Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.058
Filtrar
1.
Clin Transl Sci ; 17(5): e13810, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38716900

RESUMO

One of the key pharmacokinetic properties of most small molecule drugs is their ability to bind to serum proteins. Unbound or free drug is responsible for pharmacological activity while the balance between free and bound drug can impact drug distribution, elimination, and other safety parameters. In the hepatic impairment (HI) and renal impairment (RI) clinical studies, unbound drug concentration is often assessed; however, the relevance and impact of the protein binding (PB) results is largely limited. We analyzed published clinical safety and pharmacokinetic studies in subjects with HI or RI with PB assessment up to October 2022 and summarized the contribution of PB results on their label dose recommendations. Among drugs with HI publication, 32% (17/53) associated product labels include PB results in HI section. Of these, the majority (9/17, 53%) recommend dose adjustments consistent with observed PB change. Among drugs with RI publication, 27% (12/44) of associated product labels include PB results in RI section with the majority (7/12, 58%) recommending no dose adjustment, consistent with the reported absence of PB change. PB results were found to be consistent with a tailored dose recommendation in 53% and 58% of the approved labels for HI and RI section, respectively. We further discussed the interpretation challenges of PB results, explored treatment decision factors including total drug concentration, exposure-response relationships, and safety considerations in these case examples. Collectively, comprehending the alterations in free drug levels in HI and RI informs treatment decision through a risk-based approach.


Assuntos
Rotulagem de Medicamentos , Ligação Proteica , Humanos , Insuficiência Renal/metabolismo , Relação Dose-Resposta a Droga , Preparações Farmacêuticas/metabolismo , Preparações Farmacêuticas/administração & dosagem , Hepatopatias/metabolismo , Hepatopatias/tratamento farmacológico , Proteínas Sanguíneas/metabolismo , Cálculos da Dosagem de Medicamento
2.
BMC Genomics ; 25(1): 503, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773393

RESUMO

BACKGROUND: While numerous allergy-related biomarkers and targeted treatment strategies have been developed and employed, there are still signifcant limitations and challenges in the early diagnosis and targeted treatment for allegic diseases. Our study aims to identify circulating proteins causally associated with allergic disease-related traits through Mendelian randomization (MR)-based analytical framework. METHODS: Large-scale cis-MR was employed to estimate the effects of thousands of plasma proteins on five main allergic diseases. Additional analyses including MR Steiger analyzing and Bayesian colocalisation, were performed to test the robustness of the associations; These findings were further validated utilizing meta-analytical methods in the replication analysis. Both proteome- and transcriptome-wide association studies approach was applied, and then, a protein-protein interaction was conducted to examine the interplay between the identified proteins and the targets of existing medications. RESULTS: Eleven plasma proteins were identified with links to atopic asthma (AA), atopic dermatitis (AD), and allergic rhinitis (AR). Subsequently, these proteins were classified into four distinct target groups, with a focus on tier 1 and 2 targets due to their higher potential to become drug targets. MR analysis and extra validation revealed STAT6 and TNFRSF6B to be Tier 1 and IL1RL2 and IL6R to be Tier 2 proteins with the potential for AA treatment. Two Tier 1 proteins, CRAT and TNFRSF6B, and five Tier 2 proteins, ERBB3, IL6R, MMP12, ICAM1, and IL1RL2, were linked to AD, and three Tier 2 proteins, MANF, STAT6, and TNFSF8, to AR. CONCLUSION: Eleven Tier 1 and 2 protein targets that are promising drug target candidates were identified for AA, AD, and AR, which influence the development of allergic diseases and expose new diagnostic and therapeutic targets.


Assuntos
Biomarcadores , Proteínas Sanguíneas , Hipersensibilidade , Análise da Randomização Mendeliana , Proteômica , Humanos , Proteômica/métodos , Biomarcadores/sangue , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análise , Hipersensibilidade/genética , Hipersensibilidade/sangue , Teorema de Bayes , Estudo de Associação Genômica Ampla
3.
PLoS One ; 19(5): e0299257, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696394

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a common and severe complication in patients treated at an Intensive Care Unit (ICU). The pathogenesis of AKI has been reported to involve hypoperfusion, diminished oxygenation, systemic inflammation, and damage by increased intracellular iron concentration. Hepcidin, a regulator of iron metabolism, has been shown to be associated with sepsis and septic shock, conditions that can result in AKI. Heparin binding protein (HBP) has been reported to be associated with sepsis and AKI. The aim of the present study was to compare serum hepcidin and heparin binding protein (HBP) levels in relation to AKI in patients admitted to the ICU. METHODS: One hundred and forty patients with community acquired illness admitted to the ICU within 24 hours after first arrival to the hospital were included in the study. Eighty five of these patients were diagnosed with sepsis and 55 with other severe non-septic conditions. Logistic and linear regression models were created to evaluate possible correlations between circulating hepcidin and heparin-binding protein (HBP), stage 2-3 AKI, peak serum creatinine levels, and the need for renal replacement therapy (RRT). RESULTS: During the 7-day study period, 52% of the 85 sepsis and 33% of the 55 non-sepsis patients had been diagnosed with AKI stage 2-3 already at inclusion. The need for RRT was 20% and 15%, respectively, in the groups. Hepcidin levels at admission were significantly higher in the sepsis group compared to the non-sepsis group but these levels did not significantly correlate to the development of stage 2-3 AKI in the sepsis group (p = 0.189) nor in the non-sepsis group (p = 0.910). No significant correlation between hepcidin and peak creatinine levels, nor with the need for RRT was observed. Stage 2-3 AKI correlated, as expected, significantly with HBP levels at admission in both groups (Odds Ratio 1.008 (CI 1.003-1.014, p = 0.005), the need for RRT, as well as with peak creatinine in septic patients. CONCLUSION: Initial serum hepcidin, and HBP levels in patients admitted to the ICU are biomarkers for septic shock but in contrast to HBP, hepcidin does not portend progression of disease into AKI or a later need for RRT. Since hepcidin is a key regulator of iron metabolism our present data do not support a decisive role of initial iron levels in the progression of septic shock into AKI.


Assuntos
Injúria Renal Aguda , Peptídeos Catiônicos Antimicrobianos , Proteínas Sanguíneas , Hepcidinas , Choque Séptico , Humanos , Injúria Renal Aguda/sangue , Injúria Renal Aguda/etiologia , Hepcidinas/sangue , Masculino , Feminino , Choque Séptico/sangue , Choque Séptico/complicações , Idoso , Pessoa de Meia-Idade , Proteínas Sanguíneas/metabolismo , Proteínas de Transporte/sangue , Infecções Comunitárias Adquiridas/complicações , Infecções Comunitárias Adquiridas/sangue , Biomarcadores/sangue , Unidades de Terapia Intensiva , Creatinina/sangue , Idoso de 80 Anos ou mais
4.
Nat Commun ; 15(1): 3847, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719792

RESUMO

The development of reliable single-cell dispensers and substantial sensitivity improvement in mass spectrometry made proteomic profiling of individual cells achievable. Yet, there are no established methods for single-cell glycome analysis due to the inability to amplify glycans and sample losses associated with sample processing and glycan labeling. In this work, we present an integrated platform coupling online in-capillary sample processing with high-sensitivity label-free capillary electrophoresis-mass spectrometry for N-glycan profiling of single mammalian cells. Direct and unbiased quantitative characterization of single-cell surface N-glycomes are demonstrated for HeLa and U87 cells, with the detection of up to 100 N-glycans per single cell. Interestingly, N-glycome alterations are unequivocally detected at the single-cell level in HeLa and U87 cells stimulated with lipopolysaccharide. The developed workflow is also applied to the profiling of ng-level amounts (5-500 ng) of blood-derived protein, extracellular vesicle, and total plasma isolates, resulting in over 170, 220, and 370 quantitated N-glycans, respectively.


Assuntos
Eletroforese Capilar , Glicômica , Espectrometria de Massas , Polissacarídeos , Análise de Célula Única , Humanos , Eletroforese Capilar/métodos , Polissacarídeos/metabolismo , Polissacarídeos/sangue , Análise de Célula Única/métodos , Células HeLa , Espectrometria de Massas/métodos , Glicômica/métodos , Proteômica/métodos , Vesículas Extracelulares/metabolismo , Lipopolissacarídeos , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo
5.
Acta Biomater ; 180: 46-60, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615811

RESUMO

Blood-contacting medical devices often succumb to thrombosis, limiting their durability and safety in clinical applications. Thrombosis is fundamentally initiated by the nonspecific adsorption of proteins to the material surface, which is strongly governed by thermodynamic factors established by the nature of the interaction between the material surface, surrounding water molecules, and the protein itself. Along these lines, different surface materials (such as polymeric, metallic, ceramic, or composite) induce different entropic and enthalpic changes at the surface-protein interface, with material wettability significantly impacting this behavior. Consequently, protein adsorption on medical devices can be modulated by altering their wettability and surface energy. A plethora of polymeric coating modifications have been utilized for this purpose; hydrophobic modifications may promote or inhibit protein adsorption determined by van der Waals forces, while hydrophilic materials achieve this by mainly relying on hydrogen bonding, or unbalanced/balanced electrostatic interactions. This review offers a cohesive understanding of the thermodynamics governing these phenomena, to specifically aid in the design and selection of hemocompatible polymeric coatings for biomedical applications. STATEMENT OF SIGNIFICANCE: Blood-contacting medical devices often succumb to thrombosis, limiting their durability and safety in clinical applications. A plethora of polymeric coating modifications have been utilized for addressing this issue. This review offers a cohesive understanding of the thermodynamics governing these phenomena, to specifically aid in the design and selection of hemocompatible polymeric coatings for biomedical applications.


Assuntos
Materiais Revestidos Biocompatíveis , Polímeros , Termodinâmica , Adsorção , Humanos , Polímeros/química , Materiais Revestidos Biocompatíveis/química , Propriedades de Superfície , Trombose/prevenção & controle , Animais , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo
6.
Biomarkers ; 29(4): 205-210, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588595

RESUMO

BACKGROUND: Currently available risk scores fail to accurately predict morbidity and mortality in patients with severe symptomatic aortic stenosis who undergo transcatheter aortic valve implantation (TAVI). In this context, biomarkers like matrix metalloproteinase-2 (MMP-2) and Galectin-3 (Gal-3) may provide additional prognostic information. METHODS: Patients with severe aortic stenosis undergoing consecutive, elective, transfemoral TAVI were included. Baseline demographic data, functional status, echocardiographic findings, clinical outcomes and biomarker levels were collected and analysed. RESULTS: The study cohort consisted of 89 patients (age 80.4 ± 5.1 years, EuroScore II 7.1 ± 5.8%). During a median follow-up period of 526 d, 28 patients (31.4%) died. Among those who died, median baseline MMP-2 (alive: 221.6 [170.4; 263] pg/mL vs. deceased: 272.1 [225; 308.8] pg/mL, p < 0.001) and Gal-3 levels (alive: 19.1 [13.5; 24.6] pg/mL vs. deceased: 25 [17.6; 29.5] pg/mL, p = 0.006) were higher than in survivors. In ROC analysis, MMP-2 reached an acceptable level of discrimination to predict mortality (AUC 0.733, 95% CI [0.62; 0.83], p < 0.001), but the predictive value of Gal-3 was poor (AUC 0.677, 95% CI [0.56; 0.79], p = 0.002). Kaplan-Meier and Cox regression analyses showed that patients with MMP-2 and Gal-3 concentrations above the median at baseline had significantly impaired long-term survival (p = 0.004 and p = 0.02, respectively). CONCLUSIONS: In patients with severe aortic stenosis undergoing transfemoral TAVI, MMP-2 and to a lesser extent Gal-3, seem to have additive value in optimizing risk prediction and streamlining decision-making.


Assuntos
Estenose da Valva Aórtica , Biomarcadores , Galectina 3 , Metaloproteinase 2 da Matriz , Substituição da Valva Aórtica Transcateter , Humanos , Metaloproteinase 2 da Matriz/sangue , Substituição da Valva Aórtica Transcateter/mortalidade , Biomarcadores/sangue , Masculino , Feminino , Estenose da Valva Aórtica/cirurgia , Estenose da Valva Aórtica/mortalidade , Estenose da Valva Aórtica/sangue , Galectina 3/sangue , Idoso de 80 Anos ou mais , Idoso , Prognóstico , Galectinas , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo
7.
Biomolecules ; 14(4)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38672491

RESUMO

Bactericidal permeability-increasing protein (BPI) is a multifunctional cationic protein produced by neutrophils, eosinophils, fibroblasts, and macrophages with antibacterial anti-inflammatory properties. In the context of Gram-negative infection, BPI kills bacteria, neutralizes the endotoxic activity of lipopolysaccharides (LPSs), and, thus, avoids immune hyperactivation. Interestingly, BPI increases in patients with Gram-positive meningitis, interacts with lipopeptides and lipoteichoic acids of Gram-positive bacteria, and significantly enhances the immune response in peripheral blood mononuclear cells. We evaluated the antimycobacterial and immunoregulatory properties of BPI in human macrophages infected with Mycobacterium tuberculosis. Our results showed that recombinant BPI entered macrophages, significantly reduced the intracellular growth of M. tuberculosis, and inhibited the production of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-α). Furthermore, BPI decreased bacterial growth directly in vitro. These data suggest that BPI has direct and indirect bactericidal effects inhibiting bacterial growth and potentiating the immune response in human macrophages and support that this new protein's broad-spectrum antibacterial activity has the potential for fighting tuberculosis.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Proteínas Sanguíneas , Macrófagos , Mycobacterium tuberculosis , Fator de Necrose Tumoral alfa , Humanos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/farmacologia , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Tuberculose/microbiologia , Tuberculose/imunologia , Tuberculose/tratamento farmacológico
8.
J Transl Med ; 22(1): 404, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689297

RESUMO

BACKGROUND: Ischemic heart disease is one of the leading causes of mortality worldwide, and thus calls for development of more effective therapeutic strategies. This study aimed to identify potential therapeutic targets for coronary heart disease (CHD) and myocardial infarction (MI) by investigating the causal relationship between plasma proteins and these conditions. METHODS: A two-sample Mendelian randomization (MR) study was performed to evaluate more than 1600 plasma proteins for their causal associations with CHD and MI. The MR findings were further confirmed through Bayesian colocalization, Summary-data-based Mendelian Randomization (SMR), and Transcriptome-Wide Association Studies (TWAS) analyses. Further analyses, including enrichment analysis, single-cell analysis, MR analysis of cardiovascular risk factors, phenome-wide Mendelian Randomization (Phe-MR), and protein-protein interaction (PPI) network construction were conducted to verify the roles of selected causal proteins. RESULTS: Thirteen proteins were causally associated with CHD, seven of which were also causal for MI. Among them, FES and PCSK9 were causal proteins for both diseases as determined by several analytical methods. PCSK9 was a risk factor of CHD (OR = 1.25, 95% CI: 1.13-1.38, P = 7.47E-06) and MI (OR = 1.36, 95% CI: 1.21-1.54, P = 2.30E-07), whereas FES was protective against CHD (OR = 0.68, 95% CI: 0.59-0.79, P = 6.40E-07) and MI (OR = 0.65, 95% CI: 0.54-0.77, P = 5.38E-07). Further validation through enrichment and single-cell analysis confirmed the causal effects of these proteins. Moreover, MR analysis of cardiovascular risk factors, Phe-MR, and PPI network provided insights into the potential drug development based on the proteins. CONCLUSIONS: This study investigated the causal pathways associated with CHD and MI, highlighting the protective and risk roles of FES and PCSK9, respectively. FES. Specifically, the results showed that these proteins are promising therapeutic targets for future drug development.


Assuntos
Proteínas Sanguíneas , Doença das Coronárias , Análise da Randomização Mendeliana , Infarto do Miocárdio , Proteômica , Humanos , Infarto do Miocárdio/sangue , Infarto do Miocárdio/genética , Proteômica/métodos , Doença das Coronárias/sangue , Doença das Coronárias/genética , Proteínas Sanguíneas/metabolismo , Mapas de Interação de Proteínas/genética , Teorema de Bayes , Terapia de Alvo Molecular , Fatores de Risco , Estudo de Associação Genômica Ampla , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/sangue , Pró-Proteína Convertase 9/metabolismo
9.
Mol Pharm ; 21(5): 2272-2283, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38607681

RESUMO

Over the years, there has been significant interest in PEGylated lipid-based nanocarriers within the drug delivery field. The inevitable interplay between the nanocarriers and plasma protein plays a pivotal role in their in vivo biological fate. Understanding the factors influencing lipid-based nanocarrier and protein corona interactions is of paramount importance in the design and clinical translation of these nanocarriers. Herein, discoid-shaped lipid nanodiscs (sNDs) composed of different phospholipids with varied lipid tails and head groups were fabricated. We investigated the impact of phospholipid components on the interaction between sNDs and serum proteins, particle stability, and biodistribution. The results showed that all of these lipid nanodiscs remained stable over a 15 day storage period, while their stability in the blood serum demonstrated significant differences. The sND composed of POPG exhibited the least stability due to its potent complement activation capability, resulting in rapid blood clearance. Furthermore, a negative correlation between the complement activation capability and serum stability was identified. Pharmacokinetic and biodistribution experiments indicated that phospholipid composition did not influence the capability of sNDs to evade the accelerated blood clearance phenomenon. Complement deposition on the sND was inversely associated with the area under the curve. Additionally, all lipid nanodiscs exhibited dominant adsorption of apolipoprotein. Remarkably, the POPC-based lipid nanodisc displayed a significantly higher deposition of apolipoprotein E, contributing to an obvious brain distribution, which provides a promising tool for brain-targeted drug delivery.


Assuntos
Nanopartículas , Fosfolipídeos , Coroa de Proteína , Coroa de Proteína/química , Animais , Fosfolipídeos/química , Distribuição Tecidual , Camundongos , Nanopartículas/química , Portadores de Fármacos/química , Nanoestruturas/química , Masculino , Ativação do Complemento/efeitos dos fármacos , Lipídeos/química , Sistemas de Liberação de Medicamentos/métodos , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/química
11.
Food Funct ; 15(9): 4887-4893, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38597504

RESUMO

Inhibition of galectin-3-mediated interactions by modified citrus pectin (MCP) could affect several rate-limiting steps in cancer metastasis, but the ability of MCP to antagonize galectin-8 function remains unknown. We hypothesized that MCP could bind to galectin-8 in addition to galectin-3. In this study, a combination of gradual ethanol precipitation and DEAE-Sepharose Fast Flow chromatography was used to isolate several fractions from MCP. The ability of these fractions to antagonize galectin-8 function was studied as well as the primary structure and initial structure-function relationship of the major active component MCP-30-3. The results showed that MCP-30-3 (168 kDa) was composed of Gal (13.8%), GalA (63.1%), GlcA (13.0%), and Glc (10.1%). MCP-30-3 could specifically bind to galectin-8, with an MIC value of 0.04 mg mL-1. After MCP-30-3 was hydrolyzed by ß-galactosidase or pectinase, its binding activity was significantly reduced. These results provide new insights into the interaction between MCP structure and galectin function, as well as the potential utility in the development of functional foods.


Assuntos
Galectinas , Pectinas , Pectinas/química , Pectinas/farmacologia , Galectinas/metabolismo , Galectinas/química , Humanos , Citrus/química , Galectina 3/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Ligação Proteica , Poligalacturonase/química , Poligalacturonase/metabolismo
12.
Cancer Lett ; 591: 216879, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636895

RESUMO

Galectin-3 (Gal-3) is a multifunctional protein that plays a pivotal role in the initiation and progression of various central nervous system diseases, including cancer. Although the involvement of Gal-3 in tumour progression, resistance to treatment and immunosuppression has long been studied in different cancer types, mainly outside the central nervous system, its elevated expression in myeloid and glial cells underscores its profound impact on the brain's immune response. In this context, microglia and infiltrating macrophages, the predominant non-cancerous cells within the tumour microenvironment, play critical roles in establishing an immunosuppressive milieu in diverse brain tumours. Through the utilisation of primary cell cultures and immortalised microglial cell lines, we have elucidated the central role of Gal-3 in promoting cancer cell migration, invasion, and an immunosuppressive microglial phenotypic activation. Furthermore, employing two distinct in vivo models encompassing primary (glioblastoma) and secondary brain tumours (breast cancer brain metastasis), our histological and transcriptomic analysis show that Gal-3 depletion triggers a robust pro-inflammatory response within the tumour microenvironment, notably based on interferon-related pathways. Interestingly, this response is prominently observed in tumour-associated microglia and macrophages (TAMs), resulting in the suppression of cancer cells growth.


Assuntos
Neoplasias Encefálicas , Movimento Celular , Proliferação de Células , Galectina 3 , Glioblastoma , Microglia , Microambiente Tumoral , Microglia/metabolismo , Microglia/patologia , Galectina 3/metabolismo , Galectina 3/genética , Humanos , Animais , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/genética , Glioblastoma/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Linhagem Celular Tumoral , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Invasividade Neoplásica , Proteínas Sanguíneas/metabolismo , Galectinas/metabolismo , Galectinas/genética , Transdução de Sinais , Camundongos , Regulação Neoplásica da Expressão Gênica
13.
Nat Commun ; 15(1): 3621, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684708

RESUMO

Circulating proteins can reveal key pathways to cancer and identify therapeutic targets for cancer prevention. We investigate 2,074 circulating proteins and risk of nine common cancers (bladder, breast, endometrium, head and neck, lung, ovary, pancreas, kidney, and malignant non-melanoma) using cis protein Mendelian randomisation and colocalization. We conduct additional analyses to identify adverse side-effects of altering risk proteins and map cancer risk proteins to drug targets. Here we find 40 proteins associated with common cancers, such as PLAUR and risk of breast cancer [odds ratio per standard deviation increment: 2.27, 1.88-2.74], and with high-mortality cancers, such as CTRB1 and pancreatic cancer [0.79, 0.73-0.85]. We also identify potential adverse effects of protein-altering interventions to reduce cancer risk, such as hypertension. Additionally, we report 18 proteins associated with cancer risk that map to existing drugs and 15 that are not currently under clinical investigation. In sum, we identify protein-cancer links that improve our understanding of cancer aetiology. We also demonstrate that the wider consequence of any protein-altering intervention on well-being and morbidity is required to interpret any utility of proteins as potential future targets for therapeutic prevention.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Feminino , Fatores de Risco , Análise da Randomização Mendeliana , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/sangue , Masculino , Proteínas Sanguíneas/metabolismo
14.
Proteomics ; 24(9): e2300214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38475964

RESUMO

Physical inactivity associated with gravity unloading, such as microgravity during spaceflight and hindlimb unloading (HU), can cause various physiological changes. In this study, we attempted to identify serum proteins whose levels fluctuated in response to gravity unloading. First, we quantitatively assessed changes in the serum proteome profiles of spaceflight mice using mass spectrometry with data-independent acquisition. The serum levels of several proteins involved in the responses to estrogen and glucocorticoid, blood vessel maturation, osteoblast differentiation, and ossification were changed by microgravity exposure. Furthermore, a collective evaluation of serum proteomic data from spaceflight and HU mice identified 30 serum proteins, including Mmp2, Igfbp2, Tnc, Cdh5, and Pmel, whose levels varied to a similar extent in both gravity unloading models. These changes in serum levels could be involved in the physiological changes induced by gravity unloading. A collective evaluation of serum, femur, and soleus muscle proteome data of spaceflight mice also showed 24 serum proteins, including Igfbp5, Igfbp3, and Postn, whose levels could be associated with biological changes induced by microgravity. This study examined serum proteome profiles in response to gravity unloading, and may help deepen our understanding of microgravity adaptation mechanisms during prolonged spaceflight missions.


Assuntos
Proteínas Sanguíneas , Proteômica , Voo Espacial , Ausência de Peso , Animais , Camundongos , Proteômica/métodos , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análise , Espectrometria de Massas/métodos , Elevação dos Membros Posteriores , Proteoma/metabolismo , Proteoma/análise , Masculino , Camundongos Endogâmicos C57BL
16.
J Bone Miner Res ; 39(2): 139-149, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38477735

RESUMO

Hip fractures are associated with significant disability, high cost, and mortality. However, the exact biological mechanisms underlying susceptibility to hip fractures remain incompletely understood. In an exploratory search of the underlying biology as reflected through the circulating proteome, we performed a comprehensive Circulating Proteome Association Study (CPAS) meta-analysis for incident hip fractures. Analyses included 6430 subjects from two prospective cohort studies (Cardiovascular Health Study and Trøndelag Health Study) with circulating proteomics data (aptamer-based 5 K SomaScan version 4.0 assay; 4979 aptamers). Associations between circulating protein levels and incident hip fractures were estimated for each cohort using age and sex-adjusted Cox regression models. Participants experienced 643 incident hip fractures. Compared with the individual studies, inverse-variance weighted meta-analyses yielded more statistically significant associations, identifying 23 aptamers associated with incident hip fractures (conservative Bonferroni correction 0.05/4979, P < 1.0 × 10-5). The aptamers most strongly associated with hip fracture risk corresponded to two proteins of the growth hormone/insulin growth factor system (GHR and IGFBP2), as well as GDF15 and EGFR. High levels of several inflammation-related proteins (CD14, CXCL12, MMP12, ITIH3) were also associated with increased hip fracture risk. Ingenuity pathway analysis identified reduced LXR/RXR activation and increased acute phase response signaling to be overrepresented among those proteins associated with increased hip fracture risk. These analyses identified several circulating proteins and pathways consistently associated with incident hip fractures. These findings underscore the usefulness of the meta-analytic approach for comprehensive CPAS in a similar manner as has previously been observed for large-scale human genetic studies. Future studies should investigate the underlying biology of these potential novel drug targets.


Hip fractures are associated with significant disability, high cost, and mortality. However, the exact biological mechanisms underlying susceptibility to hip fractures remain incompletely understood. To increase the understanding of the underlying mechanisms, we performed a meta-analysis of the associations between 4860 circulating proteins and risk of fractures using two large cohorts, including 6430 participants with 643 incident hip fractures. We identified 23 proteins/aptamers associated with incident hip fractures. Two proteins of the growth hormone/insulin growth factor system (GHR and IGFBP2), as well as GDF15 and EGFR were most strongly associated with hip fracture risk. High levels of several inflammation-related proteins were also associated with increased hip fracture risk. Pathway analysis identified reduced LXR/RXR activation and increased acute phase response signaling to be overrepresented among those proteins associated with increased hip fracture risk. Future mechanistic studies should investigate the underlying biology of these novel protein biomarkers which may be potential drug targets.


Assuntos
Fraturas do Quadril , Proteoma , Humanos , Fraturas do Quadril/sangue , Fraturas do Quadril/epidemiologia , Proteoma/metabolismo , Feminino , Masculino , Incidência , Idoso , Proteínas Sanguíneas/metabolismo , Fatores de Risco
17.
P R Health Sci J ; 43(1): 39-45, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512760

RESUMO

OBJECTIVE: Hypertension is one of the cardiovascular diseases that causes the most mortality, and 95% of the causes are unknown. The aim of the study was to examine the possible correlation of nesfatin-1 levels, adropin levels, claudin-2 immunoreactivity (claudin-2 expression in the renal proximal tubule), and renalase immunoreactivity (renalase expression in the renal proximal tubule) with arterial blood pressure, kidney function, and kidney damage. METHODS: Adult male Sprague Dawley rats were divided into control and hypertension groups (8 per group). Angiotensin II vehicle was given to the control group and angiotensin II (0.7 mg/kg/day) to the hypertension group, both via an osmotic mini pump for 7 days. The animals blood pressures were measured by tail cuff plethysmography on days 1, 3, 5, and 7. On day 7, 24-hour urine, blood, and tissues were collected from the rats. RESULTS: In the hypertension group compared with the control group, there was an increase in systolic blood pressure levels after day 1. While claudin-2 immunoreactivity was reduced in the kidneys, renalase immunoreactivity was increased. There was a decrease in creatinine clearance and an increase in fractional potassium excretion (P < .05). CONCLUSION: Our results showed that claudin-2 and renalase are associated with renal glomerular and tubular dysfunction and may play discrete roles in the pathogenesis of hypertension. We believe that these potential roles warrant further investigation.


Assuntos
Proteínas Sanguíneas , Claudina-2 , Hipertensão , Glomérulos Renais , Túbulos Renais , Monoaminoxidase , Peptídeos , Animais , Masculino , Ratos , Angiotensina II/farmacologia , Pressão Sanguínea , Claudina-2/metabolismo , Hipertensão/fisiopatologia , Monoaminoxidase/metabolismo , Ratos Sprague-Dawley , Proteínas Sanguíneas/metabolismo , Peptídeos/metabolismo , Glomérulos Renais/fisiopatologia , Túbulos Renais/fisiopatologia , Modelos Animais de Doenças
18.
Drug Metab Dispos ; 52(5): 345-354, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38360916

RESUMO

It is common practice in drug discovery and development to predict in vivo hepatic clearance from in vitro incubations with liver microsomes or hepatocytes using the well-stirred model (WSM). When applying the WSM to a set of approximately 3000 Novartis research compounds, 73% of neutral and basic compounds (extended clearance classification system [ECCS] class 2) were well-predicted within 3-fold. In contrast, only 44% (ECCS class 1A) or 34% (ECCS class 1B) of acids were predicted within 3-fold. To explore the hypothesis whether the higher degree of plasma protein binding for acids contributes to the in vitro-in vivo correlation (IVIVC) disconnect, 68 proprietary compounds were incubated with rat liver microsomes in the presence and absence of 5% plasma. A minor impact of plasma on clearance IVIVC was found for moderately bound compounds (fraction unbound in plasma [fup] ≥1%). However, addition of plasma significantly improved the IVIVC for highly bound compounds (fup <1%) as indicated by an increase of the average fold error from 0.10 to 0.36. Correlating fup with the scaled unbound intrinsic clearance ratio in the presence or absence of plasma allowed the establishment of an empirical, nonlinear correction equation that depends on fup Taken together, estimation of the metabolic clearance of highly bound compounds was enhanced by the addition of plasma to microsomal incubations. For standard incubations in buffer only, application of an empirical correction provided improved clearance predictions. SIGNIFICANCE STATEMENT: Application of the well-stirred liver model for clearance in vitro-in vivo extrapolation (IVIVE) in rat generally underpredicts the clearance of acids and the strong protein binding of acids is suspected to be one responsible factor. Unbound intrinsic in vitro clearance (CLint,u) determinations using rat liver microsomes supplemented with 5% plasma resulted in an improved IVIVE. An empirical equation was derived that can be applied to correct CLint,u-values in dependance of fraction unbound in plasma (fup) and measured CLint in buffer.


Assuntos
Microssomos Hepáticos , Modelos Biológicos , Animais , Ratos , Microssomos Hepáticos/metabolismo , Taxa de Depuração Metabólica , Fígado/metabolismo , Hepatócitos/metabolismo , Proteínas Sanguíneas/metabolismo
19.
Trends Mol Med ; 30(5): 423-424, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38302317

RESUMO

In their recent Nature paper, Oh et al. use 4979 plasma proteins collected across multiple cohorts, publicly available gene expression data, and machine learning models to identify 11 organ-specific aging scores that are linked to organ-specific disease and mortality risk, including heart failure, cognitive decline, and Alzheimer's disease.


Assuntos
Envelhecimento , Proteínas Sanguíneas , Proteoma , Humanos , Envelhecimento/sangue , Proteoma/análise , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Especificidade de Órgãos , Aprendizado de Máquina , Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Biomarcadores/sangue , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/genética
20.
Antimicrob Agents Chemother ; 68(4): e0164723, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38376186

RESUMO

For antimicrobial agents in particular, plasma protein binding (PPB) plays a pivotal role in deciphering key properties of drug candidates. Animal models are generally used in the preclinical development of new drugs to predict their effects in humans using translational pharmacokinetics/pharmacodynamics (PK/PD). Thus, we compared the protein binding (PB) of cefazolin as well as bacterial growth under various conditions in vitro. The PB extent of cefazolin was studied in human, bovine, and rat plasmas at different antibiotic concentrations in buffer and media containing 20-70% plasma or pure plasma using ultrafiltration (UF) and equilibrium dialysis (ED). Moreover, bacterial growth and time-kill assays were performed in Mueller Hinton Broth (MHB) containing various plasma percentages. The pattern for cefazolin binding to plasma proteins was found to be similar for both UF and ED. There was a significant decrease in cefazolin binding to bovine plasma compared to human plasma, whereas the pattern in rat plasma was more consistent with that in human plasma. Our growth curve analysis revealed considerable growth inhibition of Escherichia coli at 70% bovine or rat plasma compared with 70% human plasma or pure MHB. As expected, our experiments with cefazolin at low concentrations showed that E. coli grew slightly better in 20% human and rat plasma compared to MHB, most probably due to cefazolin binding to proteins in the plasma. Based on the example of cefazolin, our study highlights the interspecies differences of PB with potential impact on PK/PD. These findings should be considered before preclinical PK/PD data can be extrapolated to human patients.


Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Animais , Bovinos , Ratos , Antibacterianos/farmacologia , Cefazolina/farmacologia , Ligação Proteica , Escherichia coli/metabolismo , Proteínas Sanguíneas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA