Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.525
Filtrar
1.
J Cell Mol Med ; 28(9): e18329, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693863

RESUMO

Therapy failure with the tyrosine kinase inhibitor (TKI) sunitinib remains a great challenge in metastatic renal cell carcinoma (mRCC). Growing evidence indicates that the tumour subpopulation can enter a transient, non-mutagenic drug-tolerant state to endure the treatment underlying the minimal residual disease and tumour relapse. Drug tolerance to sunitinib remains largely unexplored in RCC. Here, we show that sunitinib-tolerant 786-O/S and Caki-2/S cells are induced by prolonged drug treatment showing reduced drug sensitivity, enhanced clonogenicity, and DNA synthesis. Sunitinib-tolerance developed via dynamic processes, including (i) engagement of c-MET and AXL pathways, (ii) alteration of stress-induced p38 kinase and pro-survival BCL-2 signalling, (iii) extensive actin remodelling, which was correlated with activation of focal adhesion proteins. Remarkably, the acute drug response in both sensitive and sunitinib-tolerant cell lines led to dramatic fine-tuning of the actin-cytoskeleton and boosted cellular migration and invasion, indicating that the drug-response might depend on cell state transition rather than pre-existing mutations. The drug-tolerant state was transiently acquired, as the cells resumed initial drug sensitivity after >10 passages under drug withdrawal, reinforcing the concept of dynamic regulation and phenotypic heterogeneity. Our study described molecular events contributing to the reversible switch into sunitinib-tolerance, providing possible novel therapeutic opportunities in RCC.


Assuntos
Carcinoma de Células Renais , Movimento Celular , Resistencia a Medicamentos Antineoplásicos , Neoplasias Renais , Sunitinibe , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptor Tirosina Quinase Axl , Pirróis/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proliferação de Células/efeitos dos fármacos , Indóis/farmacologia
2.
Cell Biochem Funct ; 42(4): e4035, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715180

RESUMO

Chronic lymphocytic leukemia (CLL) is a chronic lymphoproliferative disorder characterized by monoclonal B cell proliferation. Studies carried out in recent years suggest that extracellular vesicles (EVs) may be a potential biomarker in cancer. Tyro3-Axl-Mertk (TAM) Receptor Tyrosine Kinases (RTKs) and Phosphatidylserine (PS) have crucial roles in macrophage-mediated immune response under normal conditions. In the tumor microenvironment, these molecules contribute to immunosuppressive signals and prevent the formation of local and systemic antitumor immune responses. Based on this, we aimed to evaluate the amount of PS and TAM RTK in plasma and on the surface of EVs in CLL patients and healthy volunteers in this study. In this study, 25 CLL (11 F/14 M) patients in the Rai (O-I) stage, newly diagnosed or followed up without treatment, and 15 healthy volunteers (11 F/4 M) as a control group were included. For all samples, PS and TAM RTK levels were examined first in the plasma and then in the EVs obtained from the plasma. We detected a significant decrease in plasma PS, and TAM RTK levels in CLL patients compared to the control. Besides, we determined a significant increase in TAM RTK levels on the EV surface in CLL, except for PS. In conclusion, these receptor levels measured by ELISA in plasma may not be effective for the preliminary detection of CLL. However, especially TAM RTKs on the surface of EVs may be good biomarkers and potential targets for CLL therapies.


Assuntos
Vesículas Extracelulares , Leucemia Linfocítica Crônica de Células B , Fosfatidilserinas , Receptores Proteína Tirosina Quinases , Humanos , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Feminino , Fosfatidilserinas/metabolismo , Fosfatidilserinas/sangue , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/sangue , Masculino , Pessoa de Meia-Idade , Idoso , Receptor Tirosina Quinase Axl , Proteínas Proto-Oncogênicas/sangue , Proteínas Proto-Oncogênicas/metabolismo , Adulto , c-Mer Tirosina Quinase/metabolismo , Idoso de 80 Anos ou mais
3.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697845

RESUMO

Defective mitophagy in renal tubular epithelial cells is one of the main drivers of renal fibrosis in diabetic kidney disease. Our gene sequencing data showed the expression of PINK1 and BNIP3, two key molecules of mitophagy, was decreased in renal tissues of VDR-knockout mice. Herein, streptozotocin (STZ) was used to induce renal interstitial fibrosis in mice. VDR deficiency exacerbated STZ-induced renal impairment and defective mitophagy. Paricalcitol (pari, a VDR agonist) and the tubular epithelial cell-specific overexpression of VDR restored the expression of PINK1 and BNIP3 in the renal cortex and attenuated STZ-induced kidney fibrosis and mitochondrial dysfunction. In HK-2 cells under high glucose conditions, an increased level of α-SMA, COL1, and FN and a decreased expression of PINK1 and BNIP3 with severe mitochondrial damage were observed, and these alterations could be largely reversed by pari treatment. ChIP-qPCR and luciferase reporter assays showed VDR could positively regulate the transcription of Pink1 and Bnip3 genes. These findings reveal that VDR could restore mitophagy defects and attenuate STZ-induced fibrosis in diabetic mice through regulation of PINK1 and BNIP3.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ergocalciferóis , Proteínas de Membrana , Camundongos Knockout , Mitofagia , Proteínas Quinases , Receptores de Calcitriol , Estreptozocina , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Camundongos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Mitofagia/genética , Mitofagia/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Humanos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/genética , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Fibrose , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Camundongos Endogâmicos C57BL , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos
4.
Nat Commun ; 15(1): 3996, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734693

RESUMO

SPI1 was recently reported as a genetic risk factor for Alzheimer's disease (AD) in large-scale genome-wide association studies. However, it is unknown whether SPI1 should be downregulated or increased to have therapeutic benefits. To investigate the effect of modulating SPI1 levels on AD pathogenesis, we performed extensive biochemical, histological, and transcriptomic analyses using both Spi1-knockdown and Spi1-overexpression mouse models. Here, we show that the knockdown of Spi1 expression significantly exacerbates insoluble amyloid-ß (Aß) levels, amyloid plaque deposition, and gliosis. Conversely, overexpression of Spi1 significantly ameliorates these phenotypes and dystrophic neurites. Further mechanistic studies using targeted and single-cell transcriptomics approaches demonstrate that altered Spi1 expression modulates several pathways, such as immune response pathways and complement system. Our data suggest that transcriptional reprogramming by targeting transcription factors, like Spi1, might hold promise as a therapeutic strategy. This approach could potentially expand the current landscape of druggable targets for AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Amiloidose , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas , Transcriptoma , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Camundongos , Amiloidose/genética , Amiloidose/metabolismo , Amiloidose/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Fenótipo , Camundongos Transgênicos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Placa Amiloide/genética , Humanos , Masculino , Camundongos Endogâmicos C57BL , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Transativadores
6.
Eur J Pharmacol ; 973: 176600, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38643834

RESUMO

Multiple sclerosis is an autoimmune disease that causes inflammatory damage to the central nervous system. At present, the pathogenesis of the disease is unknown. There is a lack of few effective therapy medications available. Therefore, it is necessary to further explore the pathogenesis of this illness and develop potential therapeutic drugs. Dabrafenib is potential therapeutic medicine for nervous system disease. In this study, we preliminarily studied the possible mechanism of dabrafenib in the treatment of multiple sclerosis from the perspective of ferroptosis. First, we observed that dabrafenib significantly improved symptoms of gait abnormalities, limb weakness or paralysis, and down-regulated levels of spinal cord inflammation in an experimental autoimmune encephalitis (EAE) model. Meanwhile, we also observed that dabrafenib could inhibit the proteins of ferroptosis in spinal cord tissue of EAE mice by Western blot. The results of immunohistochemical analysis showed that the effect of dabrafenib on ferroptosis mainly occurred in microglia. Second, dabrafenib was demonstrated to be able to inhibit the S phase of the cell cycle, reduce ROS levels, and reinstate mitochondrial activity in the LPS-induced BV2 inflammatory cell model. Futhermore, we found that dabrafenib inhibits P-JAK2 and P-STAT3 activation by acting Axl receptor, which in turn prevents neurogenic inflammation in microglia. The co-stimulated BV2 cell model with LPS and Erastin also verified these findings. Ultimately, the Axl knockout mice used to construct the EAE model allowed for the confirmation that dabrafenib prevented ferroptosis in microglia by up-regulating Axl receptor, which reduced the inflammatory demyelination associated with EAE. In summary, our research demonstrates the advantages of dabrafenib in multiple sclerosis treatment, which can prevent ferroptosis in microglia in multiple sclerosis through up-regulating Axl receptor, thus halting the progression of multiple sclerosis.


Assuntos
Receptor Tirosina Quinase Axl , Encefalomielite Autoimune Experimental , Ferroptose , Imidazóis , Oximas , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Regulação para Cima , Animais , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/metabolismo , Ferroptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Camundongos , Oximas/farmacologia , Oximas/uso terapêutico , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Regulação para Cima/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Feminino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Fator de Transcrição STAT3/metabolismo , Linhagem Celular , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Dev Cell ; 59(8): 1010-1027.e8, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38569549

RESUMO

Ten-eleven translocation (TET) enzymes iteratively oxidize 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxylcytosine to facilitate active genome demethylation. Whether these bases are required to promote replication-coupled dilution or activate base excision repair during mammalian germline reprogramming remains unresolved due to the inability to decouple TET activities. Here, we generated two mouse lines expressing catalytically inactive TET1 (Tet1-HxD) and TET1 that stalls oxidation at 5hmC (Tet1-V). Tet1 knockout and catalytic mutant primordial germ cells (PGCs) fail to erase methylation at select imprinting control regions and promoters of meiosis-associated genes, validating the requirement for the iterative oxidation of 5mC for complete germline reprogramming. TET1V and TET1HxD rescue most hypermethylation of Tet1-/- sperm, suggesting the role of TET1 beyond its oxidative capability. We additionally identify a broader class of hypermethylated regions in Tet1 mutant mouse sperm that depend on TET oxidation for reprogramming. Our study demonstrates the link between TET1-mediated germline reprogramming and sperm methylome patterning.


Assuntos
5-Metilcitosina , 5-Metilcitosina/análogos & derivados , Metilação de DNA , Proteínas de Ligação a DNA , Impressão Genômica , Oxirredução , Proteínas Proto-Oncogênicas , Espermatozoides , Animais , Masculino , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Espermatozoides/metabolismo , 5-Metilcitosina/metabolismo , Reprogramação Celular/genética , Camundongos Knockout , Camundongos Endogâmicos C57BL
8.
Elife ; 122024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682900

RESUMO

The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the 'WIN' site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteína de Leucina Linfoide-Mieloide , Proteínas Nucleares , Ribossomos , Proteína Supressora de Tumor p53 , Humanos , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Peptidomiméticos/farmacologia
9.
Nat Immunol ; 25(5): 860-872, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632339

RESUMO

Adaptive immunity relies on specialized effector functions elicited by lymphocytes, yet how antigen recognition activates appropriate effector responses through nonspecific signaling intermediates is unclear. Here we examined the role of chromatin priming in specifying the functional outputs of effector T cells and found that most of the cis-regulatory landscape active in effector T cells was poised early in development before the expression of the T cell antigen receptor. We identified two principal mechanisms underpinning this poised landscape: the recruitment of the nucleosome remodeler mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) by the transcription factors RUNX1 and PU.1 to establish chromatin accessibility at T effector loci; and a 'relay' whereby the transcription factor BCL11B succeeded PU.1 to maintain occupancy of the chromatin remodeling complex mSWI/SNF together with RUNX1, after PU.1 silencing during lineage commitment. These mechanisms define modes by which T cells acquire the potential to elicit specialized effector functions early in their ontogeny and underscore the importance of integrating extrinsic cues to the developmentally specified intrinsic program.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Proteínas Proto-Oncogênicas , Proteínas Repressoras , Transativadores , Fatores de Transcrição , Proteínas Supressoras de Tumor , Proteínas Proto-Oncogênicas/metabolismo , Animais , Transativadores/metabolismo , Transativadores/genética , Camundongos , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Camundongos Endogâmicos C57BL , Proteínas Cromossômicas não Histona/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Camundongos Knockout , Montagem e Desmontagem da Cromatina , Diferenciação Celular/imunologia
10.
Eur J Med Chem ; 271: 116416, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38657480

RESUMO

Targeting polo-box domain (PBD) small molecule for polo-like kinase 1 (PLK1) inhibition is a viable alternative to target kinase domain (KD), which could avoid pan-selectivity and dose-limiting toxicity of ATP-competitive inhibitors. However, their efficacy in these settings is still low and inaccessible to clinical requirement. Herein, we utilized a structure-based high-throughput virtual screen to find novel chemical scaffold capable of inhibiting PLK1 via targeting PBD and identified an initial hit molecule compound 1a. Based on the lead compound 1a, a structural optimization approach was carried out and several series of derivatives with naphthalimide structural motif were synthesized. Compound 4Bb was identified as a new potent PLK1 inhibitor with a KD value of 0.29 µM. 4Bb could target PLK1 PBD to inhibit PLK1 activity and subsequently suppress the interaction of PLK1 with protein regulator of cytokinesis 1 (PRC1), finally leading to mitotic catastrophe in drug-resistant lung cancer cells. Furthermore, 4Bb could undergo nucleophilic substitution with the thiol group of glutathione (GSH) to disturb the redox homeostasis through exhausting GSH. By regulating cell cycle machinery and increasing cellular oxidative stress, 4Bb exhibited potent cytotoxicity to multiple cancer cells and drug-resistant cancer cells. Subcutaneous and oral administration of 4Bb could effectively inhibit the growth of drug-resistant tumors in vivo, doubling the survival time of tumor bearing mice without side effects in normal tissues. Thus, our study offers an orally-available, structurally-novel PLK1 inhibitor for drug-resistant lung cancer therapy.


Assuntos
Antineoplásicos , Proteínas de Ciclo Celular , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pulmonares , Naftalimidas , Quinase 1 Polo-Like , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Naftalimidas/química , Naftalimidas/farmacologia , Naftalimidas/síntese química , Humanos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Animais , Relação Estrutura-Atividade , Camundongos , Estrutura Molecular , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/metabolismo
11.
Acta Neuropathol Commun ; 12(1): 60, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637838

RESUMO

Methylation class "CNS tumor with BCOR/BCOR(L1)-fusion" was recently defined based on methylation profiling and tSNE analysis of a series of 21 neuroepithelial tumors with predominant presence of a BCOR fusion and/or characteristic CNV breakpoints at chromosome 22q12.31 and chromosome Xp11.4. Clear diagnostic criteria are still missing for this tumor type, specially that BCOR/BCOR(L1)-fusion is not a consistent finding in these tumors despite being frequent and that none of the Heidelberger classifier versions is able to clearly identify these cases, in particular tumors with alternative fusions other than those involving BCOR, BCORL1, EP300 and CREBBP. In this study, we introduce a BCOR::CREBBP fusion in an adult patient with a right temporomediobasal tumor, for the first time in association with methylation class "CNS tumor with BCOR/BCOR(L1)-fusion" in addition to 35 cases of CNS neuroepithelial tumors with molecular and histopathological characteristics compatible with "CNS tumor with BCOR/BCOR(L1)-fusion" based on a comprehensive literature review and data mining in the repository of 23 published studies on neuroepithelial brain Tumors including 7207 samples of 6761 patients. Based on our index case and the 35 cases found in the literature, we suggest the archetypical histological and molecular features of "CNS tumor with BCOR/BCOR(L1)-fusion". We also present four adult diffuse glioma cases including GBM, IDH-Wildtype and Astrocytoma, IDH-Mutant with CREBBP fusions and describe the necessity of complementary molecular analysis in "CNS tumor with BCOR/BCOR(L1)-alterations for securing a final diagnosis.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioma , Neoplasias Neuroepiteliomatosas , Adulto , Humanos , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Neoplasias do Sistema Nervoso Central/genética , Neoplasias Neuroepiteliomatosas/diagnóstico por imagem , Neoplasias Neuroepiteliomatosas/genética , Neoplasias Neuroepiteliomatosas/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/genética , Metilação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/genética , Proteína de Ligação a CREB/genética
13.
J Neuroinflammation ; 21(1): 106, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658922

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is a devastating neurological disease causing severe sensorimotor dysfunction and cognitive decline, yet there is no effective treatment strategy to alleviate outcomes of these patients. The Mas axis-mediated neuroprotection is involved in the pathology of various neurological diseases, however, the role of the Mas receptor in the setting of ICH remains to be elucidated. METHODS: C57BL/6 mice were used to establish the ICH model by injection of collagenase into mice striatum. The Mas receptor agonist AVE0991 was administered intranasally (0.9 mg/kg) after ICH. Using a combination of behavioral tests, Western blots, immunofluorescence staining, hematoma volume, brain edema, quantitative-PCR, TUNEL staining, Fluoro-Jade C staining, Nissl staining, and pharmacological methods, we examined the impact of intranasal application of AVE0991 on hematoma absorption and neurological outcomes following ICH and investigated the underlying mechanism. RESULTS: Mas receptor was found to be significantly expressed in activated microglia/macrophages, and the peak expression of Mas receptor in microglia/macrophages was observed at approximately 3-5 days, followed by a subsequent decline. Activation of Mas by AVE0991 post-treatment promoted hematoma absorption, reduced brain edema, and improved both short- and long-term neurological functions in ICH mice. Moreover, AVE0991 treatment effectively attenuated neuronal apoptosis, inhibited neutrophil infiltration, and reduced the release of inflammatory cytokines in perihematomal areas after ICH. Mechanistically, AVE0991 post-treatment significantly promoted the transformation of microglia/macrophages towards an anti-inflammatory, phagocytic, and reparative phenotype, and this functional phenotypic transition of microglia/macrophages by Mas activation was abolished by both Mas inhibitor A779 and Nrf2 inhibitor ML385. Furthermore, hematoma clearance and neuroprotective effects of AVE0991 treatment were reversed after microglia depletion in ICH. CONCLUSIONS: Mas activation can promote hematoma absorption, ameliorate neurological deficits, alleviate neuron apoptosis, reduced neuroinflammation, and regulate the function and phenotype of microglia/macrophages via Akt/Nrf2 signaling pathway after ICH. Thus, intranasal application of Mas agonist ACE0991 may provide promising strategy for clinical treatment of ICH patients.


Assuntos
Hematoma , Acidente Vascular Cerebral Hemorrágico , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G , Recuperação de Função Fisiológica , Animais , Camundongos , Hematoma/tratamento farmacológico , Hematoma/patologia , Hematoma/metabolismo , Masculino , Acidente Vascular Cerebral Hemorrágico/patologia , Acidente Vascular Cerebral Hemorrágico/tratamento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Edema Encefálico/tratamento farmacológico , Microglia/efeitos dos fármacos , Microglia/metabolismo
14.
Eur J Med Chem ; 270: 116366, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581730

RESUMO

Inhibition of MDM2/p53 interaction with small-molecule inhibitors stabilizes p53 from MDM2 mediated degradation, which is a promising strategy for the treatment of cancer. In this report, a novel series of 4-imidazolidinone-containing compounds have been synthesized and tested in MDM2/p53 and MDM4/p53 FP binding assays. Upon SAR studies, compounds 2 (TB114) and 22 were identified as the most potent inhibitors of MDM2/p53 but not MDM4/p53 interactions. Both 2 and 22 exhibited strong antiproliferative activities in HCT-116 and MOLM-13 cell lines harboring wild type p53. Mechanistic studies show that 2 and 22 dose-dependently activated p53 and its target genes and induced apoptosis in cells based on the Western blot, qPCR, and flow cytometry assays. In addition, the antiproliferative activities of 2 and 22 were dependent on wild type p53, while they were not toxic to HEK-293 kidney cells. Furthermore, the on-target activities of 2 were general and applicable to other cancer cell lines with wild type p53. These attributes make 2 a good candidate for future optimization to discover a potential treatment of wild-type p53 cancer.


Assuntos
Antineoplásicos , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Células HEK293 , Linhagem Celular Tumoral , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ciclo Celular/metabolismo
15.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673795

RESUMO

The activation of the receptor tyrosine kinase Axl by Gas6 is a major driver of tumorigenesis. Despite recent insights, tumor cell-intrinsic and -extrinsic Axl functions are poorly understood in hepatocellular carcinoma (HCC). Thus, we analyzed the cell-specific aspects of Axl in liver cancer cells and in the tumor microenvironment. We show that tumor-intrinsic Axl expression decreased the survival of mice and elevated the number of pulmonary metastases in a model of resection-based tumor recurrence. Axl expression increased the invasion of hepatospheres by the activation of Akt signaling and a partial epithelial-to-mesenchymal transition (EMT). However, the liver tumor burden of Axl+/+ mice induced by diethylnitrosamine plus carbon tetrachloride was reduced compared to systemic Axl-/- mice. Tumors of Axl+/+ mice were highly infiltrated with cytotoxic cells, suggesting a key immune-modulatory role of Axl. Interestingly, hepatocyte-specific Axl deficiency did not alter T cell infiltration, indicating that these changes are independent of tumor cell-intrinsic Axl. In this context, we observed an upregulation of multiple chemokines in Axl+/+ compared to Axl-/- tumors, correlating with HCC patient data. In line with this, Axl is associated with a cytotoxic immune signature in HCC patients. Together these data show that tumor-intrinsic Axl expression fosters progression, while tumor-extrinsic Axl expression shapes an inflammatory microenvironment.


Assuntos
Receptor Tirosina Quinase Axl , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Transdução de Sinais , Microambiente Tumoral , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Camundongos , Humanos , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Camundongos Knockout
16.
PLoS One ; 19(4): e0302075, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38669256

RESUMO

Endometrial cancer is the most prevalent gynecologic malignancy with a high risk of recurrence. Local recurrence occurs in 7-20% of patients with treated stage I cancer within 3 years after primary treatment. In this study, we found significantly elevated mRNA expression levels of the oncoprotein KRAS, along with two replicative stress markers, ATR and CHEK1, in samples of endometrial carcinomas of endometrium (ECE) from patients with relapse. In contrast, mRNA expression levels of the studied genes were low and uniform in samples from patients without relapse. Elevated levels of KRAS protein and the phosphorylated form of ATR/CHEK1 were distinguishing features of recurrent ECE. A strong positive correlation was found between elevated mRNA and protein levels of the studied molecules. Elevated KRAS protein levels are characteristic of poorly differentiated (G3) endometrial carcinomas with deep myometrial invasion in patients without recurrence. In contrast, in patients with recurrence, higher protein levels of KRAS, pATR and pCHEK1 were observed in samples of G1-2 endometrial carcinomas, with statistically significant differences confirmed for pATR. High pCHEK1 protein levels are associated with deep tumor invasion in the myometrium among patients with recurrence. ROC analysis confirmed that evaluating the specificity and sensitivity of KRAS, pATR and pCHEK1 predicts recurrence development in patients with ECE. Our findings indicate that markers of replicative stress may play a significant role in ECE pathogenesis. Determining their levels in tumor samples after primary treatment could help define patients at high risk of recurrence and guide consequent courses of treatment.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Quinase 1 do Ponto de Checagem , Neoplasias do Endométrio , Recidiva Local de Neoplasia , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Feminino , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Pessoa de Meia-Idade , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/metabolismo , Fatores de Risco , Idoso , Proteínas ras/genética , Proteínas ras/metabolismo , Regulação Neoplásica da Expressão Gênica , Adulto , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
17.
Yi Chuan ; 46(4): 319-332, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38632094

RESUMO

Granulopoiesis is a highly ordered and precisely regulated process in which hematopoietic-related transcription factors play crucial roles. These transcription factors form complex regulatory networks through interactions with their co-factors or with each other, and anomalies in these networks can lead to the onset of leukemia. While the structures and functions of dozens of transcription factors involved in this process have been extensively studied, research on the regulatory relationships between these factors remains relatively limited. PU.1 and cMYB participate in multiple stages of neutrophil development, and their abnormalities are often associated with hematologic disorders. However, the regulatory relationship between these factors in vivo and their mode of interaction remain unclear. In this study, zebrafish models with cMyb overexpression (cmybhyper) and Pu.1 deficiency (pu.1G242D/G242D) were utilized to systematically investigate the interaction between Pu.1 and cMyb during granulopoiesis through whole-mount in situ hybridization, qRT-PCR, fluorescence reporting systems, and rescue experiments. The results showed a significant increase in cmyb expression in neutrophils of the pu.1G242D/G242D mutant, while there was no apparent change in pu.1 expression in cmybhyper. Further experiments involving injection of morpholino (MO) to decrease cmyb expression in pu.1G242D/G242D mutants, followed by SB and BrdU staining to assess neutrophil quantity and proliferation, revealed that reducing cmyb expression could rescue the abnormal proliferation phenotype of neutrophils in the pu.1G242D/G242D mutant. These findings suggest that Pu.1 negatively regulates the expression of cMyb during neutrophil development. Finally, through the construction of multi-site mutation plasmids and a fluorescent reporter system, confirmed that Pu.1 directly binds to the +72 bp site in the cmyb promoter, exerting negative regulation on its expression. In conclusion, this study delineates that Pu.1 participates in neutrophil development by regulating cmyb expression. This provides new insights into the regulatory relationship between these two factors and their roles in diseases.


Assuntos
Neutrófilos , Proteínas Proto-Oncogênicas c-myb , Transativadores , Peixe-Zebra , Animais , Hematopoese , Neutrófilos/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Peixe-Zebra/genética , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/genética , Transativadores/metabolismo
18.
Eur J Pharmacol ; 972: 176558, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38614382

RESUMO

Inhibitors of polo-like kinase (PLK) are currently being evaluated as anticancer drugs. However, the molecular mechanism of PLK inhibitor-induced cell death is not fully understood. In this study, we found that GW843682X and BI2536, two inhibitors of PLK1, significantly induced cell death in multiple type cells. The induction of cell death was related to the preferring expression of PLK1. However, in human umbilical vascular endothelial cells (HUVEC) and human colorectal carcinoma cells, which expressed higher levels of both PLK1 and PLK2, PLK1 inhibitors induced very low levels of cell death. Clinical analysis reveals PLK1 presence in 26 of 30 NPC tumor tissues. In in vivo NPC lung metastasis nude mouse models, PLK1 inhibitors decreased NPC progress. Mechanistically, the PLK1 inhibitor did not activate p53, and the cell death was not reversed by p53 inhibition. Moreover, PLK1 inhibitor-induced cell death was PARP- and caspase-independent. Although PLK1 inhibitors induced down-regulation of calpain inhibitor calpastatin and calpain was activated by PLK1 inhibition, calpain blocking did not reverse cell death induced by PLK1 inhibitors, suggesting the non-involvement of calpain. Surprisingly, we found that PLK1 inhibitors induced the activation of proteasome, and the treatment of cells with PLK1 inhibitors reduced the levels of ubiquitinated proteins. And proteasome inhibitors reversed cell death induced by PLK1 inhibitors in various cell types in which PLK1 was preferentially expressed. Moreover, PLK1 inhibition reversed the degradation of proteins including p53, caspase 8, PARP and calpastatin. These results suggest that the activation of proteasome is critical for cell death induced by PLK1 inhibition.


Assuntos
Proteínas de Ciclo Celular , Morte Celular , Quinase 1 Polo-Like , Complexo de Endopeptidases do Proteassoma , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Humanos , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Morte Celular/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Camundongos Nus , Pteridinas/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Calpaína/antagonistas & inibidores , Calpaína/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/farmacologia
19.
J Med Chem ; 67(7): 5866-5882, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38556760

RESUMO

MERTK and AXL are members of the TAM (TYRO3, AXL, MERTK) family of receptor tyrosine kinases that are aberrantly expressed and have been implicated as therapeutic targets in a wide variety of human tumors. Dual MERTK and AXL inhibition could provide antitumor action mediated by both direct tumor cell killing and modulation of the innate immune response in some tumors such as nonsmall cell lung cancer. We utilized our knowledge of MERTK inhibitors and a structure-based drug design approach to discover a novel class of macrocyclic dual MERTK/AXL inhibitors. The lead compound 43 had low-nanomolar activity against both MERTK and AXL and good selectivity over TYRO3 and FLT3. Its target engagement and selectivity were also confirmed by NanoBRET and cell-based MERTK and AXL phosphorylation assays. Compound 43 had excellent pharmacokinetic properties (large AUC and long half-life) and mediated antitumor activity against lung cancer cell lines, indicating its potential as a therapeutic agent.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , c-Mer Tirosina Quinase/metabolismo , Receptor Tirosina Quinase Axl , Proteínas Proto-Oncogênicas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral
20.
Epigenetics ; 19(1): 2337142, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38583183

RESUMO

Deregulation of ten-eleven Translocation protein 1 (TET1) is commonly reported to induce imbalances in gene expression and subsequently to colorectal cancer development (CRC). On the other hand, vitamin C (VitC) improves the prognosis of colorectal cancer by reprogramming the cancer epigenome and limiting chemotherapeutic drug resistance events. In this study, we aimed to characterize TET1-specific subcellular compartments and evaluate the effect of VitC on TET1 compartmentalization in colonic tumour cells. We demonstrated that TET1 is concentrated in coarse nuclear bodies (NB) and 5-hydroxymethylcytosine (5hmC) in foci in colorectal cancer cells (HCT116, Caco-2, and HT-29). To our knowledge, this is the first report of a novel intracellular localization profile of TET1 and its demethylation marker, 5hmC, in CRC cells. Interestingly, we found that TET1-NBs frequently interacted with Cajal bodies, but not with promyelocytic leukaemia (PML) bodies. In addition, we report that VitC treatment of HCT116 cells induces 5hmC foci biogenesis and triggers 5hmC marks to form active complexes with nuclear body components, including both Cajal and PML proteins. Our data highlight novel NB-concentrating TET1 in CRC cells and demonstrate that VitC modulates TET1-NBs' interactions with other nuclear structures. These findings reveal novel TET1-dependent cellular functions and potentially provide new insights for CRC management.


Assuntos
Ácido Ascórbico , Neoplasias Colorretais , Humanos , Células CACO-2 , Ácido Ascórbico/farmacologia , Corpos Nucleares da Leucemia Promielocítica , Metilação de DNA , Corpos Nucleares , Vitaminas , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA