Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Biol ; 222(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37516910

RESUMO

The endoplasmic reticulum's (ER's) structure is directly linked to the many functions of the ER, but its formation is not fully understood. We investigate how the ER-membrane curving protein reticulon 4 (Rtn4) localizes to and organizes in the membrane and how that affects the local ER structure. We show a strong correlation between the local Rtn4 density and the local ER membrane curvature. Our data further reveal that the typical ER tubule possesses an elliptical cross-section with Rtn4 enriched at either end of the major axis. Rtn4 oligomers are linear shaped, contain about five copies of the protein, and preferentially orient parallel to the tubule axis. Our observations support a mechanism in which oligomerization leads to an increase of the local Rtn4 concentration with each molecule, increasing membrane curvature through a hairpin wedging mechanism. This quantitative analysis of Rtn4 and its effects on the ER membrane result in a new model of tubule shape as it relates to Rtn4.


Assuntos
Retículo Endoplasmático , Proteínas Nogo , Retículo Endoplasmático/ultraestrutura , Proteínas Nogo/química
2.
J Biol Chem ; 295(8): 2175-2183, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31748413

RESUMO

Glial signals are known to inhibit axonal regeneration and functional recovery after mammalian central nervous system trauma, including spinal cord injury. Such signals include membrane-associated proteins of the oligodendrocyte plasma membrane and astrocyte-derived, matrix-associated proteins. Here, using cell lines and primary cortical neuron cultures, recombinant protein expression, immunoprecipitation and immunoblot assays, transmission EM of exosomes, and axon regeneration assays, we explored the secretion and activity of the myelin-associated neurite outgrowth inhibitor Nogo-A and observed exosomal release of a 24-kDa C-terminal Nogo-A fragment from cultured cells. We found that the cleavage site in this 1192-amino-acid-long fragment is located between amino acids 961-971. We also detected a Nogo-66 receptor (NgR1)-interacting Nogo-66 domain on the exosome surface. Enzyme inhibitor treatment and siRNA knockdown revealed that ß-secretase 1 (BACE1) is the protease responsible for Nogo-A cleavage. Functionally, exosomes with the Nogo-66 domain on their surface potently inhibited axonal regeneration of mechanically injured cerebral cortex neurons from mice. Production of this fragment was observed in the exosomal fraction from neuronal tissue lysates after spinal cord crush injury of mice. We also noted that, relative to the exosomal marker Alix, a Nogo-immunoreactive, 24-kDa protein is enriched in exosomes 2-fold after injury. We conclude that membrane-associated Nogo-A produced in oligodendrocytes is processed proteolytically by BACE1, is released via exosomes, and is a potent diffusible inhibitor of regenerative growth in NgR1-expressing axons.


Assuntos
Axônios/metabolismo , Exossomos/metabolismo , Regeneração Nervosa , Proteínas Nogo/metabolismo , Animais , Exossomos/ultraestrutura , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Proteínas Nogo/química , Estrutura Secundária de Proteína , Proteólise , Traumatismos da Medula Espinal/patologia
3.
J Membr Biol ; 252(4-5): 331-342, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31187156

RESUMO

The membrane-active protein Nogo-66 is found to induce interdigitation in dimyristoylphosphocholine membranes. Extensive molecular dynamics simulations have been employed to probe the interactions of Nogo-66 with these model membranes. This phase change happens when the temperature is close to the main transition temperature of the membrane (Tm) and only in the presence of the protein. No similar interdigitation of the membrane lipids was observed temperatures well above Tm in the presence of the protein. In addition, in protein-free simulations, no interdigitation of the membrane lipids was found both at temperatures near or well above Tm indicating that the observed effect is caused by the interactions of Nogo-66 with the membrane. Analysis of the simulations suggest protein-membrane interactions, even if transient, alter the lifetimes of lipid head defects and can potentially alter the effective Tm and cause interdigitation. This study emphasize the importance of membrane-active proteins and their interactions with membranes leading to phase transitions which would affect other membrane-related processes such as domain formation.


Assuntos
Lipídeos de Membrana/química , Simulação de Dinâmica Molecular , Proteínas Nogo/química , Humanos , Domínios Proteicos
4.
J Comp Neurol ; 525(14): 2991-3009, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28560734

RESUMO

This study explored why lesioned retinal ganglion cell (RGC) axons regenerate successfully in the zebrafish optic nerve despite the presence of Rtn4b, the homologue of the rat neurite growth inhibitor RTN4-A/Nogo-A. Rat Nogo-A and zebrafish Rtn4b possess characteristic motifs (M1-4) in the Nogo-A-specific region, which contains delta20, the most inhibitory region of rat Nogo-A. To determine whether zebrafish M1-4 is inhibitory as rat M1-4 and Nogo-A delta20, proteins were recombinantly expressed and used as substrates for zebrafish single cell RGCs, mouse hippocampal neurons and goldfish, zebrafish and chick retinal explants. When offered as homogenous substrates, neurites of hippocampal neurons and of zebrafish single cell RGCs were inhibited by zebrafish M1-4, rat M1-4, and Nogo-A delta20. Neurite length increased when zebrafish single cell RGCs were treated with receptor-type-specific antagonists and, respectively, with morpholinos (MO) against S1PR2 and S1PR5a-which represent candidate zebrafish Nogo-A receptors. In a stripe assay, however, where M1-4 lanes alternate with polylysine-(Plys)-only lanes, RGC axons from goldfish, zebrafish, and chick retinal explants avoided rat M1-4 but freely crossed zebrafish M1-4 lanes-suggesting that zebrafish M1-4 is growth permissive and less inhibitory than rat M1-4. Moreover, immunostainings and dot blots of optic nerve and myelin showed that expression of Rtn4b is very low in tissue and myelin at 3-5 days after lesion when axons regenerate. Thus, Rtn4b seems to represent no major obstacle for axon regeneration in vivo because it is less inhibitory for RGC axons from retina explants, and because of its low abundance.


Assuntos
Axônios/fisiologia , Proteínas da Mielina/metabolismo , Regeneração Nervosa , Proteínas Nogo/metabolismo , Traumatismos do Nervo Óptico/fisiopatologia , Nervo Óptico/fisiologia , Células Ganglionares da Retina/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Motivos de Aminoácidos , Animais , Células Cultivadas , Embrião de Galinha , Carpa Dourada , Hipocampo/patologia , Hipocampo/fisiopatologia , Camundongos Endogâmicos C57BL , Proteínas da Mielina/química , Bainha de Mielina/metabolismo , Crescimento Neuronal/fisiologia , Proteínas Nogo/química , Receptores Nogo/antagonistas & inibidores , Receptores Nogo/metabolismo , Nervo Óptico/patologia , Traumatismos do Nervo Óptico/patologia , Ratos , Retina/patologia , Retina/fisiopatologia , Técnicas de Cultura de Tecidos , Alicerces Teciduais , Peixe-Zebra , Proteínas de Peixe-Zebra/química
5.
Cereb Cortex ; 27(5): 2779-2792, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27166169

RESUMO

Nogo-A restricts long-term potentiation (LTP) at the Schaffer collateral-CA1 pathway in the adult hippocampus via 2 extracellular domains: Nogo-A-Δ20 and Nogo-66. Nogo-66 signals via Nogo Receptor 1 (NgR1) to regulate synaptic function. Whether the NgR1 coreceptors Lingo1 and p75NTR are involved in the signaling in this context is still not known. Moreover, the intracellular cascade mediating the activity of Nogo-66 in restricting LTP is unexplored. We combine electrophysiology and biochemistry in acute hippocampal slices and demonstrate that a loss of function for Lingo1 results in a significant increase in LTP levels at the Schaffer collateral-CA1 pathway, and that Lingo1 is the NgR1 coreceptor mediating the role of Nogo-66 in restricting LTP. Our data show that p75NTR is not involved in mediating the Nogo-66 effect on LTP. Moreover, loss of function for p75NTR and NgR1 equally attenuate LTD, suggesting that p75NTR might mediate the NgR1-dependent regulation of LTD, independently of Nogo-66. Finally, our results indicate that Nogo-66 signaling limits LTP via the ROCK2-Cofilin pathway to control the dynamics of the actin cytoskeleton. The present results elucidate the signaling pathway activated by Nogo-66 to control LTP and contribute to the understanding of how Nogo-A stabilizes the neural circuits to limit activity-dependent plasticity events in the mature hippocampus.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Plasticidade Neuronal/fisiologia , Proteínas Nogo/metabolismo , Transdução de Sinais/fisiologia , Quinases Associadas a rho/metabolismo , Fatores de Despolimerização de Actina/genética , Amidas/farmacologia , Animais , Biofísica , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Feminino , Hipocampo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Proteínas Nogo/antagonistas & inibidores , Proteínas Nogo/química , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Piridinas/farmacologia , Receptor de Fator de Crescimento Neural/deficiência , Receptor de Fator de Crescimento Neural/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética
6.
PLoS One ; 11(9): e0161813, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27611089

RESUMO

Functional recovery from central neurotrauma, such as spinal cord injury, is limited by myelin-associated inhibitory proteins. The most prominent example, Nogo-A, imposes an inhibitory cue for nerve fibre growth via two independent domains: Nogo-A-Δ20 (residues 544-725 of the rat Nogo-A sequence) and Nogo-66 (residues 1026-1091). Inhibitory signalling from these domains causes a collapse of the neuronal growth cone via individual receptor complexes, centred around sphingosine 1-phosphate receptor 2 (S1PR2) for Nogo-A-Δ20 and Nogo receptor 1 (NgR1) for Nogo-66. Whereas the helical conformation of Nogo-66 has been studied extensively, only little structural information is available for the Nogo-A-Δ20 region. We used nuclear magnetic resonance (NMR) spectroscopy to assess potential residual structural propensities of the intrinsically disordered Nogo-A-Δ20. Using triple resonance experiments, we were able to assign 94% of the non-proline backbone residues. While secondary structure analysis and relaxation measurements highlighted the intrinsically disordered character of Nogo-A-Δ20, three stretches comprising residues 561EAIQESL567, 639EAMNVALKALGT650, and 693SNYSEIAK700 form transient α-helical structures. Interestingly, 561EAIQESL567 is situated directly adjacent to one of the most conserved regions of Nogo-A-Δ20 that contains a binding motif for ß1-integrin. Likewise, 639EAMNVALKALGT650 partially overlaps with the epitope recognized by 11C7, a Nogo-A-neutralizing antibody that promotes functional recovery from spinal cord injury. Diffusion measurements by pulse-field gradient NMR spectroscopy suggest concentration- and oxidation state-dependent dimerisation of Nogo-A-Δ20. Surprisingly, NMR and isothermal titration calorimetry (ITC) data could not validate previously shown binding of extracellular loops of S1PR2 to Nogo-A-Δ20.


Assuntos
Crescimento Neuronal/fisiologia , Proteínas Nogo/química , Proteínas Nogo/metabolismo , Animais , Calorimetria , Linhagem Celular , Dicroísmo Circular , Fibroblastos/citologia , Fibroblastos/metabolismo , Espectroscopia de Ressonância Magnética , Camundongos , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Neuritos/metabolismo , Neuritos/fisiologia , Crescimento Neuronal/genética , Proteínas Nogo/genética , Multimerização Proteica , Ratos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Traumatismos da Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA