Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Signal Transduct Target Ther ; 8(1): 175, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121942

RESUMO

Prostate cancer (PCa) is the second most prevalent malignancy in males across the world. A greater knowledge of the relationship between protein abundance and drug responses would benefit precision treatment for PCa. Herein, we establish 35 Chinese PCa primary cell models to capture specific characteristics among PCa patients, including gene mutations, mRNA/protein/surface protein distributions, and pharmaceutical responses. The multi-omics analyses identify Anterior Gradient 2 (AGR2) as a pre-operative prognostic biomarker in PCa. Through the drug library screening, we describe crizotinib as a selective compound for malignant PCa primary cells. We further perform the pharmacoproteome analysis and identify 14,372 significant protein-drug correlations. Surprisingly, the diminished AGR2 enhances the inhibition activity of crizotinib via ALK/c-MET-AKT axis activation which is validated by PC3 and xenograft model. Our integrated multi-omics approach yields a comprehensive understanding of PCa biomarkers and pharmacological responses, allowing for more precise diagnosis and therapies.


Assuntos
Multiômica , Neoplasias da Próstata , Masculino , Humanos , Crizotinibe/farmacologia , Crizotinibe/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas/metabolismo , Mucoproteínas/uso terapêutico , Proteínas Oncogênicas/uso terapêutico
2.
Arch Biochem Biophys ; 737: 109551, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822388

RESUMO

Docetaxel is a first-line chemotherapy drug for castration-resistant prostate cancer (CRPC); yet, some CRPC patients develop docetaxel drug resistance. Cabazitaxel is approved in the post-docetaxel treatment setting. However, recent studies suggested cross-resistance between the development of drug resistance and current treatments. In this study, we used docetaxel-resistant cell lines DU145/DTX50 and PC-3/DTX30 to measure the responses to cabazitaxel. Our findings demonstrated that docetaxel resistance could lead to cross-resistance to cabazitaxel. After docetaxel-resistant cells were treated with cabazitaxel, transcriptome analysis was performed, and the results were analyzed in combination with survival analysis and correlation analysis with Gleason score to screen the cross-resistance genes. The continuously increased expression of kinesin family member 14 (KIF14) was identified as the main cause of cross-resistance to cabazitaxel in docetaxel-resistant cells. Silencing the expression of KIF14 could restore the sensitivity of resistant PCa cells to docetaxel and cabazitaxel, attenuate proliferation and promote apoptosis of the resistant PCa cells. Notably, the depressed expression of KIF14 inhibited the phosphorylation of Akt located downstream. In summary, KIF14 mediates the cross-resistance between docetaxel and cabazitaxel, and targeting KIF14 could be an effective measurement for reversing docetaxel or cabazitaxel chemotherapy failure or enhancing the anti-tumor effects of docetaxel or cabazitaxel.


Assuntos
Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Docetaxel , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Fosforilação , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos/farmacologia , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/uso terapêutico , Cinesinas/metabolismo
3.
Cancer ; 129(4): 634-642, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36504384

RESUMO

BACKGROUND: Before postchemotherapy retroperitoneal lymph node dissection (pcRPLND), in patients with metastasized germ cell tumors (GCTs), those harboring necrosis (NEC) cannot be distinguished from those who have teratoma (TER), resulting in relevant overtreatment, whereas microRNA-371a-3p may be predictive for viable GCT. The purpose of this study was to explore messenger RNA (mRNA) and proteins to distinguish TER from NEC in pcRPLND tissue. METHODS: The discovery cohort consisted in total of 48 patients, including 16 each with TER, viable GCT, and NEC. Representative areas were microdissected. A NanoString panel and proteomics were used to analyze 770 genes and >5000 proteins. The most significantly and differentially expressed combination of both parameters, mRNA and its associated protein, between TER and NEC was validated using immunohistochemistry (IHC) in an independent validation cohort comprising 66 patients who were not part of the discovery cohort. RESULTS: The authors observed that anterior gradient protein 2 homolog (AGR2) and keratin, type I cytoskeletal 19 (KRT19) were significantly differentially expressed in TER versus NEC in mRNA and protein analyses (proteomics). The technical validation using IHC was successful in the same patients. These proteins were further validated by IHC in the independent patient cohort and exhibited significantly higher levels in TER versus NEC (p < .0001; area under the curve, 1.0; sensitivity and specificity, 100% each). CONCLUSIONS: The current study demonstrated that KRT19 and AGR2 mRNA and protein are overexpressed in TER versus NEC in pcRPLND tissue and might serve as a future diagnostic target to detect TER, for instance, by functional imaging, to avoid overtreatment. PLAIN LANGUAGE SUMMARY: The proteins and the corresponding genes called AGR2 and KRT19 can differentiate between teratoma and necrosis in remaining tumor masses after chemotherapy in patients who have metastasized testicular cancer. This may be a way to improve presurgical diagnostics and to reduce the current overtreatment of patients with necrosis only, who could be treated sufficiently by surveillance.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Embrionárias de Células Germinativas , Teratoma , Neoplasias Testiculares , Humanos , Masculino , Excisão de Linfonodo/métodos , Mucoproteínas/uso terapêutico , Necrose , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/patologia , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/uso terapêutico , Espaço Retroperitoneal/patologia , Teratoma/tratamento farmacológico , Teratoma/genética , Teratoma/patologia , Neoplasias Testiculares/tratamento farmacológico , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia
4.
Cancer ; 129(5): 697-713, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36572991

RESUMO

BACKGROUND: Cyclin E1 (CCNE1) is a potential predictive marker and therapeutic target in tubo-ovarian high-grade serous carcinoma (HGSC). Smaller studies have revealed unfavorable associations for CCNE1 amplification and CCNE1 overexpression with survival, but to date no large-scale, histotype-specific validation has been performed. The hypothesis was that high-level amplification of CCNE1 and CCNE1 overexpression, as well as a combination of the two, are linked to shorter overall survival in HGSC. METHODS: Within the Ovarian Tumor Tissue Analysis consortium, amplification status and protein level in 3029 HGSC cases and mRNA expression in 2419 samples were investigated. RESULTS: High-level amplification (>8 copies by chromogenic in situ hybridization) was found in 8.6% of HGSC and overexpression (>60% with at least 5% demonstrating strong intensity by immunohistochemistry) was found in 22.4%. CCNE1 high-level amplification and overexpression both were linked to shorter overall survival in multivariate survival analysis adjusted for age and stage, with hazard stratification by study (hazard ratio [HR], 1.26; 95% CI, 1.08-1.47, p = .034, and HR, 1.18; 95% CI, 1.05-1.32, p = .015, respectively). This was also true for cases with combined high-level amplification/overexpression (HR, 1.26; 95% CI, 1.09-1.47, p = .033). CCNE1 mRNA expression was not associated with overall survival (HR, 1.00 per 1-SD increase; 95% CI, 0.94-1.06; p = .58). CCNE1 high-level amplification is mutually exclusive with the presence of germline BRCA1/2 pathogenic variants and shows an inverse association to RB1 loss. CONCLUSION: This study provides large-scale validation that CCNE1 high-level amplification is associated with shorter survival, supporting its utility as a prognostic biomarker in HGSC.


Assuntos
Carcinoma , Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/patologia , Fatores de Transcrição/genética , RNA Mensageiro , Cistadenocarcinoma Seroso/genética , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/uso terapêutico , Ciclina E/genética
5.
Mol Cancer Ther ; 21(9): 1473-1484, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35732503

RESUMO

Approximately 20% of high-grade serous ovarian cancers (HGSOC) have CCNE1 amplification. CCNE1-amplified tumors are homologous recombination (HR) proficient and resistant to standard therapies. Therapy resistance is associated with increased numbers of polyploid giant cancer cells (PGCC). We sought to identify new therapeutic approaches for patients with CCNE1-amplified tumors. Using TCGA data, we find that the mTOR, HR, and DNA checkpoint pathways are enriched in CCNE1-amplified ovarian cancers. Furthermore, Interactome Mapping Analysis linked the mTOR activity with upregulation of HR and DNA checkpoint pathways. Indeed, we find that mTOR inhibitors (mTORi) downregulate HR/checkpoint genes in CCNE1-amplified tumors. As CCNE1-amplified tumors are dependent on the HR pathway for viability, mTORi proved selectively effective in CCNE1-amplified tumors. Similarly, via downregulation of HR genes, mTORi increased CCNE1-amplifed HGSOC response to PARPi. In contrast, overexpression of HR/checkpoint proteins (RAD51 or ATR), induced resistance to mTORi. In vivo, mTORi alone potently reduced CCNE1-amplified tumor growth and the combination of mTORi and PARPi increased response and tumor eradication. Tumors treated with mTORi demonstrated a significant reduction in ALDH+ PGCCs. Finally, as a proof of principle, we identified three patients with CCNE1 amplified tumors who were treated with an mTORi. All three obtained clinical benefits from the therapy. Our studies and clinical experience indicate mTORi are a potential therapeutic approach for patients with CCNE1-amplified tumors.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Ciclina E/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Células Gigantes/metabolismo , Células Gigantes/patologia , Recombinação Homóloga , Humanos , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Serina-Treonina Quinases TOR/genética
6.
Clin Transl Med ; 12(5): e881, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35604033

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC), a difficult-to-treat cancer, is expected to become the second-largest cause of cancer-related deaths by 2030, while colorectal cancer (CRC) is the third most common cancer and the third leading cause of cancer deaths. Currently, there is no effective treatment for PDAC patients. The development of novel agents to effectively treat these cancers remains an unmet clinical need. FL118, a novel anticancer small molecule, exhibits high efficacy against cancers; however, the direct biochemical target of FL118 is unknown. METHODS: FL118 affinity purification, mass spectrometry, Nanosep centrifugal device and isothermal titration calorimetry were used for identifying and confirming FL118 binding to DDX5/p68 and its binding affinity. Immunoprecipitation (IP), western blots, real-time reverse transcription PCR, gene silencing, overexpression (OE) and knockout (KO) were used for analysing gene/protein function and expression. Chromatin IP was used for analysing protein-DNA interactions. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromid assay and human PDAC/CRC cell/tumour models were used for determining PDAC/CRC cell/tumour in vitro and in vivo growth. RESULTS: We discovered that FL118 strongly binds to dephosphorylates and degrades the DDX5 oncoprotein via the proteasome degradation pathway without decreasing DDX5 mRNA. Silencing and OE of DDX5 indicated that DDX5 is a master regulator for controlling the expression of multiple oncogenic proteins, including survivin, Mcl-1, XIAP, cIAP2, c-Myc and mutant Kras. Genetic manipulation of DDX5 in PDAC cells affects tumour growth. PDAC cells with DDX5 KO are resistant to FL118 treatment. Our human tumour animal model studies further indicated that FL118 exhibits high efficacy to eliminate human PDAC and CRC tumours that have a high expression of DDX5, while FL118 exhibits less effectiveness in PDAC and CRC tumours with low DDX5 expression. CONCLUSION: DDX5 is a bona fide FL118 direct target and can act as a biomarker for predicting PDAC and CRC tumour sensitivity to FL118. This would greatly impact FL118 precision medicine for patients with advanced PDAC or advanced CRC in the clinic. FL118 may act as a 'molecular glue degrader' to directly glue DDX5 and ubiquitination regulators together to degrade DDX5.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Colorretais , Neoplasias Pancreáticas , Animais , Benzodioxóis , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Humanos , Indolizinas , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Survivina/genética , Survivina/metabolismo , Survivina/uso terapêutico , Neoplasias Pancreáticas
7.
Int J Surg Oncol ; 2021: 9947540, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567804

RESUMO

BACKGROUND: Despite the undeniable benefit of tamoxifen therapy for ER-positive breast cancer patients, approximately one-third of those patients either do not respond to tamoxifen or develop resistance. Thus, it is a crucial step to identify novel, reliable, and easily detectable biomarkers indicating resistance to this drug. OBJECTIVE: The aim of this work is to explore SOX2 and AGR2 biomarker expression in the tumor tissue of ER-positive breast cancer patients in combination with the evaluation of serum AGR2 level of these patients in order to validate these biomarkers as early predictors of tamoxifen resistance. METHODS: This study was conducted on 224 ER-positive breast cancer patients. All patients were primarily subjected to serum AGR2 levelling by ELISA and their breast cancer tissue immunostained for SOX2 and AGR2. After 5 years of follow-up, the patients were divided into 3 groups: group 1 was tamoxifen sensitive and groups 2 and 3 were tamoxifen resistant. Time to failure of tamoxifen treatment was considered the time from the beginning of tamoxifen therapy to the time of discovery of breast cancer recurrence or metastases (in months). RESULTS: SOX2 and AGR2 biomarkers expression and serum AGR2 level were significantly higher in groups 2 and 3 in comparison to group 1, while the relationship between Her2 neu expression and Ki67 index in the 3 different groups was statistically nonsignificant. Lower SOX2 and AGR2 expression and low AGR2 serum levels in the studied patients of groups 2 and 3 were significantly associated with longer time-to-failure of tamoxifen treatment. According to the ROC curve, the combined use of studied markers validity was with a sensitivity of 100%, specificity of 96%, PPV 96%, and NPV 100% (p < 0.001; AUC: 0.984). CONCLUSIONS: Integrated use of SOX2 and AGR2 biomarkers with serum AGR2 assay holds a promising hope for their future use as predictive markers for early detection of tamoxifen resistance in ER-positive breast cancer patients.


Assuntos
Neoplasias da Mama , Mucoproteínas , Proteínas Oncogênicas , Fatores de Transcrição SOXB1 , Tamoxifeno , Antineoplásicos Hormonais/uso terapêutico , Biomarcadores Tumorais/metabolismo , Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Mucoproteínas/metabolismo , Mucoproteínas/uso terapêutico , Recidiva Local de Neoplasia , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/uso terapêutico , Fatores de Transcrição SOXB1/metabolismo , Tamoxifeno/uso terapêutico
8.
Ann Palliat Med ; 10(4): 4955-4958, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33832283

RESUMO

Acute myeloid leukemia (AML) is a malignant clonal hematopoietic stem cell disease. Although there are many therapeutic options, it is still an incurable hematological malignancy. Moreover, the prognosis of AML is closely related to its cytogenetics and molecular biology. The DEK/CAN fusion gene formed by t (6;9)(p23;q34) occurs with an incidence of 1-5% in adult patients with AML usually indicates a poor prognosis. Hematopoietic stem cell transplantation can prolong the disease-free survival rate of patients with AML positive for DEK/CAN fusion gene, and the development of new drugs is still one of the hotspots of clinical research. Herein, we reported the first case with DEK/CAN-positive AML who achieved complete remission of molecular biology via decitabine combined with a medium-dose cytarabine regimen. The patient has received three courses of intensive treatment with decitabine combined with medium-dose cytarabine regimen and maintain complete remission of molecular biology for up to 11 months. We hypothesized that the combination of decitabine and medium-dose cytarabine play an important role in targeting DEK/CAN and it should be verified by the accumulation of clinical cases and basic experiments in the future.


Assuntos
Citarabina , Leucemia Mieloide Aguda , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/uso terapêutico , Citarabina/uso terapêutico , Decitabina/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/uso terapêutico , Proteínas de Ligação a Poli-ADP-Ribose/genética , Resultado do Tratamento
9.
Neurochem Res ; 39(1): 187-93, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24293249

RESUMO

The DJ-1 gene is highly conserved in diverse species and DJ-1 is known as an anti-oxidative stress factor. In this study, we investigated the neuroprotective effects of DJ-1 against ischemic damage in the rabbit spinal cord. Tat-DJ-1 fusion proteins were constructed to facilitate the penetration of DJ-1 protein into the neurons. Tat-1-DJ-1 fusion protein was administered to the rabbit 30 min after ischemia/reperfusion, and transient spinal cord ischemia was induced by occlusion of the aorta at the subrenal region for 15 min. The administration of Tat-DJ-1 significantly improved the Tarlov score compared to that in the Tat (vehicle)-treated group at 24, 48 and 72 h after ischemia/reperfusion. At 72 h after ischemia/reperfusion, the number of cresyl violet-positive neurons was significantly increased in the Tat-DJ-1-treated group compared to that in the vehicle-treated group. Lipid peroxidation as judged from the malondialdehyde levels was significantly decreased in the Tat-DJ-1-treated group compared to that in the vehicle-treated group. In contrast, superoxide dismutase and catalase levels were significantly increased in the Tat-DJ-1-treated group compared to that in the vehicle-treated group. This result suggests that DJ-1 protects neurons from ischemic damage in the ventral horn of the spinal cord via its antioxidant effects.


Assuntos
Proteínas Oncogênicas/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Isquemia do Cordão Espinal/prevenção & controle , Animais , Antioxidantes/farmacologia , Catalase/biossíntese , Membro Posterior/fisiologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Coelhos , Traumatismo por Reperfusão/fisiopatologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Superóxido Dismutase/biossíntese
10.
Brain Res Bull ; 88(6): 609-16, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22664331

RESUMO

Parkinson disease (PD) is the second most common neurodegenerative disease, and it cannot be completely cured by current medications. In this study, DJ-1 protein was administrated into medial forebrain bundle of PD model rats those had been microinjected with 6-hydroxydopamine (6-OHDA) or MG-132. We found that DJ-1 protein could reduce apomorphine-induced rotations, inhibit reduction of dopamine contents and tyrosine hydroxylase levels in the striatum, and decrease dopaminergic neuron death in the substantia nigra. In 6-OHDA lesioned rats, uncoupling protein-4, uncoupling protein-5 and superoxide dismutase-2 (SOD2) mRNA and SOD2 protein were increased when DJ-1 protein was co-injected. Simultaneously, administration of DJ-1 protein reduced α-synuclein and hypoxia-inducible factor 1α mRNA and α-synuclein protein in MG-132 lesioned rats. Therefore, DJ-1 protein protected dopaminergic neurons in two PD model rats by increasing antioxidant capacity and inhibiting α-synuclein expression.


Assuntos
Antiparkinsonianos/uso terapêutico , Neurônios Dopaminérgicos/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/uso terapêutico , Leupeptinas/toxicidade , Fármacos Neuroprotetores/uso terapêutico , Proteínas Oncogênicas/uso terapêutico , Oxidopamina/toxicidade , Transtornos Parkinsonianos/prevenção & controle , Animais , Antiparkinsonianos/administração & dosagem , Apomorfina/antagonistas & inibidores , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Dopamina/análise , Neurônios Dopaminérgicos/enzimologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Peptídeos e Proteínas de Sinalização Intracelular/administração & dosagem , Canais Iônicos/biossíntese , Canais Iônicos/genética , Masculino , Microinjeções , Proteínas de Transporte da Membrana Mitocondrial/biossíntese , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Proteínas de Desacoplamento Mitocondrial , Atividade Motora/efeitos dos fármacos , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Fármacos Neuroprotetores/administração & dosagem , Proteínas Oncogênicas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Proteína Desglicase DJ-1 , Ratos , Ratos Sprague-Dawley , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética , Tirosina 3-Mono-Oxigenase/análise , alfa-Sinucleína/biossíntese , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA