RESUMO
The majority of lymphomas originate from B cells at the germinal center stage. Preferential selection of B-cell clones by a limited set of antigens has been suggested to drive lymphoma development. While recent studies in B-cell chronic lymphocytic leukemia (CLL) have shown that self-reactive B-cell receptors (BCR) can generate cell-autonomous signaling and proliferation, our knowledge about the role of BCRs for the development or survival of other lymphomas remains limited. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows for unbiased characterization of the human antibody repertoire on single-cell level through the generation of recombinant monoclonal antibodies from primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow cytometric isolation of single human B cells to the RT-PCR-based amplification of the expressed immunoglobulin (Ig) transcripts (IGH, IGK, and IGL) and their subsequent cloning into expression vectors for the in vitro production of recombinant monoclonal antibodies. The strategy may be used to obtain information about the clonal evolution of B-cell lymphomas by single-cell sequencing of Ig transcripts and on the antibody reactivity of human lymphoma B cells.
Assuntos
Anticorpos Monoclonais , Linfócitos B , Clonagem Molecular , Citometria de Fluxo , Análise de Célula Única , Humanos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Clonagem Molecular/métodos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/genética , Análise de Célula Única/métodos , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologiaRESUMO
During infection, the hepatitis C virus (HCV) can evade immune response and cause chronic disease. Formation of effective T-cell response is important for the control of HCV infection. Dendritic cells derived from peripheral blood monocytes activated by immunodominant epitopes of the pathogen can effectively stimulate T-lymphocytes. Previously, we obtained recombinant proteins containing cytotoxic T-lymphocyte epitopes of NS3 and NS4ab proteins of HCV, the T-helper epitope PADRE, and self-assembling peptides that cause the formation of nanoparticles. Here, we studied the activation of human dendritic cells isolated from peripheral blood monocytes and from monocytes derived from induced pluripotent stem cells. Both types of dendritic cells effectively respond to activation by recombinant HCV proteins and stimulated lymphocytes along the Th1 pathway. Recombinant nanoparticles induced more efficient responses. These results open prospects for immunotherapy of patients with chronic hepatitis C using activated dendritic cells derived from their induced pluripotent stem cells.
Assuntos
Células Dendríticas , Hepacivirus , Células-Tronco Pluripotentes Induzidas , Ativação Linfocitária , Células Dendríticas/imunologia , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/citologia , Hepacivirus/imunologia , Ativação Linfocitária/imunologia , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/genética , Monócitos/imunologia , Epitopos de Linfócito T/imunologia , Proteínas Recombinantes/imunologia , Linfócitos T/imunologia , Diferenciação Celular/imunologia , Antígenos da Hepatite C/imunologia , Células Th1/imunologia , Hepatite C Crônica/imunologia , Hepatite C Crônica/virologia , Proteases Virais , Serina Endopeptidases , Nucleosídeo-Trifosfatase , RNA Helicases DEAD-boxRESUMO
Producing recombinant proteins in plants has become a valuable alternative to traditional microbial or mammalian systems due to its cost-effectiveness, scalability, and ability to perform post-translational modifications. This study investigates the use of the Tobacco Mosaic Virus (TMV)-based vector system for producing the Dengue virus serotype 3 (DENV-3) envelope domain III (EDIII) protein in plants.. A fragment of the gene that encodes domain III of the dengue 3 envelope protein (D3EIII, comprising 300-420 amino acids), was effectively expressed within Nicotiana tabacum plants utilizing a transient expression system based on tobacco mosaic virus (TMV). The N-terminal 5' UTR region upstream of D3EIII notably enhanced protein yield in infected tissues. The produced recombinant protein exhibited reactivity with both (anti) D3EIII polyclonal antibodies and antibodies of anti-His tag. Upon injection of EDIII in mice, it stimulated the generation of antibodies against the dengue-specific virus. The induced antibodies demonstrated neutralizing activity against dengue virus type 3. These findings indicate that the TMV expression system is effective for producing dengue virus antigens in plants, resulting in antigens with appropriate properties and strong immunogenic potential.
Assuntos
Anticorpos Antivirais , Vírus da Dengue , Vetores Genéticos , Nicotiana , Vírus do Mosaico do Tabaco , Proteínas do Envelope Viral , Animais , Vírus do Mosaico do Tabaco/imunologia , Vírus do Mosaico do Tabaco/genética , Vírus da Dengue/imunologia , Vírus da Dengue/genética , Anticorpos Antivirais/imunologia , Camundongos , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/virologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Dengue/imunologia , Dengue/virologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Camundongos Endogâmicos BALB C , Domínios Proteicos , Anticorpos Neutralizantes/imunologia , Feminino , Modelos Animais de DoençasRESUMO
BACKGROUND: Parvalbumin Gad c1 is a major cod allergen used as a follow-up marker of fish-allergic children. However, the diagnostic efficacy of recombinant Gad c 1 (rGad c 1) for fish allergy diagnosis remains controversial. This study aimed to evaluate the efficacy of rGad c1 for diagnosing cod and horse mackerel allergy. METHODS: This single-centered, retrospective study obtained oral food challenges (OFCs) information performed for cod and horse mackerel. Cod-, horse mackerel-, and rGad c1-specific immunoglobulins (sIgEs) were investigated. Diagnostic performances of these parameters were compared using areas under the curve (AUC). RESULTS: We enrolled 45 and 38 children with suspected cod and horse mackerel allergies, respectively. The median age (interquartile range) of children with suspected cod allergy was 5.7 (0.7-11.7) years and that of children with suspected horse mackerel allergy was 6.0 (1.0-12.3) years. Fourteen and 22 children reacted to OFCs with 25 (10-40) g of cooked pacific cod and 40 (10-40) g of cooked horse mackerel, respectively. The cod sIgE and rGad c 1 sIgE AUCs for cod allergy diagnosis were 0.85 and 0.90, respectively. For horse mackerel allergy diagnosis, AUCs of horse mackerel and rGad c 1 sIgE were 0.76 and 0.72, respectively. Both AUCs for cod and mackerel allergy were significantly different. CONCLUSION: rGad c 1 sIgE is more effective than cod sIgE as a diagnostic marker of cod allergy, but less effective than horse mackerel sIgE as a diagnostic marker of horse mackerel allergy. Further studies are warranted to explore the potential applications of rGad c 1 sIgE in the diagnosis of various fish allergies.
Assuntos
Alérgenos , Hipersensibilidade Alimentar , Imunoglobulina E , Parvalbuminas , Proteínas Recombinantes , Humanos , Hipersensibilidade Alimentar/diagnóstico , Hipersensibilidade Alimentar/imunologia , Criança , Animais , Feminino , Masculino , Estudos Retrospectivos , Alérgenos/imunologia , Pré-Escolar , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Parvalbuminas/imunologia , Lactente , Proteínas Recombinantes/imunologia , Perciformes/imunologia , Gadiformes/imunologia , Proteínas de Peixes/imunologiaRESUMO
The prevalence of kidney stone disease is increasing globally, with calcium oxalate stones being the most common type. Oxalyl-CoA decarboxylase (OXC), an enzyme produced by the gut bacterium Oxalobacter formigenes, plays a crucial role in oxalate metabolism. Deficiencies in OXC activity can lead to the accumulation of oxalate, contributing to kidney stone formation. This study aimed to develop a reliable diagnostic assay for OXC by optimizing antigen production and establishing a cutoff value for an enzyme-linked immunosorbent assay (ELISA). We cloned, expressed, and purified recombinant OXC protein in Escherichia coli BL21(DE3), and generated specific polyclonal antibodies in rabbits. The ELISA system was optimized and validated using serum samples from 40 healthy individuals and 6 patients with oxalate-related disorders. The cutoff value was determined using the formula (M + 2SD), where (M) is the mean and (SD) is the standard deviation of the healthy sample results. The calculated cutoff value of 0.656750 effectively distinguished between healthy and affected individuals, with a sensitivity of 97.5% and a specificity of 83.3%. These findings provide a valuable tool for the early detection and management of oxalate-related disorders, with significant implications for clinical practice.
Assuntos
Carboxiliases , Ensaio de Imunoadsorção Enzimática , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Coelhos , Animais , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade , Cálculos Renais/sangue , Kit de Reagentes para Diagnóstico , Masculino , Escherichia coli/genética , FemininoRESUMO
BACKGROUND: The potency of inactivated and recombinant influenza vaccines is measured using the single-radial immunodiffusion (SRID) assay. The strain-specific antigen and antibody potency reagents required for the assay are prepared and distributed by regulatory agencies to ensure vaccine standardization, but timely reagent production is always challenging. This poses unique concerns for rapid pandemic responses. Alternative methods have been described for generating strain-specific potency antibody reagents without the need for live influenza virus, but such methods are infrequently used, suggesting the need for additional antigen expression approaches. METHODS: We describe a rapid process using a mammalian expression system to produce recombinant influenza hemagglutinin (rHA). This platform was used to generate rHA from two H5 clade 2.3.4.4 influenza viruses, in both soluble ectodomain or full-length HA forms, and a soluble ectodomain rHA from an influenza H2 virus. RESULTS: The purified rHAs were used as immunogens to produce HA antibody reagents that were tested for suitability in the SRID assay to accurately measure the potency of inactivated pandemic influenza vaccines. Antibody reagents generated to either ectodomain or full-length rHA worked well in the SRID assay and resulted in vaccine potency values equivalent to those generated with standard reference antibodies. CONCLUSIONS: The results demonstrate that rHA produced from a simple mammalian cell transfection method can be used to generate HA antibody suitable for use in the influenza vaccine SRID potency assay and suggest a practical means by which an extensive library of pandemic reagents can easily be prepared in advance of and during an influenza emergency.
Assuntos
Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinas contra Influenza , Vacinas contra Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Animais , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Humanos , Potência de Vacina , Soros Imunes/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Antígenos Virais/imunologia , Antígenos Virais/genéticaRESUMO
BACKGROUND: Timothy grass (Phleum pratense) is a significant source of allergens, and recombinant allergens are increasingly used for diagnostic purposes. However, the performance of different recombinant allergen production systems in diagnostic assays needs further investigation to optimize their use in clinical settings. OBJECTIVE: The main objective of this study was to analyze and compare the diagnostic performance of recombinant timothy grass allergens produced in E. coli and N. benthamiana using a custom-made microarray chip. METHODS: Recombinant timothy grass allergens Phl p 1, Phl p 2, Phl p 5, Phl p 6, Phl p 11, and Phl p 12 were produced in E. coli and/or N. benthamiana. A total of 113 patient serum samples were tested to evaluate the diagnostic sensitivity, specificity, inter-assay variability, and correlation of allergen-specific IgE detection compared to commercial multiplex tests (ALEX and ISAC). Additionally, the prevalence of sIgE to these allergens was assessed. RESULTS: Phl p 1, Phl p 2, Phl p 5, Phl p 6 and Phl p 11 showed high or very high positive correlation in immunoreactivity with other commercial multiplex tests. Notably, Phl p 11 fused with maltose-binding protein (MBP) demonstrated high diagnostic specificity and sensitivity, with a 0.3 arbitrary cut-off value. However, a high intra-assay variation was observed. The study also assessed specific IgE prevalence to timothy grass allergens within the tested patient cohort. CONCLUSIONS: Recombinant allergens from both E. coli and N. benthamiana demonstrated strong diagnostic potential on the microarray platform, with Phl p 11 (MBP-fused) showing particularly high performance. High intra-assay variation highlights the need for further optimization in allergen formulation and microarray storage conditions. These results highlight the potential of recombinant allergens for diagnostic applications, despite challenges with allergen stability in microarray formats. Specific IgE prevalence to timothy allergens revealed a sensitization profile consistent with findings from multiple studies.
Assuntos
Alérgenos , Escherichia coli , Imunoglobulina E , Phleum , Proteínas Recombinantes , Phleum/imunologia , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Alérgenos/imunologia , Alérgenos/genética , Imunoglobulina E/imunologia , Imunoglobulina E/sangue , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Sensibilidade e Especificidade , Proteínas de Plantas/imunologia , Proteínas de Plantas/genética , Feminino , Adulto , Masculino , Pessoa de Meia-Idade , Análise Serial de Proteínas/métodosRESUMO
Bovine viral diarrhea virus (BVDV) causes ongoing economic losses to cattle industries, directly through reduced herd performance or indirectly through control program costs. ELISA assays, one of the most widely used techniques due to their ease of implementation, have been a valuable tool for mass surveillance and detection of BVDV. In this study, we developed a new indirect ELISA (rE2-ELISA) for serologic detection of BVDV. The assay considers three recombinant E2 protein subtypes as antigens, allowing serologic diagnosis of BVDV-1b (high prevalence worldwide), BVDV-1d and 1e (high prevalence in southern Chile) sub-genotypes. Recombinant E2 (rE2) proteins were successfully expressed in stably transfected CHO cells. Conditions for rE2 ELISAs were established after determining appropriate concentrations of antigen, blocking agent, secondary antibody, and serum dilutions to achieve maximum discrimination between positive and negative serum samples. The developed rE2-ELISA showed a sensitivity of 92.86% and a specificity of 98.33%. Clinical testing of 180 serum samples from herds in southern Chile showed high accuracy (kappa > 0.8) compared to the commercial BVDV Total Ab kit (IDEXX), with 95.37% positive and 87.5% negative predictive value. In addition, the rE2 ELISA has shown the capability to detect anti-BVDV antibodies from naturally infected animals with sub-genotypes 1b, 1e, or undetermined. These results indicate that the developed indirect ELISA could serve as a valid, and efficient alternative for identifying BVDV-infected animals, thus contributing to the success of disease control and eradication programs.
Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Ensaio de Imunoadsorção Enzimática , Sensibilidade e Especificidade , Animais , Ensaio de Imunoadsorção Enzimática/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Bovinos , Doença das Mucosas por Vírus da Diarreia Viral Bovina/diagnóstico , Doença das Mucosas por Vírus da Diarreia Viral Bovina/sangue , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Chile , Genótipo , Vírus da Diarreia Viral Bovina Tipo 1/imunologia , Vírus da Diarreia Viral Bovina Tipo 1/isolamento & purificação , Vírus da Diarreia Viral Bovina/imunologia , Vírus da Diarreia Viral Bovina/isolamento & purificação , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Antígenos Virais/imunologia , Cricetulus , Células CHO , Anticorpos Antivirais/sangue , Proteínas Recombinantes/imunologiaRESUMO
Porcine astrovirus 4 (PoAstV4) has been recently associated with respiratory disease in pigs. In order to understand the scope of PoAstV4 infections and to support the development of a vaccine to combat PoAstV4 disease in pigs, we designed and produced a recombinant PoAstV4 capsid spike protein for use as an antigen in serological assays and for potential future use as a vaccine antigen. Structural prediction of the full-length PoAstV4 capsid protein guided the design of the recombinant PoAstV4 capsid spike domain expression plasmid. The recombinant PoAstV4 capsid spike was expressed in Escherichia coli, purified by affinity and size-exclusion chromatography, and its crystal structure was determined at 1.85 Å resolution, enabling structural comparisons to other animal and human astrovirus capsid spike structures. The recombinant PoAstV4 capsid spike protein was also used as an antigen for the successful development of a serological assay to detect PoAstV4 antibodies, demonstrating that the recombinant PoAstV4 capsid spike retains antigenic epitopes found on the native PoAstV4 capsid. These studies lay a foundation for seroprevalence studies and the development of a PoAstV4 vaccine for swine.
Assuntos
Anticorpos Antivirais , Proteínas do Capsídeo , Doenças dos Suínos , Animais , Suínos , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Infecções por Astroviridae/veterinária , Infecções por Astroviridae/imunologia , Infecções por Astroviridae/virologia , Antígenos Virais/imunologia , Antígenos Virais/genética , Antígenos Virais/química , Capsídeo/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Epitopos/imunologia , Epitopos/genética , Modelos Moleculares , Vacinas Virais/imunologia , Vacinas Virais/genética , Conformação Proteica , Mamastrovirus/imunologia , Mamastrovirus/genéticaRESUMO
Current pneumococcal vaccines, including the pneumococcal polysaccharide (PPV23) and conjugate (PCV13) vaccines, offer protection against specific serotypes but pose risks of serotype replacement that can alter the composition of the nasopharyngeal microbiota. To address this challenge, a novel strategy has been proposed to provide effective protection without disrupting the colonization of other bacterial populations. In our study, we found that subcutaneous immunization with recombinant peptidoglycan N-acetylglucosamine deacetylase A (rPgdA) elicited robust humoral and cellular immune responses, significantly reducing the invasion of Streptococcus pneumoniae in the lungs without affecting nasopharyngeal carriage. Furthermore, rPgdA antisera were shown to diminish bacterial invasion of lung epithelial cells in vitro. Notably, sera from patients with invasive pneumococcal infections exhibited higher levels of antibodies against the PgdA protein compared to sera from healthy adults, suggesting that a natural immune response to this protein occurs during infection. These results suggest a promising new target for the development of pneumococcal vaccines.
Assuntos
Infecções Pneumocócicas , Vacinas Pneumocócicas , Streptococcus pneumoniae , Animais , Streptococcus pneumoniae/imunologia , Camundongos , Vacinas Pneumocócicas/imunologia , Vacinas Pneumocócicas/administração & dosagem , Infecções Pneumocócicas/prevenção & controle , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Feminino , Humanos , Pulmão/microbiologia , Pulmão/patologia , Pulmão/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/imunologia , Imunização/métodos , Proteínas de Bactérias/imunologiaRESUMO
P32 protein serves as a crucial structural component of Goat pox virus (GTPV), which causes a highly virulent infectious disease in sheep and goats. Despite the fact that P32 has been widely expressed in the previous studies, it is difficult to obtain recombinant P32 efficiently. This study aimed to achieve soluble expression of P32 recombinant protein and to develop its specific monoclonal antibody. The gene fragment of P32Δ (GP32Δ) was synthesized by optimizing the coding sequence of amino acids 1-246 of the known goatpox P32 protein. Subsequently, GP32Δ was cloned into a prokaryotic expression vector for expression and purification, resulting in the successful production of soluble recombinant protein rP32Δ. Utilizing rP32Δ, an indirect ELISA method was established by immunizing 6-week-old BALB/c mice with inactivated GTPV as the antigen. Through hybridoma technology, three monoclonal antibody hybridoma cell lines secreting anti-goat pox virus rP32Δ were screened, designated as 2F3, 3E8, and 4H5, respectively. These monoclonal antibodies, classified as IgG1, IgG2a, and IgG2b, respectively, with κappa light chains, were characterized following ascites preparation and purification. Indirect ELISA results demonstrated that the ELISA potency of the three monoclonal antibodies exceeded 1:12800. Furthermore, Western blot analysis revealed specific reactivity of both 3E8 and 4H5 with rP32Δ, while immunofluorescence assays confirmed 3E8's ability to specifically recognize GTPV in cells. The preceding findings demonstrate the successful acquisition of the soluble expressed recombinant P32 protein and its specific monoclonal antibody 3E8 in this study, thereby laying a foundational material basis for the establishment of a GTPV detection method.
Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Capripoxvirus , Ensaio de Imunoadsorção Enzimática , Cabras , Camundongos Endogâmicos BALB C , Proteínas Recombinantes , Animais , Anticorpos Monoclonais/imunologia , Capripoxvirus/genética , Capripoxvirus/imunologia , Anticorpos Antivirais/imunologia , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Hibridomas , Imunoglobulina G , Expressão Gênica , Proteínas Virais/genética , Proteínas Virais/imunologia , Infecções por Poxviridae/imunologia , Feminino , Doenças das Cabras/virologia , Clonagem MolecularRESUMO
BACKGROUND: The development of therapies and vaccines for various diseases often necessitates the analysis of cellular immunity. However, unlike other rodents, the limited availability of reagents for Syrian hamsters restricts immunological analysis, particularly in the determination of serum effector molecules such as cytokines. In this study, we aim to produce and characterize the cytokines IFN-γ, TGF-ß, IL-6, IL-10, and TNF-α from Syrian hamsters in recombinant form and to generate polyclonal antibodies against them in rats. METHODS AND RESULTS: Cytokine transcript sequences were cloned into expression vectors in E. coli. Recombinant proteins were produced, purified through affinity chromatography, and characterized by Western blot using an anti-6xHis monoclonal antibody. Rats were immunized with the recombinant proteins to generate polyclonal antibodies (pAbs). These pAbs were characterized by Western blot and titrated by indirect ELISA. The recombinant cytokines rTNF-α, rIL-10, rIFN-γ, rTGF-ß, and rIL-6 were produced and specifically recognized at their expected molecular weights of 22.3 kDa, 19.8 kDa, 18.9 kDa, 11.8 kDa, and 22.9 kDa. pAbs were produced and demonstrated the ability to specifically recognize their target proteins with titers of 409,600 (rIL-10), 204,800 (rTNF-α), 102,400 (rIL-10), 51,200 (rTGF-ß), and 25,600 (rIFN-É£). CONCLUSIONS: The reagents produced represent a starting point for developing immunoassays to detect hamster cytokines, facilitating the analysis of cellular immunity in this biomodel.
Assuntos
Citocinas , Imunidade Celular , Mesocricetus , Proteínas Recombinantes , Animais , Citocinas/metabolismo , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Cricetinae , Ratos , Anticorpos/imunologia , Escherichia coli/genética , Escherichia coli/metabolismoRESUMO
Predicting hepatitis B surface antigen (HBsAg) clearance is important for chronic hepatitis B (CHB) patients receiving pegylated interferon-alfa (Peg-IFN) therapy. We aimed to determine the predictive value of serum hepatitis B core antibody (anti-HBc) for HBsAg clearance. A total of 189 HBeAg-negative CHB patients who received Peg-IFN based therapy were retrospectively included and classified into two groups: nucleos(t)ide analogues (NAs) add-on Peg-IFN group (add-on group, n = 94) and Peg-IFN combined with NAs or Peg-IFN monotherapy group (combination or monotherapy group, n = 95). After 48 weeks of treatment, 27.5% (52/189) and 15.9% (30/189) of patients achieved HBsAg clearance and seroconversion, respectively. Patients in the combination or monotherapy group tended to achieve relatively higher HBsAg clearance (31.6% vs. 23.4%, p = 0.208) and seroconversion (21.1% vs. 10.6%, p = 0.050) rates than those in the add-on group. In combination or monotherapy group, anti-HBc levels at week 12 were lower in patients with HBsAg clearance (9.0 S/CO vs. 9.9 S/CO, p < 0.001) and seroconversion (8.8 S/CO vs. 9.8 S/CO, p < 0.001) than those without. Anti-HBc level at week 12 was an independent predictor of HBsAg clearance and seroconversion. Patients with lower anti-HBc levels at week 12 showed a more significant decline in HBsAg levels during treatment. Combination of anti-HBc at week 12 and baseline HBsAg could identify over 70% of patients who achieved HBsAg clearance after 48 weeks of treatment. In addition to HBsAg, anti-HBc level could be used as a promising marker for selecting HBeAg-negative CHB patients who are more likely to respond to Peg-IFN-based therapy.
Assuntos
Antivirais , Anticorpos Anti-Hepatite B , Antígenos de Superfície da Hepatite B , Antígenos E da Hepatite B , Hepatite B Crônica , Interferon-alfa , Humanos , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/imunologia , Hepatite B Crônica/virologia , Hepatite B Crônica/sangue , Antígenos de Superfície da Hepatite B/sangue , Antígenos de Superfície da Hepatite B/imunologia , Masculino , Feminino , Adulto , Estudos Retrospectivos , Anticorpos Anti-Hepatite B/sangue , Antivirais/uso terapêutico , Pessoa de Meia-Idade , Antígenos E da Hepatite B/sangue , Interferon-alfa/uso terapêutico , Vírus da Hepatite B/imunologia , Antígenos do Núcleo do Vírus da Hepatite B/imunologia , Antígenos do Núcleo do Vírus da Hepatite B/sangue , Resultado do Tratamento , Quimioterapia Combinada , Soroconversão , Adulto Jovem , Polietilenoglicóis/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Proteínas Recombinantes/imunologiaRESUMO
Transgenic chicken bioreactors can efficiently produce egg whites containing large quantities of recombinant proteins. We previously developed transgenic chickens that produce recombinant monoclonal antibodies (mAbs) against epidermal growth factor receptor 2 (HER2). However, the practical applications of mAbs derived from transgenic eggs have not yet been examined. Therefore, we aimed to evaluate whether these recombinant mAbs can be used in enzyme-linked immunosorbent assay (ELISA). Recombinant HER2 mAbs from transgenic eggs were dissolved in phosphate-buffered saline and applied directly to 96-well microplates as immobilized antibodies without purification. The performance of ELISA using the unpurified recombinant HER2 mAbs from transgenic eggs was comparable to that of ELISA using commercially available purified recombinant HER2 mAbs. Moreover, ELISA using unpurified recombinant HER2 mAbs from transgenic eggs demonstrated high antigen specificity and was successfully applied to samples from cultured cell lysates derived from HER2-positive and HER2-negative cell lines. The unpurified recombinant HER2 mAbs from transgenic eggs were also efficiently used as immobilized antibodies in paper-based ELISA. In conclusion, our findings suggest that recombinant mAbs from transgenic eggs have the potential to be used to develop economic ELISA devices. To the best of our knowledge, this study is the first to use recombinant HER2 mAbs from transgenic eggs in ELISA.
Assuntos
Animais Geneticamente Modificados , Anticorpos Monoclonais , Reatores Biológicos , Galinhas , Ensaio de Imunoadsorção Enzimática , Receptor ErbB-2 , Proteínas Recombinantes , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Receptor ErbB-2/imunologia , Receptor ErbB-2/genética , Humanos , Linhagem Celular TumoralRESUMO
Introduction: Tularemia, caused by the bacterium Francisella tularensis, poses health risks to humans and can spread through a variety of routes. It has also been classified as a Tier 1 Select agent by the CDC, highlighting its potential as a bioterrorism agent. Moreover, it is difficult to diagnose in a timely fashion, owing to the non-specific nature of tularemia infections. Rapid, sensitive, and accurate detection methods are required to reduce mortality rates. We aimed to develop antibodies directed against the outer membrane protein A of F. tularensis (FopA) for rapid and accurate diagnosis of tularemia. Methods: We used a baculovirus insect cell expression vector system to produce the FopA antigen and generate anti-FopA antibodies through immunization of BALB/c mice. We then employed hybridoma and phage display technologies to screen for antibodies that could recognize unique epitopes on FopA. Result: Two monoclonal antibodies, 6B12 and 3C1, identified through phage display screening specifically bound to recombinant FopA in a dose-dependent manner. The binding affinity of the anti-FopA 6B12 and 3C1 antibodies was observed to have an equilibrium dissociation constant of 1.76 × 10-10 M and 1.32 × 10-9 M, respectively. These antibodies were used to develop a sandwich ELISA system for the diagnosis of tularemia. This assay was found to be highly specific and sensitive, with detection limits ranging from 0.062 ng/mL in PBS to 0.064 ng/mL in skim milk matrices. Discussion: Our findings demonstrate the feasibility of a novel diagnostic approach for detecting F. tularensis based on targeting FopA, as opposed to existing tests that target the bacterial lipopolysaccharide.
Assuntos
Anticorpos Antibacterianos , Anticorpos Monoclonais , Proteínas da Membrana Bacteriana Externa , Francisella tularensis , Camundongos Endogâmicos BALB C , Proteínas Recombinantes , Tularemia , Tularemia/diagnóstico , Animais , Francisella tularensis/imunologia , Francisella tularensis/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Anticorpos Monoclonais/imunologia , Camundongos , Imunoensaio/métodos , Sensibilidade e Especificidade , Feminino , Técnicas de Visualização da Superfície Celular , Epitopos/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Hibridomas , Baculoviridae/genéticaRESUMO
Tropical theileriosis is a lymphoproliferative disease caused by Theileria annulata and is transmitted by Ixodid ticks of the genus Hyalomma. It causes significant losses in livestock, especially in exotic cattle. The existing methods for controlling it, chemotherapeutic agents and a vaccine based on an attenuated schizont stage parasite, have several limitations. A promising solution to control this disease is the use of molecular vaccines based on potential immunogenic proteins of T. annulata. For this purpose, we selected five antigenic sequences of T. annulata, i.e. SPAG-1, Tams, TaSP, spm2, and Ta9. These were subjected to epitope prediction for cytotoxic T lymphocytes, B-cells, and helper T lymphocytes. CTL and B-cell epitopes with a higher score whereas those of HTL with a lower score, were selected for the construct. A single protein was constructed using specific linkers and evaluated for high antigenicity and low allergenicity. The construct was acidic, hydrophobic, and thermostable in nature. Secondary and tertiary structures of this construct were drawn using the PSIPRED and RaptorX servers, respectively. A Ramachandran plot showed a high percentage of residues in this construct in favorable, allowed, and general regions. Molecular docking studies suggested that the complex was stable and our construct could potentially be a good candidate for immunization trials. Furthermore, we successfully cloned it into the pET-28a plasmid and transformed it into the BL21 strain. A restriction analysis was performed to confirm the transformation of our plasmid. After expression and purification, recombinant protein of 49 kDa was confirmed by western blotting. An ELISA detected increased specific antibody levels in the sera of the immunized animals compared with the control group, and flow cytometric analysis showed a stronger cell-mediated immune response. We believe our multi-epitope recombinant protein has the potential for the large-scale application for disease prevention globally in the bovine population. This study will act as a model for similar parasitic challenges.
Assuntos
Imunidade Celular , Imunidade Humoral , Proteínas Recombinantes , Theileria annulata , Theileriose , Theileria annulata/imunologia , Theileria annulata/genética , Animais , Bovinos , Theileriose/imunologia , Theileriose/parasitologia , Theileriose/prevenção & controle , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito B/imunologia , Vacinas Protozoárias/imunologia , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/genética , Simulação por Computador , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/genética , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/sangueRESUMO
The recombinant Staphylococcal protein A (SpA) is widely used in biotechnology to purify polyclonal and monoclonal IgG antibodies. At very low concentrations, the highly-purified form of the protein A can down-regulate the activation of human B-lymphocytes and macrophages which are the key cells in determining autoimmune diseases. In the present study, the efficiency of three different forms of protein A, including native full-length SpA, the recombinant full-length SpA, and a recombinant truncated form of SpA on the reduction of 4 inflammatory cytokines, including IL-8, IL-1ß, TNF-α, and IL-6 by peripheral blood mononuclear cell (PBMCs) were studied and compared to an anti-rheumatoid arthritis commercial drug, Enbrel. The recombinant proteins were expressed in E. coli and the native form of SpA was commercially provided. PBMCs were obtained from adult patients with active rheumatoid arthritis (RA) and healthy control donors. Then, the effect of different doses of the three pure forms of SpA in comparison with Enbrel was investigated by analyzing the expression of selected cytokines using ELISA. The results showed that the truncated form of recombinant SpA significantly reduced the expression of cytokines more effectively than the other full-length formulations as well as the commercial drug Enbrel. In silico analysis shows that in the truncated protein, as the radius of gyration increases, the structure of IgG-binding domains become more open and more exposed to IgG. To summarize, our findings indicate that the truncated form of protein A is the most efficient form of SpA as it significantly decreases the secretion of evaluated cytokines from PBMCs in vitro.
Assuntos
Citocinas , Leucócitos Mononucleares , Proteína Estafilocócica A , Staphylococcus aureus , Humanos , Proteína Estafilocócica A/imunologia , Proteína Estafilocócica A/metabolismo , Citocinas/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Staphylococcus aureus/imunologia , Adulto , Proteínas Recombinantes/imunologia , Artrite Reumatoide/imunologia , Feminino , Masculino , Pessoa de Meia-Idade , Doenças Autoimunes/imunologiaRESUMO
Canine Visceral Leishmaniasis (CVL) is the most fatal form of Leishmania infection in dogs and is caused by L. infantum in the Americas. This parasite follows a zoonotic life cycle, raising concerns within domestic households, where dogs act as the primary reservoir of the parasite. Accurately detecting infected dogs is vital for effective epidemiological control in both canine and human populations. However, existing diagnostic methods in Brazil have limitations, particularly in detecting asymptomatic and oligosymptomatic dogs, leading to ineffective disease control. To address this challenge, we evaluated a novel recombinant antigen from L. infantum, the rLiNTPDase2. Previous studies have confirmed its high performance via ELISA, leading us to assess its suitability for a Lateral Flow Immunochromatographic Assay (LFIA), which is ideal for point-of-care testing. Standardization of the assay involved testing two nitrocellulose membranes (HF135 and HF120, Millipore), three blocking protocols, and five sample dilutions (1:10, 1:20, 1:40, 1:80, and 1:160). Following the chosen conditions (HF120 membrane, 1-minute blocking protocol, and 1:80 sample dilution), we validated our assay with a sample size of 78 dogs, comprising 32 negatives and 46 positives, including symptomatic (n=23), oligosymptomatic (n=17), and asymptomatic (n=6) cases. The results revealed a sensitivity of 86.9â¯%, specificity of 62.5â¯%, and accuracy of 76.9â¯%, which is consistent with ELISA performance for the same samples. Compared to DPP-LVC, our assay demonstrated promising results in detecting asymptomatic and oligosymptomatic cases. This study underscores the suitability of the rLiNTPDase2 antigen for the LFIA format, suggesting its potential as a novel point-of-care diagnostic test for CVL.
Assuntos
Antígenos de Protozoários , Doenças do Cão , Leishmaniose Visceral , Sensibilidade e Especificidade , Animais , Cães , Leishmaniose Visceral/veterinária , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/parasitologia , Doenças do Cão/diagnóstico , Doenças do Cão/parasitologia , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/análise , Cromatografia de Afinidade/veterinária , Cromatografia de Afinidade/métodos , Leishmania infantum/enzimologia , Leishmania infantum/imunologia , Proteínas Recombinantes/imunologia , Ensaio de Imunoadsorção Enzimática/veterinária , Ensaio de Imunoadsorção Enzimática/métodosRESUMO
In the landscape of infectious diseases, human coronaviruses such as SARS-CoV, MERS-CoV, and SARS-CoV-2 pose significant threats, characterized by severe respiratory illnesses and notable resistance to conventional treatments due to their rapid evolution and the emergence of diverse variants, particularly within SARS-CoV-2. This study investigated the development of broad-spectrum coronavirus vaccines using heterodimeric RBD-Fc proteins engineered through the "Knob-into-Hole" technique. We constructed various recombinant proteins incorporating the receptor-binding domains (RBDs) of different coronaviruses. Heterodimers combining RBDs from SARS-CoV-2 with those of SARS-CoV or MERS-CoV elicited superior neutralizing responses compared to homodimeric proteins in murine models. Additionally, heterotetrameric proteins, specifically D614G_Delta/BA.1_XBB.1.5-RBD and MERS_D614G/BA.1_XBB.1.5-RBD, elicited remarkable breadth and potency in neutralizing all known SARS-CoV-2 variants, SARS-CoV, related sarbecoviruses like GD-Pangolin and WIV1, and even MERS-CoV pseudoviruses. Furthermore, these heterotetrameric proteins also demonstrated enhanced cellular immune responses. These findings underscore the potential of recombinant hetero proteins as a universal vaccine strategy against current and future coronavirus threats.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Camundongos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Vacinas contra COVID-19/imunologia , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/química , COVID-19/prevenção & controle , COVID-19/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Camundongos Endogâmicos BALB C , Feminino , Domínios Proteicos , Testes de Neutralização , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genéticaRESUMO
Background: Transmission-blocking vaccines (TBVs) can effectively prevent the community's spread of malaria by targeting the antigens of mosquito sexual stage parasites. At present, only a few candidate antigens have demonstrated transmission-blocking activity (TBA) potential in P. vivax. Quiescin-sulfhydryl oxidase (QSOX) is a sexual stage protein in the rodent malaria parasite Plasmodium berghei and is associated with a critical role in protein folding by introducing disulfides into unfolded reduced proteins. Here, we reported the immunogenicity and transmission-blocking potency of the PvQSOX in P. vivax. Methods and findings: The full-length recombinant PvQSOX protein (rPvQSOX) was expressed in the Escherichia coli expression system. The anti-rPvQSOX antibodies were generated following immunization with the rPvQSOX in rabbits. A parasite integration of the pvqsox gene into the P. berghei pbqsox gene knockout genome was developed to express full-length PvQSOX protein in P. berghei (Pv-Tr-PbQSOX). In western blot, the anti-rPvQSOX antibodies recognized the native PvQSOX protein expressed in transgenic P. berghei gametocyte and ookinete. In indirect immunofluorescence assays, the fluorescence signal was detected in the sexual stages, including gametocyte, gamete, zygote, and ookinete. Anti-rPvQSOX IgGs obviously inhibited the ookinetes and oocysts development both in vivo and in vitro using transgenic parasites. Direct membrane feeding assays of anti-rPvQSOX antibodies were conducted using four field P. vivax isolates (named isolates #1-4) in Thailand. Oocyst density in mosquitoes was significantly reduced by 32.00, 85.96, 43.52, and 66.03% with rabbit anti-rPvQSOX antibodies, respectively. The anti-rPvQSOX antibodies also showed a modest reduction of infection prevalence by 15, 15, 20, and 22.22%, respectively, as compared to the control, while the effect was insignificant. The variation in the DMFA results may be unrelated to the genetic polymorphisms. Compared to the P.vivax Salvador (Sal) I strain sequences, the pvqsox in isolate #1 showed no amino acid substitution, whereas isolates #2, #3, and #4 all had the M361I substitution. Conclusions: Our results suggest that PvQSOX could serve as a potential P. vivax TBVs candidate, which warrants further evaluation and optimization.