTX3 induced cell death through AMPK activation. Analyses of the interaction between polydiacetylene/lipid vesicles and fluorescence-labeled lipids revealed that SEM-cobrotoxin and cobrotoxin adopted different membrane-bound states. The structural characteristics of SEM-cobrotoxin were similar to those of CTX3, including trifluoroethanol (TFE)-induced structural transformation and membrane binding-induced conformational change. Conversely, cobrotoxin was insensitive to the TFE-induced effect. Collectively, the data of this study indicate that blocking negatively charged residues confers cobrotoxin with membrane-damaging activity and cytotoxicity. The findings also suggest that the structural constraints imposed by carboxyl groups control the functional properties of snake venom α-neurotoxins during the divergent evolution of snake venom neurotoxins and cardiotoxins.


Assuntos
Antineoplásicos/química , Proteínas Cardiotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/química , Naja naja/metabolismo , Semicarbazidas/química , Proteínas Quinases Ativadas por AMP/metabolismo , Sequência de Aminoácidos , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Proteínas Cardiotóxicas de Elapídeos/farmacologia , Proteínas Neurotóxicas de Elapídeos/farmacologia , Humanos , Modelos Moleculares , Conformação Proteica
4.
Sci Rep ; 10(1): 3861, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123252

RESUMO

Snake venom α-neurotoxins, invaluable pharmacological tools, bind with high affinity to distinct subtypes of nicotinic acetylcholine receptor. The combinatorial high-affinity peptide (HAP), homologous to the C-loop of α1 and α7 nAChR subunits, binds biotinylated α-bungarotoxin (αBgt) with nanomolar affinity and might be a protection against snake-bites. Since there are no data on HAP interaction with other toxins, we checked its binding of α-cobratoxin (αCtx), similar to αBgt in action on nAChRs. Using radioiodinated αBgt, we confirmed a high affinity of HAP for αBgt, the complex formation is supported by mass spectrometry and gel chromatography, but only weak binding was registered with αCtx. A combination of protein intrinsic fluorescence measurements with the principal component analysis of the spectra allowed us to measure the HAP-αBgt binding constant directly (29 nM). These methods also confirmed weak HAP interaction with αCtx (>10000 nM). We attempted to enhance it by modification of HAP structure relying on the known structures of α-neurotoxins with various targets and applying molecular dynamics. A series of HAP analogues have been synthesized, HAP[L9E] analogue being considerably more potent than HAP in αCtx binding (7000 nM). The proposed combination of experimental and computational approaches appears promising for analysis of various peptide-protein interactions.


Assuntos
Bungarotoxinas/química , Proteínas Neurotóxicas de Elapídeos/química , Simulação de Dinâmica Molecular , Neurotoxinas/química , Peptídeos/química , Receptor Nicotínico de Acetilcolina alfa7/química , Ligação Proteica , Estrutura Secundária de Proteína
5.
Int J Biol Macromol ; 140: 49-58, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31421173

RESUMO

Naja spp. venom is a natural source of active compounds with therapeutic application potential. Phospholipase A2 (PLA2) is abundant in the venom of Naja spp. and can perform neurotoxicity, cytotoxicity, cardiotoxicity, and hematological disorders. The PLA2s from Naja spp. venoms are Asp 49 isoenzymes with the exception of PLA2 Cys 49 from Naja sagittifera. When looking at the functional aspects, the neurotoxicity occurs by PLA2 called ß-toxins that have affinity for phosphatidylcholine in nerve endings and synaptosomes membranes, and by α-toxins that block the nicotinic acetylcholine receptors in the neuromuscular junctions. In addition, these neurotoxins may inhibit K+ and Ca++ channels or even interfere with the Na+/K+/ATPase enzyme. The disturbance in the membrane fluidity also results in inhibition of the release of acetylcholine. The PLA2 can act as anticoagulants or procoagulant. The cytotoxicity exerted by PLA2s result from changes in the cardiomyocyte membranes, triggering cardiac failure and hemolysis. The antibacterial activity, however, is the result of alterations that decrease the stability of the lipid bilayer. Thus, the understanding of the structural and functional aspects of PLA2s can contribute to studies on the toxic and therapeutic mechanisms involved in the envenomation by Naja spp. and in the treatment of pathologies.


Assuntos
Proteínas Neurotóxicas de Elapídeos , Naja , Junção Neuromuscular/metabolismo , Fosfolipases A2 , Sinaptossomos/metabolismo , Animais , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/uso terapêutico , Junção Neuromuscular/patologia , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfolipases A2/química , Fosfolipases A2/uso terapêutico , Relação Estrutura-Atividade , Sinaptossomos/patologia
6.
PLoS One ; 13(6): e0198276, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29894484

RESUMO

A crucial mechanism to the formation of native, fully functional, 3D structures from local secondary structures is unraveled in this study. Through the introduction of various amino acid substitutions at four canonical ß-turns in a three-fingered protein, Toxin α from Naja nigricollis, we found that the release of internal entropy to the external environment through the globally synchronized movements of local substructures plays a crucial role. Throughout the folding process, the folding species were saturated with internal entropy so that intermediates accumulated at the equilibrium state. Their relief from the equilibrium state was accomplished by the formation of a critical disulfide bridge, which could guide the synchronized movement of one of the peripheral secondary structure. This secondary structure collided with a core central structure, which flanked another peripheral secondary structure. This collision displaced the internal thermal fluctuations from the first peripheral structure to the second peripheral structure, where the displaced thermal fluctuations were ultimately released as entropy. Two protein folding processes that acted in succession were identified as the means to establish the flow of thermal fluctuations. The first process was the time-consuming assembly process, where stochastic combinations of colliding, native-like, secondary structures provided candidate structures for the folded protein. The second process was the activation process to establish the global mutual relationships of the native protein in the selected candidate. This activation process was initiated and propagated by a positive feedback process between efficient entropy release and well-packed local structures, which moved in synchronization. The molecular mechanism suggested by this experiment was assessed with a well-defined 3D structure of erabutoxin b because one of the turns that played a critical role in folding was shared with erabutoxin b.


Assuntos
Proteínas Neurotóxicas de Elapídeos/química , Dissulfetos/química , Entropia , Naja/metabolismo , Substituição de Aminoácidos , Animais , Modelos Moleculares , Dobramento de Proteína , Estrutura Secundária de Proteína
7.
Int J Nanomedicine ; 12: 3463-3470, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28496322

RESUMO

Cobra neurotoxin (CNT), a peptide isolated from snake venom of Naja naja atra, shows central analgesic effects in our previous research. In order to help CNT pass through blood-brain barrier (BBB) and improve its central analgesic effects, a new kind of CNT nanocapsules were prepared by double emulsification with soybean lecithin and cholesterol as the shell, and pheophorbide as the photosensitizer added to make it photoresponsive. The analgesic effects were evaluated by hot plate test and acetic acid-induced writhing in mice. The CNT nanocapsules had an average particle size of 229.55 nm, zeta potential of -53.00 mV, encapsulation efficiency of 84.81% and drug loading of 2.98%, when the pheophorbide content was 1% of lecithin weight. Pheophorbide was mainly distributed in outer layer of the CNT nanocapsules and increased the release of the CNT nanocapsules after 650 nm illumination. The central analgesic effects were improved after intraperitoneal injection of CNT at 25 and 50 µg·kg-1 under 650 nm irradiation for 30 min in the nasal cavity. Activation of pheophorbide by red light generated reactive oxygen species which opened the nanocapsules and BBB and helped the CNT enter the brain. This research provides a new drug delivery for treatment of central pain.


Assuntos
Analgésicos/administração & dosagem , Analgésicos/farmacologia , Proteínas Neurotóxicas de Elapídeos/farmacologia , Nanocápsulas/química , Analgésicos/química , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Clorofila/análogos & derivados , Clorofila/química , Proteínas Neurotóxicas de Elapídeos/administração & dosagem , Proteínas Neurotóxicas de Elapídeos/química , Sistemas de Liberação de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Injeções Intraperitoneais , Luz , Camundongos , Nanocápsulas/administração & dosagem , Dor/induzido quimicamente , Tamanho da Partícula , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
8.
J Proteomics ; 157: 18-32, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28159706

RESUMO

The venom proteome of Naja sputatrix (Javan spitting cobra) was elucidated through reverse-phase HPLC, nano-ESI-LCMS/MS and data mining. A total of 97 distinct protein forms belonging to 14 families were identified. The most abundant proteins are the three-finger toxins (3FTXs, 64.22%) and phospholipase A2 (PLA2, 31.24%), followed by nerve growth factors (1.82%), snake venom metalloproteinase (1.33%) and several proteins of lower abundance (<1%) including a variety of venom enzymes. At subproteome, the 3FTx is dominated by cytotoxins (48.08%), while short neurotoxins (7.89%) predominate over the long neurotoxins (0.48%) among other neurotoxins of lesser toxicity (muscarinic toxin-like proteins, 5.51% and weak neurotoxins, 2.26%). The major SNTX, CTX and PLA2 toxins were isolated with intravenous median lethal doses determined as 0.13, 1.06 and 0.50µg/g in mice, respectively. SABU, the Indonesia manufactured homologous tri-specific antivenom could neutralize the CTX and PLA2 fraction with moderate potency (potency=0.14-0.16mg toxin per ml antivenom). The SNTX, however, was very poorly neutralized with a potency level of 0.034mg/ml, indicating SNTX as the main limiting factor in antivenom neutralization. The finding helps elucidate the inferior efficacy of SABU reported in neutralizing N. sputatrix venom, and supports the call for antivenom improvement. BIOLOGICAL SIGNIFICANCE: The Javan spitting cobra, Naja sputatrix is by itself a unique species and should not be confused as the equatorial and the Indochinese spitting cobras. The distinction among the spitting cobras was however unclear prior to the revision of cobra systematics in the mid-90's, and results of some earlier studies are now questionable as to which species was implicated back then. The current study successfully profiled the venom proteome of authenticated N. sputatrix, and showed that the venom is made up of approximately 64% three-finger toxins (including neurotoxins and cytotoxins) and 31% phospholipases A2 by total venom proteins. The findings verified that the paralyzing components in the venom i.e. neurotoxins are predominantly the short-chain subtype (SNTX) far exceeding the long-chain subtype (LNTX) which is more abundant in the venoms of monocled cobra and Indian common cobra. The neurotoxicity of N. sputatrix venom is hence almost exclusively SNTX-driven, and effective neutralization of the SNTX is the key to early reversal of paralysis. Unfortunately, as shown through a toxin-specific assay, the immunological neutralization of the SNTX using the Indonesian antivenom (SABU) was extremely weak, implying that SABU has limited therapeutic efficacy in treating N. sputatrix envenomation clinically. From the practical standpoint, actions need to be taken at all levels from laboratory to production and policy making to ensure that the shortcoming is overcome.


Assuntos
Antivenenos , Proteínas Neurotóxicas de Elapídeos , Naja/metabolismo , Animais , Antivenenos/química , Antivenenos/farmacologia , Proteínas Neurotóxicas de Elapídeos/antagonistas & inibidores , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/metabolismo , Proteínas Neurotóxicas de Elapídeos/toxicidade , Camundongos , Camundongos Endogâmicos ICR
9.
J Ethnopharmacol ; 194: 1087-1095, 2016 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-27840083

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Naja atra (Chinese cobra), primarily distributing in the low or medium altitude areas of southern China and Taiwan, was considered as a medicine in traditional Chinese medicine and used to treat pain, inflammation and arthritis. AIM OF THE STUDY: To study the anti-inflammatory and anti-arthritic activities of cobrotoxin (CTX), an active component of the venom from Naja atra. MATERIALS AND METHODS: Adjuvant-induced arthritis (AA) rats were used as the animal model of rheumatoid arthritis. The anti-arthritic effects of CTX were evaluated through the arthritis score, paw edema and histopathology changes of joints. The anti-inflammation effects were assayed by the level of IL-6, TNF-α, IL-1ß and the number of inflammatory cells in peripheral blood, as well as the proliferation of fibroblast-like synoviocytes (FLS). The immune level was valued by the proliferation of T cells and the level of CD4 and CD8. RESULTS: CTX alleviated the disease development of AA rats according to the ameliorating arthritis score, paw edema and histopathology character. At the meanwhile, CTX decreased the levels of IL-6, TNF-α, IL-1ß and the numbers of inflammatory cells in peripheral blood. CTX also suppressed the abnormal increasing of CD4+ T cells/ CD8+ T cells ratio, and could significantly inhibit T cell proliferation. Consistent with its effects on inhibiting granuloma's formation, CTX inhibited the proliferation of the cultured FLSs. Further studies on inflammatory signaling in FLSs revealed that CTX could inhibit the NF-κB signaling pathway. CONCLUSIONS: CTX has beneficial effects on rheumatoid arthritis by its immune regulation effects and anti-inflammation effects. The inhibition of NF-κB pathway partly contributes to the anti-inflammatory properties of CTX.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Reumatoide/tratamento farmacológico , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/farmacologia , Venenos Elapídicos/química , Imunossupressores/farmacologia , Animais , Artrite Experimental/tratamento farmacológico , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Edema/tratamento farmacológico , Edema/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Terapia de Imunossupressão/métodos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
10.
J Biochem Mol Toxicol ; 30(2): 59-70, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26293154

RESUMO

Snake venom three finger toxins (3FTxs) are a non-enzymatic family of venom proteins abundantly found in elapids. We have purified a 7579.5 ± 0.591 Da 3FTx named as Nk-3FTx from the venom of Naja kaouthia of North East India origin. The primary structure was determined by a combination of N-terminal sequencing and electrospray ionization liquid chromatography-mass spectrometry/mass spectrometry. Biochemical and biological characterization reveal that it is nontoxic to human cell lines and exhibit mild anticoagulant activity when tested on citrated human plasma. Nk-3FTx was found to affect the compound action potential (CAP) and nerve conduction velocity of isolated toad sciatic nerve. This is the first report of a non-conventional 3FTx from Naja kaouthia venom that reduces CAP for its neurotoxic effect. Further studies can be carried out to understand the mechanism of action and to explore its potential therapeutic application.


Assuntos
Proteínas Neurotóxicas de Elapídeos/química , Venenos Elapídicos/química , Elapidae , Potenciais de Ação/efeitos dos fármacos , Animais , Bufonidae , Linhagem Celular , Proteínas Neurotóxicas de Elapídeos/isolamento & purificação , Proteínas Neurotóxicas de Elapídeos/farmacologia , Venenos Elapídicos/farmacologia , Humanos , Camundongos , Condução Nervosa/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Mordeduras de Serpentes
11.
J Biol Chem ; 290(37): 22747-58, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26221036

RESUMO

Ionotropic receptors of γ-aminobutyric acid (GABAAR) regulate neuronal inhibition and are targeted by benzodiazepines and general anesthetics. We show that a fluorescent derivative of α-cobratoxin (α-Ctx), belonging to the family of three-finger toxins from snake venoms, specifically stained the α1ß3γ2 receptor; and at 10 µm α-Ctx completely blocked GABA-induced currents in this receptor expressed in Xenopus oocytes (IC50 = 236 nm) and less potently inhibited α1ß2γ2 ≈ α2ß2γ2 > α5ß2γ2 > α2ß3γ2 and α1ß3δ GABAARs. The α1ß3γ2 receptor was also inhibited by some other three-finger toxins, long α-neurotoxin Ls III and nonconventional toxin WTX. α-Conotoxin ImI displayed inhibitory activity as well. Electrophysiology experiments showed mixed competitive and noncompetitive α-Ctx action. Fluorescent α-Ctx, however, could be displaced by muscimol indicating that most of the α-Ctx-binding sites overlap with the orthosteric sites at the ß/α subunit interface. Modeling and molecular dynamic studies indicated that α-Ctx or α-bungarotoxin seem to interact with GABAAR in a way similar to their interaction with the acetylcholine-binding protein or the ligand-binding domain of nicotinic receptors. This was supported by mutagenesis studies and experiments with α-conotoxin ImI and a chimeric Naja oxiana α-neurotoxin indicating that the major role in α-Ctx binding to GABAAR is played by the tip of its central loop II accommodating under loop C of the receptors.


Assuntos
Proteínas Neurotóxicas de Elapídeos , Conotoxinas , Simulação de Dinâmica Molecular , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/farmacologia , Conotoxinas/química , Conotoxinas/farmacologia , Elapidae , Camundongos , Estrutura Secundária de Proteína , Receptores de GABA-A/genética
12.
J Proteomics ; 120: 105-25, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25748141

RESUMO

Previous studies showed that venoms of the monocled cobra, Naja kaouthia from Thailand and Malaysia are substantially different in their median lethal doses. The intraspecific venom variations of N. kaouthia, however, have not been fully elucidated. Here we investigated the venom proteomes of N. kaouthia from Malaysia (NK-M), Thailand (NK-T) and Vietnam (NK-V) through reverse-phase HPLC, SDS-PAGE and tandem mass spectrometry. The venom proteins comprise 13 toxin families, with three-finger toxins being the most abundant (63-77%) and the most varied (11-18 isoforms) among the three populations. NK-T has the highest content of neurotoxins (50%, predominantly long neurotoxins), followed by NK-V (29%, predominantly weak neurotoxins and some short neurotoxins), while NK-M has the least (18%, some weak neurotoxins but less short and long neurotoxins). On the other hand, cytotoxins constitute the main bulk of toxins in NK-M and NK-V venoms (up to 45% each), but less in NK-T venom (27%). The three venoms show different lethal potencies that generally reflect the proteomic findings. Despite the proteomic variations, the use of Thai monovalent and Neuro polyvalent antivenoms for N. kaouthia envenomation in the three regions is appropriate as the different venoms were neutralized by the antivenoms albeit at different degrees of effectiveness. BIOLOGICAL SIGNIFICANCE: Biogeographical variations were observed in the venom proteome of monocled cobra (Naja kaouthia) from Malaysia, Thailand and Vietnam. The Thai N. kaouthia venom is particularly rich in long neurotoxins, while the Malaysian and Vietnamese specimens were predominated with cytotoxins. The differentially expressed toxin profile accounts for the discrepancy in the lethal dose of the venom from different populations. Commercially available Thai antivenoms (monovalent and polyvalent) were able to neutralize the three venoms at different effective doses, hence supporting their uses in the three regions. While dose adjustment according to geographical region seems possible, changes to standard recommended dosage should only be made if further study validates that the monocled cobras within a population do not exhibit remarkable inter-individual venom variation.


Assuntos
Antivenenos/uso terapêutico , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/intoxicação , Venenos Elapídicos/química , Venenos Elapídicos/intoxicação , Mordeduras de Serpentes/tratamento farmacológico , Sequência de Aminoácidos , Animais , Antídotos/uso terapêutico , Sudeste Asiático , Dose Letal Mediana , Malásia , Camundongos , Camundongos Endogâmicos ICR , Dados de Sequência Molecular , Mordeduras de Serpentes/induzido quimicamente , Taxa de Sobrevida , Tailândia , Resultado do Tratamento , Vietnã
13.
Toxicon ; 99: 23-35, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25771242

RESUMO

The venom proteome of the monocled cobra, Naja kaouthia, from Thailand, was characterized by RP-HPLC, SDS-PAGE, and MALDI-TOF-TOF analyses, yielding 38 different proteins that were either identified or assigned to families. Estimation of relative protein abundances revealed that venom is dominated by three-finger toxins (77.5%; including 24.3% cytotoxins and 53.2% neurotoxins) and phospholipases A2 (13.5%). It also contains lower proportions of components belonging to nerve growth factor, ohanin/vespryn, cysteine-rich secretory protein, C-type lectin/lectin-like, nucleotidase, phosphodiesterase, metalloproteinase, l-amino acid oxidase, cobra venom factor, and cytidyltransferase protein families. Small amounts of three nucleosides were also evidenced: adenosine, guanosine, and inosine. The most relevant lethal components, categorized by means of a 'toxicity score', were α-neurotoxins, followed by cytotoxins/cardiotoxins. IgGs isolated from a person who had repeatedly self-immunized with a variety of snake venoms were immunoprofiled by ELISA against all venom fractions. Stronger responses against larger toxins, but lower against the most critical α-neurotoxins were obtained. As expected, no neutralization potential against N. kaouthia venom was therefore detected. Combined, our results display a high level of venom complexity, unveil the most relevant toxins to be neutralized, and provide prospects of discovering human IgGs with toxin neutralizing abilities through use of phage display screening.


Assuntos
Antivenenos/análise , Venenos Elapídicos/toxicidade , Elapidae/metabolismo , Imunoglobulina G/análise , Proteínas de Répteis/toxicidade , Mordeduras de Serpentes/imunologia , Sequência de Aminoácidos , Animais , Proteínas Cardiotóxicas de Elapídeos/antagonistas & inibidores , Proteínas Cardiotóxicas de Elapídeos/química , Proteínas Cardiotóxicas de Elapídeos/isolamento & purificação , Proteínas Cardiotóxicas de Elapídeos/toxicidade , Proteínas Neurotóxicas de Elapídeos/antagonistas & inibidores , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/isolamento & purificação , Proteínas Neurotóxicas de Elapídeos/toxicidade , Venenos Elapídicos/antagonistas & inibidores , Venenos Elapídicos/química , Elapidae/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G/isolamento & purificação , Dose Letal Mediana , Camundongos , Dados de Sequência Molecular , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/toxicidade , Mapeamento de Peptídeos , Fosfolipases A2/química , Fosfolipases A2/isolamento & purificação , Fosfolipases A2/toxicidade , Proteômica , Proteínas de Répteis/antagonistas & inibidores , Proteínas de Répteis/química , Proteínas de Répteis/isolamento & purificação , Mordeduras de Serpentes/sangue , Mordeduras de Serpentes/metabolismo , Tailândia
14.
J Photochem Photobiol B ; 134: 16-22, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24792470

RESUMO

Cobra neurotoxin (NT) has central analgesic effects, but it is difficult to pass through brain blood barrier (BBB). A novel method of red light induction is designed to help NT across BBB, which is based on photosensitizer activation by red light to generate reactive oxygen species (ROS) to open BBB. The effects were evaluated on cell models and animals in vivo with illumination by semiconductor laser at 670nm on photosensitizer pheophorbide isolated from silkworm excrement. Brain microvascular endothelial cells and astrocytes were co-cultured to build up BBB cell model. The radioactivity of (125)I-NT was measured in cells and tissues for NT permeation. Three ways of cranial irradiation, nasal cavity and intravascular irradiation were tested with combined injection of (125)I-NT 20µg/kg and pheophorbide 100µg/kg to rats, and organs of rats were separated and determined the radioactivity. Paw pressure test in rats, hot plate and writhing test in mice were applied to appraise the analgesic effects. NT across BBB cell model increased with time of illumination, and reached stable level after 60min. So did ROS in cells. NT mainly distributed in liver and kidney of rats, significantly increased in brain after illumination, and improved analgesic effects. Excitation of pheophorbide at red light produces ROS to open BBB, help NT enter brain, and enhance its central action. This research provides a new method for drug across BBB to improve its central role.


Assuntos
Analgésicos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Proteínas Neurotóxicas de Elapídeos/farmacologia , Elapidae/metabolismo , Luz , Animais , Astrócitos/citologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/efeitos da radiação , Barreira Hematoencefálica/efeitos da radiação , Proteínas Neurotóxicas de Elapídeos/química , Células Endoteliais/citologia , Feminino , Radioisótopos do Iodo/química , Masculino , Camundongos , Modelos Biológicos , Ratos , Espécies Reativas de Oxigênio/metabolismo
15.
Photochem Photobiol ; 90(4): 860-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24571437

RESUMO

Resveratrol polymer has better effects than monomer in some aspects as reported, but most of synthetic methods acquire severe conditions and no analgesic effects are investigated. A novel method is found to synthesize resveratrol polymer by excitation of photosensitizer pheophorbide at red light of 630 nm. The polymer was analyzed by fluorescence spectra and HPLC, further isolated by preparative liquid chromatography and identified as a resveratrol dimer by MS and NMR. Analgesic effects were measured by acetic acid writhing and hot-plate test in mice. The resveratrol dimer has the stronger analgesic effects than monomer, and drug combination of the dimer and cobra neurotoxin enhances and prolongs analgesic effects, suggesting the synergistic action. Simulation of molecular interaction reveals that the dimer spontaneously binds to cobra neurotoxin and makes a complex substance. The dimer can interact with cyclooxygenase-2, µ receptor and nicotine receptor, the synergistic analgesic effects of the complex are attributed to its multiple targets role. The combination of resveratrol dimer and cobra neurotoxin may make up for their deficiencies in analgesic effects, and has prospects in clinical use.


Assuntos
Proteínas Neurotóxicas de Elapídeos/uso terapêutico , Cor , Luz , Dor/induzido quimicamente , Estilbenos/química , Estilbenos/uso terapêutico , Analgesia/métodos , Analgésicos/química , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Compostos de Bifenilo , Proteínas Neurotóxicas de Elapídeos/administração & dosagem , Proteínas Neurotóxicas de Elapídeos/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Picratos , Resveratrol , Estilbenos/administração & dosagem
16.
Biochem J ; 454(2): 303-310, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23800261

RESUMO

To identify high-affinity interactions between long-chain α-neurotoxins and nicotinic receptors, we determined the crystal structure of the complex between α-btx (α-bungarotoxin) and a pentameric ligand-binding domain constructed from the human α7 AChR (acetylcholine receptor) and AChBP (acetylcholine-binding protein). The complex buries ~2000 Ų (1 Å=0.1 nm) of surface area, within which Arg³6 and Phe³² from finger II of α-btx form a π-cation stack that aligns edge-to-face with the conserved Tyr¹84 from loop-C of α7, while Asp³° of α-btx forms a hydrogen bond with the hydroxy group of Tyr¹84. These inter-residue interactions diverge from those in a 4.2 Å structure of α-ctx (α-cobratoxin) bound to AChBP, but are similar to those in a 1.94 Å structure of α-btx bound to the monomeric α1 extracellular domain, although compared with the monomer-bound complex, the α-btx backbone exhibits a large shift relative to the protein surface. Mutational analyses show that replacing Tyr¹84 with a threonine residue abolishes high-affinity α-btx binding, whereas replacing with a phenylalanine residue maintains high affinity. Comparison of the α-btx complex with that coupled to the agonist epibatidine reveals structural rearrangements within the binding pocket and throughout each subunit. The overall findings highlight structural principles by which α-neurotoxins interact with nicotinic receptors.


Assuntos
Bungarotoxinas/metabolismo , Proteínas de Transporte/metabolismo , Modelos Moleculares , Neurotoxinas/metabolismo , Receptores Nicotínicos/metabolismo , Proteínas de Répteis/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Bungarotoxinas/química , Bungarus , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/metabolismo , Humanos , Ligantes , Lymnaea , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Neurotoxinas/química , Agonistas Nicotínicos/química , Agonistas Nicotínicos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Piridinas/química , Piridinas/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Répteis/química , Receptor Nicotínico de Acetilcolina alfa7
17.
BMC Complement Altern Med ; 13: 86, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23587180

RESUMO

BACKGROUND: Neurotoxin-Nna (NT), an analgesic peptide separated from the venom of Naja naja atra, has reported to have an exceptional specificity to block transmission of the nerve impulse by binding to the α- subunit of the nicotinic acetylcholine receptor in the membrane. However, little information is available on the anti-inflammatory effects of NT. Therefore, the anti-inflammatory activity of Neurotoxin-Nna was investigated in this study. METHODS: The anti-inflammatory effects of NT were evaluated by measuring its influence on several crucial factors in inflammatory pathways, including total antioxidant activity, antinociceptive effects in vivo, nuclear factor kappa B (NF-κB), polymorphonuclear cells (PMN), inducible nitric oxide synthase (iNOS), adhesion molecule (ICAM-1) and tactile hyperalgesia. RESULTS: NT treatment decreased the levels of tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß). NT treatment decreased the total antioxidant status (TAOS) and reduced CFA-induced tactile hyperalgesia in a dose-dependent manner. NT significantly inhibited regulation of NF-kappaB activation and the production of IL-1ß, TNF-α, iNOS and CAM-1. Moreover, NT suppressed infiltration of PMN. CONCLUSIONS: Our results showed that NT reduced CFA-induced tactile hyperalgesia through inhibition inflammatory pathways in experimental inflammatory rats.


Assuntos
Anti-Inflamatórios/administração & dosagem , Proteínas Neurotóxicas de Elapídeos/administração & dosagem , Venenos Elapídicos/química , Elapidae , Hiperalgesia/tratamento farmacológico , Peptídeos/administração & dosagem , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/isolamento & purificação , Feminino , Humanos , Hiperalgesia/genética , Hiperalgesia/imunologia , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Masculino , NF-kappa B/genética , NF-kappa B/imunologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Peptídeos/química , Peptídeos/isolamento & purificação , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
18.
Anal Chem ; 85(10): 5219-25, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23581651

RESUMO

Cobra venom (Naja kaouthia) contains a toxin called α-cobratoxin (α-Cbtx). This toxin is a natural protein containing 71 amino acids (MW 7821 Da) with a reported analgesic potency greater than morphine. In 2007, in USA, this substance was found in the barns of a thoroughbred trainer and since then till date, the lack of a detection of this molecule has remained a recurring problem for the horseracing industry worldwide. To solve this problem, the first method for the detection of α-cobratoxin in equine plasma has now been developed. Plasma sample (3 mL) was treated with ammonium sulfate at the isoelectric point of α-Cbtx, and the pellet was dissolved in a phosphate buffer and mixed with methanol for precipitation. The supernatant was then concentrated prior to its extraction on WCX SPE cartridges. The eluate was concentrated with two consecutive filtration steps before the trypsin digestion. The samples were analyzed using a LC-MS/MS Q Exactive instrument at 70,000 resolution on the product ions of the doubly charged precursor of the target peptide ((24)TWCDAFCSIR(33)). The method was validated (n = 18) at 5 µg/L (640 pmol/L) according to the Association of Official Racing Chemists (AORC) requirements. The lower limit of detection was 1 µg/L (130 pmol/L). The present method has made it possible for us to confirm the presence of α-Cbtx in a horse plasma sample 24 h post the administration of α-Cbtx. Thus, the present method provides the first sensitive, specific, and reliable analytical method to confirm the presence of α-Cbtx in equine plasma.


Assuntos
Analgésicos/sangue , Análise Química do Sangue/métodos , Proteínas Neurotóxicas de Elapídeos/sangue , Dopagem Esportivo/prevenção & controle , Cavalos , Sequência de Aminoácidos , Analgésicos/química , Analgésicos/isolamento & purificação , Analgésicos/metabolismo , Métodos Analíticos de Preparação de Amostras , Animais , Cromatografia Líquida , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/isolamento & purificação , Proteínas Neurotóxicas de Elapídeos/metabolismo , Dados de Sequência Molecular , Proteólise , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Tripsina/metabolismo
19.
Toxicon ; 60(4): 623-31, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22677803

RESUMO

An improved chromatographic method was developed to isolate and purify polypeptides and proteins from the crude venom of the Taiwan cobra Naja naja atra. The procedure devised is simple, easy to reproduce, and enables large scale isolation of almost all polypeptides and proteins in this cobra venom. Six pure polypeptide fractions of the venom were isolated and characterized using gel filtration on Sephadex G50 (medium), ion exchange chromatography on SP-Sephadex C25, desalting on Sephadex G25 (fine) and preparative HPLC on a RPC 18 column. The neuromuscular activity of these fractions was tested on the chick biventer cervicis nerve-muscle preparation and their toxicity (LD(50)) was determined after i.v. administration in mice. Their antinociceptive activity was tested in the mouse abdominal test by i.v. application. Two of these polypeptide samples had major physiological effects: one acted as a cardiotoxin causing reversible myocardial contractures with no effect on muscle twitches elicited by nerve stimulation (NS); another was a neurotoxin that blocked muscle contractions in response to NS and exogenously added acetylcholine. The cardiotoxic fraction was identified as CTX I, a well-known cardiotoxin present in this venom, and the neurotoxin was identified as neurotoxin-α with an LD50 in mice of 0.075 mg/kg.


Assuntos
Cromatografia/métodos , Proteínas Cardiotóxicas de Elapídeos/isolamento & purificação , Proteínas Neurotóxicas de Elapídeos/isolamento & purificação , Venenos Elapídicos/metabolismo , Peptídeos/isolamento & purificação , Analgésicos/isolamento & purificação , Analgésicos/farmacologia , Animais , Fracionamento Químico/instrumentação , Fracionamento Químico/métodos , Galinhas , Proteínas Cardiotóxicas de Elapídeos/química , Proteínas Cardiotóxicas de Elapídeos/toxicidade , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/toxicidade , Venenos Elapídicos/química , Venenos Elapídicos/toxicidade , Elapidae/fisiologia , Feminino , Coração/efeitos dos fármacos , Dose Letal Mediana , Masculino , Camundongos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/fisiopatologia , Dor/induzido quimicamente , Dor/tratamento farmacológico , Limiar da Dor/efeitos dos fármacos , Peptídeos/química , Peptídeos/toxicidade , Ratos
20.
Anal Bioanal Chem ; 402(9): 2737-48, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22349324

RESUMO

The ammodytoxins (Atxs) are neurotoxic phospholipases which occur in Vipera ammodytes ammodytes (Vaa) snake venom. There are three Atx isoforms, A, B, and C, which differ in only five amino acid positions at the C-terminus but differ substantially in their toxicity. The objective of this study was to establish an analytical method for unambiguous identification of all three isoforms and to use the method to assess a procedure for purification of the most toxic phospholipase, AtxA, from the venom. Isolation procedure for AtxA consisted of isolation of Atx-cross-reactive material (proteins recognized by anti-Atx antibodies), by use of an affinity column, then cation exchange on CIM (Convective Interaction Media) disks. The purification procedure was monitored by means of reversed-phase chromatography (RPC) and mass spectrometry (MS). Although previous cation exchange of the pure isoforms enabled separate elution of AtxA from B and C, separation of AtxA from Atxs mixture was not accomplished. RPC was not able to separate the Atx isoforms, whereas an MS based approach proved to be more powerful. Peptides resulting from tryptic digestion of Atxs which enable differentiation between the three isoforms were successfully detected and their sequences were confirmed by post-source decay (PSD) fragmentation. Separation of Atx isoforms by ion-exchange chromatography is most presumably prevented by Atxs heterodimer formation. The tendency of Atxs to form homodimers and heterodimers of similar stability was confirmed by molecular modeling.


Assuntos
Cromatografia/métodos , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/isolamento & purificação , Fosfolipases/química , Fosfolipases/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Venenos de Víboras/química , Sequência de Aminoácidos , Animais , Proteínas Neurotóxicas de Elapídeos/toxicidade , Isoenzimas/química , Isoenzimas/isolamento & purificação , Isoenzimas/toxicidade , Modelos Moleculares , Dados de Sequência Molecular , Fosfolipases/toxicidade , Venenos de Víboras/toxicidade , Viperidae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA