Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Cancer Lett ; 596: 217022, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38849014

RESUMO

We previously reported that extracellular matrix protein 1 isoform a (ECM1a) promotes epithelial ovarian cancer (EOC) through autocrine signaling by binding to cell surface receptors αXß2. However, the role of ECM1a as a secretory molecule in the tumor microenvironment is rarely reported. In this study, we constructed murine Ecm1-knockout mice and human ECM1a-knockin mice and further generated orthotopic or peritoneal xenograft tumor models to mimic the different metastatic stages of EOC. We show that ECM1a induces oncogenic metastasis of orthotopic xenograft tumors, but inhibits early-metastasis of peritoneal xenograft tumors. ECM1a remodels extracellular matrices (ECM) and promotes remote metastases by recruiting and transforming bone marrow mesenchymal stem cells (BMSCs) into platelet-derived growth factor receptor beta (PDGFRß+) cancer-associated fibroblasts (CAFs) and facilitating the secretion of angiopoietin-like protein 2 (ANGPTL2). Competing with ECM1a, ANGPTL2 also binds to integrin αX through the P1/P2 peptides, resulting in negative effects on BMSC differentiation. Collectively, this study reveals the dual functions of ECM1a in remodeling of TME during tumor progression, emphasizing the complexity of EOC phenotypic heterogeneity and metastasis.


Assuntos
Proteína 2 Semelhante a Angiopoietina , Fibroblastos Associados a Câncer , Proteínas da Matriz Extracelular , Camundongos Knockout , Neoplasias Ovarianas , Microambiente Tumoral , Animais , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Humanos , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Proteínas Semelhantes a Angiopoietina/metabolismo , Proteínas Semelhantes a Angiopoietina/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Metástase Neoplásica
2.
Expert Rev Endocrinol Metab ; 19(4): 299-306, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866702

RESUMO

INTRODUCTION: Familial chylomicronemia syndrome (FCS) is a rare autosomal recessive condition. Effective treatment is important as patients are at risk for severe and potentially fatal acute pancreatitis. We review recent developments in pharmacologic treatment for FCS, namely biological inhibitors of apolipoprotein (apo) C-III and angiopoietin-like protein 3 (ANGPTL3). AREAS COVERED: FCS follows a biallelic inheritance pattern in which an individual inherits two pathogenic loss-of-function alleles of one of the five causal genes - LPL (in 60-80% of patients), GPIHBP1, APOA5, APOC2, and LMF1 - leading to the absence of lipolytic activity. Patients present from childhood with severely elevated triglyceride (TG) levels >10 mmol/L. Most patients with severe hypertriglyceridemia do not have FCS. A strict low-fat diet is the current first-line treatment, and existing lipid-lowering therapies are minimally effective in FCS. Apo C-III inhibitors are emerging TG-lowering therapies shown to be efficacious and safe in clinical trials. ANGPTL3 inhibitors, another class of emerging TG-lowering therapies, have been found to require at least partial lipoprotein lipase activity to lower plasma TG in clinical trials. ANGPTL3 inhibitors reduce plasma TG in patients with multifactorial chylomicronemia but not in patients with FCS who completely lack lipoprotein lipase activity. EXPERT OPINION: Apo C-III inhibitors currently in development are promising treatments for FCS.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Hiperlipoproteinemia Tipo I , Humanos , Hiperlipoproteinemia Tipo I/genética , Hiperlipoproteinemia Tipo I/tratamento farmacológico , Hiperlipoproteinemia Tipo I/terapia , Apolipoproteína C-III/genética , Apolipoproteína C-III/antagonistas & inibidores , Hipolipemiantes/uso terapêutico , Lipase Lipoproteica/genética , Proteínas Semelhantes a Angiopoietina/antagonistas & inibidores , Proteínas Semelhantes a Angiopoietina/genética , Dieta com Restrição de Gorduras , Receptores de Lipoproteínas
3.
J Cell Mol Med ; 28(10): e18280, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38758159

RESUMO

Acute lung injury (ALI) is featured with a robust inflammatory response. Angiopoietin-like protein 2 (ANGPTL2), a pro-inflammatory protein, is complicated with various disorders. However, the role of ANGPTL2 in ALI remains to be further explored. The mice and MH-S cells were administrated with lipopolysaccharide (LPS) to evoke the lung injury in vivo and in vitro. The role and mechanism of ANGPTL was investigated by haematoxylin-eosin, measurement of wet/dry ratio, cell count, terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling, reverse transcription quantitative polymerase chain reaction, immunofluorescence, enzyme-linked immunosorbent assay, detection of autophagic flux and western blot assays. The level of ANGPTL2 was upregulated in lung injury. Knockout of ANGPTL2 alleviated LPS-induced pathological symptoms, reduced pulmonary wet/dry weight ratio, the numbers of total cells and neutrophils in BALF, apoptosis rate and the release of pro-inflammatory mediators, and modulated polarization of alveolar macrophages in mice. Knockdown of ANGPTL2 downregulated the level of pyroptosis indicators, and elevated the level of autophagy in LPS-induced MH-S cells. Besides, downregulation of ANGPTL2 reversed the LPS-induced the expression of leukocyte immunoglobulin (Ig)-like receptor B2 (LILRB2) and triggering receptor expressed on myeloid cells 2 (TREM2), which was reversed by the overexpression of LILRB2. Importantly, knockdown of TREM2 reversed the levels of autophagy- and pyroptosis-involved proteins, and the contents of pro-inflammatory factors in LPS-induced MH-S cells transfected with si ANGPTL2, which was further inverted with the treatment of rapamycin. Therefore, ANGPTL2 silencing enhanced autophagy to alleviate alveolar macrophage pyroptosis via reducing LILRB2-mediated inhibition of TREM2.


Assuntos
Lesão Pulmonar Aguda , Proteína 2 Semelhante a Angiopoietina , Autofagia , Lipopolissacarídeos , Macrófagos Alveolares , Glicoproteínas de Membrana , Piroptose , Receptores Imunológicos , Animais , Piroptose/genética , Piroptose/efeitos dos fármacos , Autofagia/genética , Camundongos , Macrófagos Alveolares/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Técnicas de Silenciamento de Genes , Masculino , Camundongos Endogâmicos C57BL , Proteínas Semelhantes a Angiopoietina/metabolismo , Proteínas Semelhantes a Angiopoietina/genética , Camundongos Knockout
4.
Arch Dermatol Res ; 316(6): 301, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819656

RESUMO

Our study aimed to investigate the role of lipids in melanoma risk and the effect of lipid-lowering drug targets on melanoma. Using Mendelian Randomization analysis, we examined the genetic agents of nine lipid-lowering drugs and their association with melanoma risk. We found that genetically proxied inhibition of HMGCR, ABCG5/ABCG8, and ANGPTL3 was associated with a reduced risk of melanoma. On the other hand, inhibition of LPL and Apo-B100 was significantly associated with an increased risk of melanoma. Sensitivity analyses did not reveal any statistical evidence of bias from pleiotropy or genetic confounding. We did not find a robust association between lipid traits NPC1L1, PCSK9, APOC3 inhibition, and melanoma risk. These findings were validated using two independent lipid datasets. Our analysis also revealed that HMGCR, ANGPTL3, and ABCG5/ABCG8 inhibitors reduced melanoma risk independent of their effects on lipids. This suggests that these targets may have potential for melanoma prevention or treatment. In conclusion, our study provides evidence for a causal role of lipids in melanoma risk and highlights specific lipid-lowering drug targets that may be effective in reducing the risk of melanoma. These findings contribute to the understanding of the underlying mechanisms of melanoma development and provide potential avenues for further research and therapeutic interventions.


Assuntos
Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteína 3 Semelhante a Angiopoietina , Hipolipemiantes , Melanoma , Análise da Randomização Mendeliana , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/epidemiologia , Hipolipemiantes/uso terapêutico , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/epidemiologia , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas Semelhantes a Angiopoietina/genética , Apolipoproteína B-100/genética , Predisposição Genética para Doença , Fatores de Risco , Polimorfismo de Nucleotídeo Único , Lipoproteínas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Hidroximetilglutaril-CoA Redutases , Lipase Lipoproteica
5.
Proc Natl Acad Sci U S A ; 121(17): e2322332121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625948

RESUMO

Apolipoprotein AV (APOA5) lowers plasma triglyceride (TG) levels by binding to the angiopoietin-like protein 3/8 complex (ANGPTL3/8) and suppressing its capacity to inhibit lipoprotein lipase (LPL) catalytic activity and its ability to detach LPL from binding sites within capillaries. However, the sequences in APOA5 that are required for suppressing ANGPTL3/8 activity have never been defined. A clue to the identity of those sequences was the presence of severe hypertriglyceridemia in two patients harboring an APOA5 mutation that truncates APOA5 by 35 residues ("APOA5Δ35"). We found that wild-type (WT) human APOA5, but not APOA5Δ35, suppressed ANGPTL3/8's ability to inhibit LPL catalytic activity. To pursue that finding, we prepared a mutant mouse APOA5 protein lacking 40 C-terminal amino acids ("APOA5Δ40"). Mouse WT-APOA5, but not APOA5Δ40, suppressed ANGPTL3/8's capacity to inhibit LPL catalytic activity and sharply reduced plasma TG levels in mice. WT-APOA5, but not APOA5Δ40, increased intracapillary LPL levels and reduced plasma TG levels in Apoa5-/- mice (where TG levels are high and intravascular LPL levels are low). Also, WT-APOA5, but not APOA5Δ40, blocked the ability of ANGPTL3/8 to detach LPL from cultured cells. Finally, an antibody against a synthetic peptide corresponding to the last 26 amino acids of mouse APOA5 reduced intracapillary LPL levels and increased plasma TG levels in WT mice. We conclude that C-terminal sequences in APOA5 are crucial for suppressing ANGPTL3/8 activity in vitro and for regulating intracapillary LPL levels and plasma TG levels in vivo.


Assuntos
Apolipoproteínas , Lipase Lipoproteica , Camundongos , Humanos , Animais , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Lipase Lipoproteica/metabolismo , Proteína 3 Semelhante a Angiopoietina , Aminoácidos , Triglicerídeos/metabolismo , Apolipoproteína A-V/genética
7.
Cancer Gene Ther ; 31(6): 933-940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38467764

RESUMO

Use of immune checkpoint inhibitors (ICIs) as cancer immunotherapy has advanced rapidly in the clinic. We recently reported that tumor stroma-derived angiopoietin-like protein 2 (ANGPTL2) has tumor suppressive activity by enhancing dendritic cell-mediated CD8+ T cell anti-tumor immune responses. However, a direct impact of ANGPTL2 on ICI anti-tumor effect remains unclear. Here, we use a murine syngeneic model to show that host ANGPTL2 facilitates CD8+ T cell cross-priming and contributes to anti-tumor responses to ICIs in this context. Importantly, our analysis of public datasets indicated that ANGPTL2 expression is associated with positive responses to ICI therapy by human melanoma patients. We conclude that ANGPTL2-mediated stromal cell crosstalk facilitates anti-tumor immunity and ICI responsiveness. These findings overall provide novel insight into ANGPTL2 anti-tumor function and regulation of ICI-induced anti-tumor immunity.


Assuntos
Proteína 2 Semelhante a Angiopoietina , Inibidores de Checkpoint Imunológico , Animais , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Humanos , Proteínas Semelhantes a Angiopoietina/metabolismo , Proteínas Semelhantes a Angiopoietina/genética , Células Estromais/metabolismo , Células Estromais/imunologia , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Feminino , Melanoma/tratamento farmacológico , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/genética
8.
Trends Endocrinol Metab ; 35(6): 490-504, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521668

RESUMO

The regulation of triglyceride (TG) tissue distribution, storage, and utilization, a fundamental process of energy homeostasis, critically depends on lipoprotein lipase (LPL). We review the intricate mechanisms by which LPL activity is regulated by angiopoietin-like proteins (ANGPTL3, 4, 8), apolipoproteins (APOA5, APOC3, APOC2), and the cAMP-responsive element-binding protein H (CREBH). ANGPTL8 functions as a molecular switch, through complex formation, activating ANGPTL3 while deactivating ANGPTL4 in their LPL inhibition. The ANGPTL3-4-8 model integrates the roles of the aforementioned proteins in TG partitioning between white adipose tissue (WAT) and oxidative tissues (heart and skeletal muscles) during the feed/fast cycle. This model offers a unified perspective on LPL regulation, providing insights into TG metabolism, metabolic diseases, and therapeutics.


Assuntos
Lipase Lipoproteica , Humanos , Lipase Lipoproteica/metabolismo , Animais , Triglicerídeos/metabolismo , Proteínas Semelhantes a Angiopoietina/metabolismo , Proteínas Semelhantes a Angiopoietina/genética , Proteína 8 Semelhante a Angiopoietina , Proteína 4 Semelhante a Angiopoietina/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 3 Semelhante a Angiopoietina/metabolismo
9.
Gene ; 914: 148418, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552749

RESUMO

BACKGROUND: Coronary artery disease (CAD) is the leading cause of death worldwide despite advanced treatment and diagnosis strategies. Angiopoietin-like protein 8 (ANGPTL8) mainly functions in the lipid mechanism, which is a dysregulated mechanism during CAD pathogenesis. In this study, we aimed to determine the associations between an ANGPTL8 polymorphism rs2278426 and the severity, presence, and risk factors of CAD. METHODS: A total of 1367 unrelated Turkish individuals who underwent coronary angiography were recruited for the study and grouped as CAD (n = 736, ≥50 stenosis) and non-CAD (n = 549, ≤30 stenosis). Also, subjects were further divided into groups regarding type 2 diabetes mellitus (T2DM) status. Subjects were genotyped for rs2278426 (C/T) by quantitative real-time PCR. Secondary structure analyses of protein interactions were revealed using I-TASSER and PyMOL. RESULTS: Among CAD patients, T allele carriage frequency was lower in the T2DM group (p = 0.046). Moreover, in male non-CAD group, T allele carriage was more prevalent among T2DM patients than non-T2DM (p = 0.033). In logistic regression analysis adjusted for obesity, T allele carrier males had an increased risk for T2DM in non-CAD group (OR = 2.244, 95 % CI: 1.057-4.761, p = 0.035). Also, in T2DM group, stenosis (p = 0.002) and SYNTAX score (p = 0.040) were lower in T allele carrier males than in non-carriers. Analyzes of secondary structure showed that ANGPTL8 could not directly form complexes with ANGPTL3 or ANGPTL4. CONCLUSION: In conclusion, T allele carriage of ANGPTL8 rs2278426 has a protective effect on CAD in T2DM patients. Further research should be conducted to explore the association between ANGPTL8 polymorphism (rs2778426) and CAD.


Assuntos
Alelos , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Polimorfismo de Nucleotídeo Único , Humanos , Masculino , Feminino , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicações , Pessoa de Meia-Idade , Doença da Artéria Coronariana/genética , Proteínas Semelhantes a Angiopoietina/genética , Idoso , Hormônios Peptídicos/genética , Predisposição Genética para Doença , Turquia , Angiografia Coronária , Frequência do Gene , Fatores de Risco
10.
Arterioscler Thromb Vasc Biol ; 44(5): 1086-1097, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38385290

RESUMO

BACKGROUND: ANGPTL3 (angiopoietin-like protein 3) is a circulating protein with a key role in maintaining lipoprotein homeostasis. A monoclonal antibody against ANGPTL3 is an approved and well-tolerated treatment to reduce lipoproteins in familial hypercholesterolemia homozygotes. However, the reduction of hepatic ANGPTL3 synthesis using an antisense oligonucleotide unexpectedly resulted in a dose-dependent increase in liver lipid content and circulating transaminases, resulting in the termination of the clinical trial. Meanwhile, the use of silencing RNAs remains an area of active investigation. Our study sought to investigate whether intracellular downregulation of ANGPTL3 may lead to a primary increase in neutral lipids within the hepatocyte. METHODS: We downregulated ANGPTL3 by silencing RNA in primary human hepatocytes 3-dimensional spheroids, HepG2/LX-2 3-dimensional spheroids, and in HepG2, Hep3B2, and Huh7 cultured in 2 dimensions. RESULTS: ANGPTL3 downregulation increased neutral lipids in all models investigated. Interestingly, ANGPTL3 induced lower intracellular deiodinase type 1 protein levels resulting in a reduction in beta-oxidation and causing an increase in triglycerides stored in lipid droplets. CONCLUSIONS: In conclusion, intracellular ANGPTL3 downregulation by silencing RNA led to an increase in triglycerides content due to a reduction in energy substrate utilization resembling a primary intracellular hepatocyte hypothyroidism.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Regulação para Baixo , Metabolismo Energético , Hepatócitos , Interferência de RNA , Triglicerídeos , Humanos , Proteína 3 Semelhante a Angiopoietina/genética , Proteína 3 Semelhante a Angiopoietina/metabolismo , Proteínas Semelhantes a Angiopoietina/metabolismo , Proteínas Semelhantes a Angiopoietina/genética , Angiopoietinas/metabolismo , Angiopoietinas/genética , Metabolismo Energético/genética , Células Hep G2 , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Transfecção , Triglicerídeos/metabolismo
12.
Lipids Health Dis ; 23(1): 59, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414008

RESUMO

Cancer cells need constant supplies of lipids to survive and grow. Lipid dependence has been observed in various types of cancer, including high-grade serous ovarian carcinomas (HGSOC), which is a lethal form of gynecological malignancy. ANGPTL3, PCSK9, and Apo CIII are pivotal lipid-modulating factors, and therapeutic antibodies have been developed against each one (Evinacumab, Evolocumab and Volanesorsen, respectively). The roles -if any- of ANGPTL3, PCSK9, and Apo CIII in HGSOC are unclear. Moreover, levels of these lipid-modulating factors have never been reported before in HGSOC. In this study, circulating levels of ANGPTL3, PCSK9, and Apo CIII, along with lipid profiles, are examined to verify whether one or many of these lipid-regulating factors are associated with HGSOC. Methods ELISA kits were used to measure ANGPTL3, PCSK9 and Apo CIII levels in plasma samples from 31 women with HGSOC and 40 women with benign ovarian lesions (BOL) before treatment and surgery. A Roche Modular analytical platform measured lipid panels, Apo B and Lp(a) levels.Results ANGPTL3 levels were higher in women with HGSOC (84 ng/mL, SD: 29 ng/mL, n = 31) than in women with BOL (67 ng/mL, SD: 31 ng/mL, n = 40; HGSOC vs. BOL P = 0.019). Associations between the lipid panel and ANGPTL3, and the inverse relationship between HDL-cholesterol and triglycerides, were present in women with BOL but not with HGSOC. PCSK9 and Apo CIII were not associated with HGSOC.Conclusions In this cohort of 71 women, ANGPTL3 levels were increased in HGSOC patients. The presence of HGSOC disrupted the classic inverse relationship between HDL and triglycerides, as well as the association between the lipid panel and ANGPTL3. These associations were only maintained in cancer-free women. Given the availability of Evinacumab, a therapeutic antibody against ANGPTL3, the current finding prompts an assessment of whether ANGPTL3 inhibition has therapeutic potential in HGSOC.


Assuntos
Carcinoma , Cistos Ovarianos , Neoplasias Ovarianas , Humanos , Feminino , Pró-Proteína Convertase 9 , Proteínas Semelhantes a Angiopoietina/genética , Proteína 3 Semelhante a Angiopoietina , Neoplasias Ovarianas/tratamento farmacológico , Triglicerídeos , Angiopoietinas/genética
13.
Sci Rep ; 14(1): 4246, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38379026

RESUMO

High levels of HDL-C are correlated with a decreased risk of cardiovascular disease. HDL-C levels are modulated in part by the secreted phospholipase, endothelial lipase (EL), which hydrolyzes the phospholipids of HDL and decreases circulating HDL-C concentrations. A 584C/T polymorphism in LIPG, the gene which encodes EL, was first identified in individuals with increased HDL levels. This polymorphism results in a T111I point mutation the EL protein. The association between this variant, HDL levels, and the risk of coronary artery disease (CAD) in humans has been extensively studied, but the findings have been inconsistent. In this study, we took a biochemical approach, investigating how the T111I variant affected EL activity, structure, and stability. Moreover, we tested whether the T111I variant altered the inhibition of phospholipase activity by angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4), two known EL inhibitors. We found that neither the stability nor enzymatic activity of EL was altered by the T111I variant. Moreover, we found no difference between wild-type and T111I EL in their ability to be inhibited by ANGPTL proteins. These data suggest that any effect this variant may have on HDL-C levels or cardiovascular disease are not mediated through alterations in these functions.


Assuntos
Doenças Cardiovasculares , Humanos , Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Angiopoietinas , HDL-Colesterol/metabolismo , Lipase/genética , Lipase/metabolismo , Fosfolipases
14.
Cells ; 12(21)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37947641

RESUMO

BACKGROUND: Angiopoietin-like protein 8 (ANGPTL8) is known to regulate lipid metabolism and inflammation. It interacts with ANGPTL3 and ANGPTL4 to regulate lipoprotein lipase (LPL) activity and with IKK to modulate NF-κB activity. Further, a single nucleotide polymorphism (SNP) leading to the ANGPTL8 R59W variant associates with reduced low-density lipoprotein/high-density lipoprotein (LDL/HDL) and increased fasting blood glucose (FBG) in Hispanic and Arab individuals, respectively. In this study, we investigate the impact of the R59W variant on the inflammatory activity of ANGPTL8. METHODS: The ANGPTL8 R59W variant was genotyped in a discovery cohort of 867 Arab individuals from Kuwait. Plasma levels of ANGPTL8 and inflammatory markers were measured and tested for associations with the genotype; the associations were tested for replication in an independent cohort of 278 Arab individuals. Impact of the ANGPTL8 R59W variant on NF-κB activity was examined using approaches including overexpression, luciferase assay, and structural modeling of binding dynamics. RESULTS: The ANGPTL8 R59W variant was associated with increased circulatory levels of tumor necrosis factor alpha (TNFα) and interleukin 7 (IL7). Our in vitro studies using HepG2 cells revealed an increased phosphorylation of key inflammatory proteins of the NF-κB pathway in individuals with the R59W variant as compared to those with the wild type, and TNFα stimulation further elevated it. This finding was substantiated by increased luciferase activity of NF-κB p65 with the R59W variant. Modeled structural and binding variation due to R59W change in ANGPTL8 agreed with the observed increase in NF-κB activity. CONCLUSION: ANGPTL8 R59W is associated with increased circulatory TNFα, IL7, and NF-κB p65 activity. Weak transient binding of the ANGPTL8 R59W variant explains its regulatory role on the NF-κB pathway and inflammation.


Assuntos
Proteína 8 Semelhante a Angiopoietina , Hormônios Peptídicos , Humanos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Interleucina-7 , Inflamação/genética , Transdução de Sinais , Luciferases/metabolismo , Proteína 3 Semelhante a Angiopoietina , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo
15.
Curr Opin Lipidol ; 34(6): 267-271, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820081

RESUMO

PURPOSE OF REVIEW: The aim of this study was to discuss the potential mechanisms and implications of the opposing liver safety results from recent angiopoietin-like 3 (ANGPTL3) inhibition studies. RECENT FINDINGS: The clinical development of vupanorsen, a N-acetylgalactosamine (GalNAc) antisense targeting hepatic ANGPTL3, was recently discontinued due to a significant signal of liver transaminase increase. Vupanorsen elicited a dose-dependent increase in hepatic fat fraction up to 75%, whereas the small interfering RNA (siRNA) ARO-ANG3, has reported preliminary evidence of a dose-dependent decrease in hepatic fat fraction up to 30%. SUMMARY: ANGPTL3 inhibition is an attractive therapeutic target to reduce all apoB-containing lipoproteins. The discrepancy in liver signal results between the antisense and siRNA approach may be explained by the level of target inhibition. An alternative explanation may relate to off-target effects of vupanorsen, which have a molecule- and/or platform-specific origin. For intrahepatic strategies, highly potent ANGPTL3 inhibition will for now require special attention for liver safety.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Fígado , Humanos , Proteínas Semelhantes a Angiopoietina/genética , RNA Interferente Pequeno , Angiopoietinas/genética
16.
Circulation ; 148(19): 1479-1489, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37712257

RESUMO

BACKGROUND: ANGPTL3 (angiopoietin-like 3) is a therapeutic target for reducing plasma levels of triglycerides and low-density lipoprotein cholesterol. A recent trial with vupanorsen, an antisense oligonucleotide targeting hepatic production of ANGPTL3, reported a dose-dependent increase in hepatic fat. It is unclear whether this adverse effect is due to an on-target effect of inhibiting hepatic ANGPTL3. METHODS: We recruited participants with ANGPTL3 deficiency related to ANGPTL3 loss-of-function (LoF) mutations, along with wild-type (WT) participants from 2 previously characterized cohorts located in Campodimele, Italy, and St. Louis, MO. Magnetic resonance spectroscopy and magnetic resonance proton density fat fraction were performed to measure hepatic fat fraction and the distribution of extrahepatic fat. To estimate the causal relationship between ANGPTL3 and hepatic fat, we generated a genetic instrument of plasma ANGPTL3 levels as a surrogate for hepatic protein synthesis and performed Mendelian randomization analyses with hepatic fat in the UK Biobank study. RESULTS: We recruited participants with complete (n=6) or partial (n=32) ANGPTL3 deficiency related to ANGPTL3 LoF mutations, as well as WT participants (n=92) without LoF mutations. Participants with ANGPTL3 deficiency exhibited significantly lower total cholesterol (complete deficiency, 78.5 mg/dL; partial deficiency, 172 mg/dL; WT, 188 mg/dL; P<0.05 for both deficiency groups compared with WT), along with plasma triglycerides (complete deficiency, 26 mg/dL; partial deficiency, 79 mg/dL; WT, 88 mg/dL; P<0.05 for both deficiency groups compared with WT) without any significant difference in hepatic fat (complete deficiency, 9.8%; partial deficiency, 10.1%; WT, 9.9%; P>0.05 for both deficiency groups compared with WT) or severity of hepatic steatosis as assessed by magnetic resonance imaging. In addition, ANGPTL3 deficiency did not alter the distribution of extrahepatic fat. Results from Mendelian randomization analyses in 36 703 participants from the UK Biobank demonstrated that genetically determined ANGPTL3 plasma protein levels were causally associated with low-density lipoprotein cholesterol (P=1.7×10-17) and triglycerides (P=3.2×10-18) but not with hepatic fat (P=0.22). CONCLUSIONS: ANGPTL3 deficiency related to LoF mutations in ANGPTL3, as well as genetically determined reduction of plasma ANGPTL3 levels, is not associated with hepatic steatosis. Therapeutic approaches to inhibit ANGPTL3 production in hepatocytes are not necessarily expected to result in the increased risk for hepatic steatosis that was observed with vupanorsen.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Humanos , Proteínas Semelhantes a Angiopoietina/genética , Triglicerídeos , LDL-Colesterol
17.
Mol Oncol ; 17(12): 2637-2658, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37452654

RESUMO

Loss or downregulation of major histocompatibility complex class I (MHC-I) contributes to tumor immune evasion. We previously demonstrated that angiopoietin-like protein 2 (ANGPTL2) promotes tumor progression using a Xp11.2 translocation renal cell carcinoma (tRCC) mouse model. However, molecular mechanisms underlying ANGPTL2 tumor-promoting activity in the tRCC model remained unclear. Here, we report that ANGPTL2 deficiency in renal tubular epithelial cells slows tumor progression in the tRCC mouse model and promotes activated CD8+ T-cell infiltration of kidney tissues. We also found that Angptl2-deficient tumor cells show enhanced interferon γ-induced expression of MHC-I and increased susceptibility to CD8+ T-cell-mediated anti-tumor immune responses. Moreover, we provide evidence that the ANGPTL2-α5ß1 integrin pathway accelerates polycomb repressive complex 2-mediated repression of MHC-I expression in tumor cells. These findings suggest that ANGPTL2 signaling in tumor cells contributes to tumor immune evasion and that suppressing that signaling in tumor cells could serve as a potential strategy to facilitate tumor elimination by T-cell-mediated anti-tumor immunity.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Proteína 2 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Evasão Tumoral/genética , Repressão Epigenética , Antígenos de Histocompatibilidade Classe I/genética , Carcinoma de Células Renais/genética , Modelos Animais de Doenças
18.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37317898

RESUMO

Angiopoietin-like protein 3 (ANGPTL3) is expressed predominantly in the liver and plays a major role in regulating the circulating triglyceride and lipoprotein fraction concentrations by inhibiting lipoprotein lipase (LPL) activity. Given these physiological roles, ANGPTL3 may play an important role in metabolic changes related to fat accumulation during the fattening period in Japanese Black. This study aimed to reveal the physiological roles of hepatic ANGPTL3 in Japanese Black steers (Bos taurus) during the fattening period and investigate the regulatory effects of hepatic ANGPTL3. To investigate the gene expression and protein localization of ANGPTL3, 18 tissue samples were collected from tree male Holstein bull calves aged 7 wk. Biopsied liver tissues and blood samples were collected from 21 Japanese Black steers during the early (T1; 13 mo of age), middle (T2; 20 mo), and late fattening phases (T3; 28 mo). Relative mRNA expression, blood metabolite concentrations, hormone concentrations, growth, and carcass traits were analyzed. To identify the regulatory factors of hepatic ANGPTL3, primary bovine hepatocytes collected by two Holstein calves aged 7 wk were incubated with insulin, palmitate, oleate, propionate, acetate, or beta-hydroxybutyric acid (BHBA). The ANGPTL3 gene was most highly expressed in the liver, with minor expression in the renal cortex, lungs, reticulum, and jejunum in Holstein bull calves. In Japanese Black steers, relative ANGPTL3 mRNA expressions were less as fattening progressed, and blood triglyceride, total cholesterol, and nonesterified fatty acid (NEFA) concentrations increased. Relative ANGPTL8 and Liver X receptor alpha (LXRα) mRNA expressions decreased in late and middle fattening phases, respectively. Furthermore, relative ANGTPL3 mRNA expression was positively correlated with ANGPTL8 (r = 0.650; P < 0.01) and ANGPTL4 (r = 0.540; P < 0.05) in T3 and T1, respectively, and LXRα showed no correlation with ANGPTL3. Relative ANGTPL3 mRNA expression was negatively correlated with total cholesterol (r = -0.434; P < 0.05) and triglyceride (r = -0.645; P < 0.01) concentrations in T3 and T1, respectively; There was no significant correlation between ANGTPL3 and carcass traits. Relative ANGTPL3 mRNA expression in cultured bovine hepatocytes was downregulated in oleate treatment. Together, these findings suggest that ANGPTL3 downregulation in late fattening phases is associated with the changes in lipid metabolism.


The role of angiopoietin-like protein 3 (ANGPTL3) in various animal species under different physiological conditions remains largely unknown. We evaluated the physiological roles of hepatic ANGPTL3 in Japanese Black steers (Bos taurus) during the fattening period and investigated the expressional regulation of ANGPTL3 in bovine hepatocytes. Relative ANGPTL3 mRNA expression decreased late in the fattening phases. Relative ANGPTL3 mRNA expression was positively correlated with ANGPTL4 and ANGPTL8 and was negatively correlated with blood triglyceride concentrations in early fattening phases. Relative ANGPTL3 mRNA expression in cultured bovine hepatocytes was downregulated in oleate treatment. Fatty acids may influence ANGPTL3 expression in cultured bovine hepatocytes through possible regulatory factors. Our findings suggest that the physiological roles of ANGPTL3 are associated with the changes of lipid metabolism during the fattening period, and the ANGPTL family seem to be associated with blood lipid metabolites.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Ácido Oleico , Animais , Bovinos , Masculino , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Colesterol , Fígado/metabolismo , RNA Mensageiro/metabolismo , Triglicerídeos/metabolismo
19.
Molecules ; 28(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37375208

RESUMO

Angiopoietin-like proteins (ANGPTL) constitute a family of eight proteins (1-8) which play a pivotal role in the regulation of various pathophysiological processes. The current study sought to identify high-risk, "non-synonymous, single-nucleotide polymorphisms" (nsSNPs) in both ANGPTL3 and ANGPTL8 to evaluate the role that these nsSNPs play in various types of cancer. We retrieved a total of 301 nsSNPs from various databases; 79 of these candidates constitute high-risk nsSNPs. Moreover, we identified eleven high-risk nsSNPs that cause various types of cancer: seven candidates for ANGPTL3 (L57H, F295L, L309F, K329M, R332L, S348C, and G409R) and four candidates for ANGPTL8 (P23L, R85W, R138S, and E148D). Protein-protein interaction analysis revealed a strong association of ANGPTL proteins with several tumor-suppressor proteins such as ITGB3, ITGAV, and RASSF5. 'Gene-expression profiling interactive analysis' (GEPIA) showed that expression of ANGPTL3 is significantly downregulated in five cancers: sarcoma (SARC); cholangio carcinoma (CHOL); kidney chromophobe carcinoma (KICH); kidney renal clear cell carcinoma (KIRC); and kidney renal papillary cell carcinoma (KIRP). GEPIA also showed that expression of ANGPTL8 remains downregulated in three cancers: CHOL; glioblastoma (GBM); and breast invasive carcinoma (BRCA). Survival rate analysis indicated that both upregulation and downregulation of ANGPTL3 and ANGPTL8 leads to low survival rates in various types of cancer. Overall, the current study revealed that both ANGPTL3 and ANGPTL8 constitute potential prognostic biomarkers for cancer; moreover, nsSNPs in these proteins might lead to the progression of cancer. However, further in vivo investigation will be helpful to validate the role of these proteins in the biology of cancer.


Assuntos
Neoplasias da Mama , Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Hormônios Peptídicos , Humanos , Feminino , Proteínas Semelhantes a Angiopoietina/genética , Polimorfismo de Nucleotídeo Único , Proteína 3 Semelhante a Angiopoietina , Proteína 8 Semelhante a Angiopoietina , Carcinoma de Células Renais/genética , Hormônios Peptídicos/genética
20.
Mol Med Rep ; 28(2)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37350390

RESUMO

Lung adenocarcinoma (LUAD) is a common malignancy throughout the world with high levels of mortality and morbidity. In the present study, potential biomarkers and treatment targets for LUAD were investigated using data from The Cancer Genome Atlas. Overall, 4,485 differentially expressed genes (DEGs) were identified (1,857 upregulated and 2,628 downregulated) between tumor and adjacent control tissues. Functional analysis with Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Gene Set Variation Analysis and Gene Set Enrichment Analysis revealed significant enrichment of the DEGs in pathways related to system development, cell cycle and cell adhesion. Weighted gene co­expression network analysis distinguished ten co­expression modules on inclusion of the clinical profiles of patients with LUAD. Of these, the blue/turquoise modules showed peak association with tumor onset. Analysis of hub modules identified five hub genes, namely ANGPTL7, SLC6A4, PTPRQ, KCNA4 and TEDC2 (also known as C16orf59). Survival analysis revealed associations between hub­gene expression profiles and patient prognosis. Downregulation of SLC6A4 in LUAD tumor tissues was confirmed using immunohistochemistry. Additional assays (Cell Counting Kit­8, colony formation, scratch assay, cell cycle, Transwell invasion assay and cell adhesion assay) revealed that SLC6A4 overexpression inhibited A549 cell growth, invasion and migration. The findings demonstrated that the hub genes could act as treatment targets or new biomarkers for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Biomarcadores Tumorais/genética , Adenocarcinoma de Pulmão/patologia , Perfilação da Expressão Gênica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Proteínas Semelhantes a Angiopoietina/genética , Proteína 7 Semelhante a Angiopoietina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA