Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67.270
Filtrar
1.
PeerJ ; 12: e17323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726377

RESUMO

The rice receptor kinase XA21 confers broad-spectrum resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of rice bacterial blight disease. To investigate the relationship between the expression level of XA21 and resulting resistance, we generated independent HA-XA21 transgenic rice lines accumulating the XA21 immune receptor fused with an HA epitope tag. Whole-genome sequence analysis identified the T-DNA insertion sites in sixteen independent T0 events. Through quantification of the HA-XA21 protein and assessment of the resistance to Xoo strain PXO99 in six independent transgenic lines, we observed that XA21-mediated resistance is dose dependent. In contrast, based on the four agronomic traits quantified in these experiments, yield is unlikely to be affected by the expression level of HA-XA21. These findings extend our knowledge of XA21-mediated defense and contribute to the growing number of well-defined genomic landing pads in the rice genome that can be targeted for gene insertion without compromising yield.


Assuntos
Resistência à Doença , Oryza , Doenças das Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Xanthomonas , Xanthomonas/genética , Oryza/microbiologia , Oryza/genética , Oryza/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases
2.
Protein Sci ; 33(6): e5004, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723164

RESUMO

Dysregulation of RNA splicing processes is intricately linked to tumorigenesis in various cancers, especially breast cancer. Cdc2-like kinase 2 (CLK2), an oncogenic RNA-splicing kinase pivotal in breast cancer, plays a significant role, particularly in the context of triple-negative breast cancer (TNBC), a subtype marked by substantial medical challenges due to its low survival rates. In this study, we employed a structure-based virtual screening (SBVS) method to identify potential CLK2 inhibitors with novel chemical structures for treating TNBC. Compound 670551 emerged as a novel CLK2 inhibitor with a 50% inhibitory concentration (IC50) value of 619.7 nM. Importantly, Compound 670551 exhibited high selectivity for CLK2 over other protein kinases. Functionally, this compound significantly reduced the survival and proliferation of TNBC cells. Results from a cell-based assay demonstrated that this inhibitor led to a decrease in RNA splicing proteins, such as SRSF4 and SRSF6, resulting in cell apoptosis. In summary, we identified a novel CLK2 inhibitor as a promising potential treatment for TNBC therapy.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Feminino , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Proliferação de Células/efeitos dos fármacos
3.
Nat Commun ; 15(1): 3901, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724505

RESUMO

Activation of the NF-κB pathway is strictly regulated to prevent excessive inflammatory and immune responses. In a well-known negative feedback model, IκBα-dependent NF-κB termination is a delayed response pattern in the later stage of activation, and the mechanisms mediating the rapid termination of active NF-κB remain unclear. Here, we showed IκBα-independent rapid termination of nuclear NF-κB mediated by CLK2, which negatively regulated active NF-κB by phosphorylating the RelA/p65 subunit of NF-κB at Ser180 in the nucleus to limit its transcriptional activation through degradation and nuclear export. Depletion of CLK2 increased the production of inflammatory cytokines, reduced viral replication and increased the survival of the mice. Mechanistically, CLK2 phosphorylated RelA/p65 at Ser180 in the nucleus, leading to ubiquitin‒proteasome-mediated degradation and cytoplasmic redistribution. Importantly, a CLK2 inhibitor promoted cytokine production, reduced viral replication, and accelerated murine psoriasis. This study revealed an IκBα-independent mechanism of early-stage termination of NF-κB in which phosphorylated Ser180 RelA/p65 turned off posttranslational modifications associated with transcriptional activation, ultimately resulting in the degradation and nuclear export of RelA/p65 to inhibit excessive inflammatory activation. Our findings showed that the phosphorylation of RelA/p65 at Ser180 in the nucleus inhibits early-stage NF-κB activation, thereby mediating the negative regulation of NF-κB.


Assuntos
Citoplasma , Inibidor de NF-kappaB alfa , NF-kappa B , Proteínas Tirosina Quinases , Fator de Transcrição RelA , Animais , Fosforilação , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/genética , Camundongos , Fator de Transcrição RelA/metabolismo , Humanos , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , NF-kappa B/metabolismo , Citoplasma/metabolismo , Proteólise , Núcleo Celular/metabolismo , Replicação Viral , Células HEK293 , Transdução de Sinais , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Serina-Treonina Quinases
4.
Cardiovasc Diabetol ; 23(1): 164, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724987

RESUMO

Dynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive. The present study revealed that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was consistently upregulated in diabetic cardiomyopathy (DCM) and promoted SNO-Drp1 in cardiac microvascular endothelial cells (CMECs), which in turn led to mitochondrial dysfunction and cardiac microvascular disorder. Further studies confirmed that MAP4K4 promoted SNO-Drp1 at human C644 (mouse C650) by inhibiting glutathione peroxidase 4 (GPX4) expression, through which MAP4K4 stimulated endothelial ferroptosis in diabetes. In contrast, inhibition of MAP4K4 via DMX-5804 significantly reduced endothelial ferroptosis, alleviated cardiac microvascular dysfunction and improved cardiac dysfunction in db/db mice by reducing SNO-Drp1. In parallel, the C650A mutation in mice abolished SNO-Drp1 and the role of Drp1 in promoting cardiac microvascular disorder and cardiac dysfunction. In conclusion, our findings demonstrate that MAP4K4 plays an important role in endothelial dysfunction in DCM and reveal that SNO-Drp1 and ferroptosis activation may act as downstream targets, representing potential therapeutic targets for DCM.


Assuntos
Cardiomiopatias Diabéticas , Dinaminas , Células Endoteliais , Camundongos Endogâmicos C57BL , Transdução de Sinais , Animais , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/etiologia , Humanos , Dinaminas/metabolismo , Dinaminas/genética , Masculino , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/enzimologia , Células Endoteliais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ferroptose/efeitos dos fármacos , Modelos Animais de Doenças , Células Cultivadas , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/enzimologia , Camundongos , Processamento de Proteína Pós-Traducional , Circulação Coronária , Peptídeos e Proteínas de Sinalização Intracelular
5.
Cells ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38727283

RESUMO

The unfolded protein response is an intricate system of sensor proteins in the endoplasmic reticulum (ER) that recognizes misfolded proteins and transmits information via transcription factors to either regain proteostasis or, depending on the severity, to induce apoptosis. The main transmembrane sensor is IRE1α, which contains cytoplasmic kinase and RNase domains relevant for its activation and the mRNA splicing of the transcription factor XBP1. Mast cell leukemia (MCL) is a severe form of systemic mastocytosis. The inhibition of IRE1α in the MCL cell line HMC-1.2 has anti-proliferative and pro-apoptotic effects, motivating us to elucidate the IRE1α interactors/regulators in HMC-1.2 cells. Therefore, the TurboID proximity labeling technique combined with MS analysis was applied. Gene Ontology and pathway enrichment analyses revealed that the majority of the enriched proteins are involved in vesicle-mediated transport, protein stabilization, and ubiquitin-dependent ER-associated protein degradation pathways. In particular, the AAA ATPase VCP and the oncoprotein MTDH as IRE1α-interacting proteins caught our interest for further analyses. The pharmacological inhibition of VCP activity resulted in the increased stability of IRE1α and MTDH as well as the activation of IRE1α. The interaction of VCP with both IRE1α and MTDH was dependent on ubiquitination. Moreover, MTDH stability was reduced in IRE1α-knockout cells. Hence, pharmacological manipulation of IRE1α-MTDH-VCP complex(es) might enable the treatment of MCL.


Assuntos
Endorribonucleases , Leucemia de Mastócitos , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Endorribonucleases/metabolismo , Linhagem Celular Tumoral , Leucemia de Mastócitos/metabolismo , Leucemia de Mastócitos/patologia , Degradação Associada com o Retículo Endoplasmático , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Proteínas de Membrana/metabolismo
6.
J Coll Physicians Surg Pak ; 34(5): 527-532, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720211

RESUMO

OBJECTIVE: To develop an intervention based on Notch-1 signalling pathway blockade by investigating the potential application of the neurogenic locus notch homologue protein 1(Notch-1) signalling pathway as a key regulator of chronic inflammation and adipogenesis in the treatment of hepatic insulin resistance (HIR). STUDY DESIGN: Experimental study. Place and Duration of the Study: Animal Laboratory of the Fourth Hospital of Hebei Medical University, Shijiazhuang, China, from April 2021 to June 2022. METHODOLOGY: HIR models were established in Notch-1WT and Notch-1MAC-KO mice by high fat diet (HFD) for 16 weeks. Haematoxylin and eosin (HE) staining and oil red O (ORO) staining were used to detect inflammatory infiltration and lipid accumulation in each group. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of TNF-α and IL-6. Free fatty acid (FFA) and total cholesterol (TC) were measured with relevant kits. Moreover, real-time quantitative polymerase chain reaction (PCR) was performed to detect the relative expressions of F4/80, Mcp1, and CD11b in hepatic tissues. Mass spectrometry was used to analyse the levels of triglyceride (TG), diacylglycerol (DAG) and conformite europeenne (CE) in liver tissue. Western blotting was used to detect the expression of related proteins. RESULTS: Specific knockdown of Notch-1 in macrophages decreases the relative fluorescence intensity of CD68 and attenuates inflammatory infiltration and lipid degeneration. There was no difference in plasma levels of FFA and TG. Specific knockdown of Notch-1 in macrophages decreases the expression of F4/80, Mcp1, and CD11b, as well as the levels of TG, DAG, CE, IL-6, and TNF-α. CONCLUSION: Specific knockout of Notch-1 in macrophages may reduce HIR by inhibiting the IRE1α-XBP1 signalling pathway. KEY WORDS: Hepatic insulin resistance, Macrophages, Notch-1, IRE1α, XBP1.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Macrófagos , Camundongos Knockout , Proteínas Serina-Treonina Quinases , Receptor Notch1 , Transdução de Sinais , Animais , Camundongos , Modelos Animais de Doenças , Endorribonucleases/metabolismo , Endorribonucleases/genética , Resistência à Insulina/fisiologia , Fígado/metabolismo , Macrófagos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor Notch1/metabolismo , Receptor Notch1/genética , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética
7.
BMC Vet Res ; 20(1): 186, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730465

RESUMO

BACKGROUND: The current understanding to the mechanism of rumen development is limited. We hypothesized that the Hippo signaling pathway controlled the proliferation of rumen epithelium (RE) during postnatal development. In the present study, we firstly tested the changes of the Hippo signaling pathway in the RE during an early growing period from d5 to d25, and then we expanded the time range to the whole preweaning period (d10-38) and one week post weaning (d45). An in vitro experiment was also carried out to verify the function of Hippo signaling pathway during RE cell proliferation. RESULTS: In the RE of lambs from d5 to d25, the expression of baculoviral IAP repeat containing (BIRC3/5) was increased, while the expressions of large tumor suppressor kinase 2 (LATS2), TEA domain transcription factor 3 (TEAD3), axin 1 (AXIN1), and MYC proto-oncogene (MYC) were decreased with rumen growth. From d10 to d38, the RE expressions of BIRC3/5 were increased, while the expressions of LATS2 and MYC were decreased, which were similar with the changes in RE from d5 to d25. From d38 to d45, different changes were observed, with the expressions of LATS1/2, MOB kinase activator 1B (MOB1B), and TEAD1 increased, while the expressions of MST1 and BIRC5 decreased. Correlation analysis showed that during the preweaning period, the RE expressions of BIRC3/5 were positively correlated with rumen development variables, while LAST2 was negatively correlated with rumen development variables. The in vitro experiment validated the changes of LATS2 and BIRC3/5 in the proliferating RE cells, which supported their roles in RE proliferation during preweaning period. CONCLUSIONS: Our results suggest that the LATS2-YAP1-BIRC3/5 axis participates in the RE cell proliferation and promotes rumen growth during the preweaning period.


Assuntos
Proliferação de Células , Proteínas Serina-Treonina Quinases , Rúmen , Transdução de Sinais , Animais , Proliferação de Células/fisiologia , Rúmen/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ovinos , Via de Sinalização Hippo , Células Epiteliais/metabolismo , Desmame
8.
Proc Natl Acad Sci U S A ; 121(20): e2321919121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713625

RESUMO

Successful regeneration of missing tissues requires seamless integration of positional information along the body axes. Planarians, which regenerate from almost any injury, use conserved, developmentally important signaling pathways to pattern the body axes. However, the molecular mechanisms which facilitate cross talk between these signaling pathways to integrate positional information remain poorly understood. Here, we report a p21-activated kinase (smed-pak1) which functionally integrates the anterior-posterior (AP) and the medio-lateral (ML) axes. pak1 inhibits WNT/ß-catenin signaling along the AP axis and, functions synergistically with the ß-catenin-independent WNT signaling of the ML axis. Furthermore, this functional integration is dependent on warts and merlin-the components of the Hippo/Yorkie (YKI) pathway. Hippo/YKI pathway is a critical regulator of body size in flies and mice, but our data suggest the pathway regulates body axes patterning in planarians. Our study provides a signaling network integrating positional information which can mediate coordinated growth and patterning during planarian regeneration.


Assuntos
Padronização Corporal , Planárias , Proteínas Serina-Treonina Quinases , Regeneração , Via de Sinalização Wnt , Quinases Ativadas por p21 , Animais , Regeneração/fisiologia , Planárias/fisiologia , Planárias/genética , Planárias/metabolismo , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Via de Sinalização Wnt/fisiologia , Padronização Corporal/genética , Padronização Corporal/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transativadores/metabolismo , Transativadores/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
9.
BMC Pulm Med ; 24(1): 223, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714933

RESUMO

BACKGROUND: Pulmonary fibromatosis (PF) is a specific variant of fibromatosis, which is rarely reported occurring in the lung. PF with HIPK2-YAP1 fusion was a novel entity. CASE PRESENTATION: In this report, a 66-year-old male with PF had been smoking over 40 years. Multiple cords and small nodules in both lungs had been detected in a health examination two years earlier at our hospital. But approximately twofold enlarged in the lingual segment of the upper lobe in the left lung were disclosed in this year. Immunohistochemical analysis demonstrated that the vimentin and ß-Catenin were positive in the largest nodule. After underwent a DNA/RNA panel next-generation sequencing (NGS), missense mutations and HIPK2-YAP1 fusion were found in this sample. Ultimately, the case diagnosis as PF with HIPK2-YAP1 fusion after multidisciplinary treatment. Currently, the patient is doing well and recurrence-free at 14 months post-surgery. CONCLUSIONS: It's difficult for patients with complex morphology to make accurate diagnosis solely based on morphology and immunohistochemistry. But molecular detection is an effective method for further determining pathological subtypes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte , Neoplasias Pulmonares , Proteínas Serina-Treonina Quinases , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Masculino , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Idoso , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/diagnóstico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Mutação de Sentido Incorreto
10.
Proc Natl Acad Sci U S A ; 121(21): e2403685121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743625

RESUMO

The tumor suppressor LKB1 is a serine/threonine protein kinase that is frequently mutated in human lung adenocarcinoma (LUAD). LKB1 regulates a complex signaling network that is known to control cell polarity and metabolism; however, the pathways that mediate the tumor-suppressive activity of LKB1 are incompletely defined. To identify mechanisms of LKB1-mediated growth suppression, we developed a spheroid-based cell culture assay to study LKB1-dependent growth. We then performed genome-wide CRISPR screens in spheroidal culture and found that LKB1 suppresses growth, in part, by activating the PIKFYVE lipid kinase. Finally, we used chemical inhibitors and a pH-sensitive reporter to determine that LKB1 impairs growth by promoting the internalization of wild-type EGFR in a PIKFYVE-dependent manner.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP , Fosfatidilinositol 3-Quinases , Proteínas Serina-Treonina Quinases , Esferoides Celulares , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Quinases Proteína-Quinases Ativadas por AMP/genética , Esferoides Celulares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proliferação de Células , Linhagem Celular Tumoral , Sistemas CRISPR-Cas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
11.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38728007

RESUMO

Activation of PINK1 and Parkin in response to mitochondrial damage initiates a response that includes phosphorylation of RAB7A at Ser72. Rubicon is a RAB7A binding negative regulator of autophagy. The structure of the Rubicon:RAB7A complex suggests that phosphorylation of RAB7A at Ser72 would block Rubicon binding. Indeed, in vitro phosphorylation of RAB7A by TBK1 abrogates Rubicon:RAB7A binding. Pacer, a positive regulator of autophagy, has an RH domain with a basic triad predicted to bind an introduced phosphate. Consistent with this, Pacer-RH binds to phosho-RAB7A but not to unphosphorylated RAB7A. In cells, mitochondrial depolarization reduces Rubicon:RAB7A colocalization whilst recruiting Pacer to phospho-RAB7A-positive puncta. Pacer knockout reduces Parkin mitophagy with little effect on bulk autophagy or Parkin-independent mitophagy. Rescue of Parkin-dependent mitophagy requires the intact pRAB7A phosphate-binding basic triad of Pacer. Together these structural and functional data support a model in which the TBK1-dependent phosphorylation of RAB7A serves as a switch, promoting mitophagy by relieving Rubicon inhibition and favoring Pacer activation.


Assuntos
Mitofagia , Proteínas Serina-Treonina Quinases , Ubiquitina-Proteína Ligases , Proteínas rab de Ligação ao GTP , proteínas de unión al GTP Rab7 , Mitofagia/genética , Humanos , Fosforilação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Células HeLa , Ligação Proteica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Células HEK293
12.
Cell Mol Life Sci ; 81(1): 215, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739166

RESUMO

Down syndrome (DS) is a genetic disease characterized by a supernumerary chromosome 21. Intellectual deficiency (ID) is one of the most prominent features of DS. Central nervous system defects lead to learning disabilities, motor and language delays, and memory impairments. At present, a prenatal treatment for the ID in DS is lacking. Subcutaneous administration of synthetic preimplantation factor (sPIF, a peptide with a range of biological functions) in a model of severe brain damage has shown neuroprotective and anti-inflammatory properties by directly targeting neurons and microglia. Here, we evaluated the effect of PIF administration during gestation and until weaning on Dp(16)1Yey mice (a mouse model of DS). Possible effects at the juvenile stage were assessed using behavioral tests and molecular and histological analyses of the brain. To test the influence of perinatal sPIF treatment at the adult stage, hippocampus-dependent memory was evaluated on postnatal day 90. Dp(16)1Yey pups showed significant behavioral impairment, with impaired neurogenesis, microglial cell activation and a low microglial cell count, and the deregulated expression of genes linked to neuroinflammation and cell cycle regulation. Treatment with sPIF restored early postnatal hippocampal neurogenesis, with beneficial effects on astrocytes, microglia, inflammation, and cell cycle markers. Moreover, treatment with sPIF restored the level of DYRK1A, a protein that is involved in cognitive impairments in DS. In line with the beneficial effects on neurogenesis, perinatal treatment with sPIF was associated with an improvement in working memory in adult Dp(16)1Yey mice. Perinatal treatment with sPIF might be an option for mitigating cognitive impairments in people with DS.


Assuntos
Modelos Animais de Doenças , Síndrome de Down , Neurogênese , Animais , Síndrome de Down/tratamento farmacológico , Síndrome de Down/patologia , Síndrome de Down/metabolismo , Síndrome de Down/complicações , Síndrome de Down/genética , Neurogênese/efeitos dos fármacos , Camundongos , Feminino , Gravidez , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/efeitos dos fármacos , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Quinases Dyrk , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Masculino , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/patologia
13.
BMC Cancer ; 24(1): 587, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38741073

RESUMO

YAP and TAZ, the Hippo pathway terminal transcriptional activators, are frequently upregulated in cancers. In tumor cells, they have been mainly associated with increased tumorigenesis controlling different aspects from cell cycle regulation, stemness, or resistance to chemotherapies. In fewer cases, they have also been shown to oppose cancer progression, including by promoting cell death through the action of the p73/YAP transcriptional complex, in particular after chemotherapeutic drug exposure. Using HCT116 cells, we show here that oxaliplatin treatment led to core Hippo pathway down-regulation and nuclear accumulation of TAZ. We further show that TAZ was required for the increased sensitivity of HCT116 cells to oxaliplatin, an effect that appeared independent of p73, but which required the nuclear relocalization of TAZ. Accordingly, Verteporfin and CA3, two drugs affecting the activity of YAP and TAZ, showed antagonistic effects with oxaliplatin in co-treatments. Importantly, using several colorectal cell lines, we show that the sensitizing action of TAZ to oxaliplatin is dependent on the p53 status of the cells. Our results support thus an early action of TAZ to sensitize cells to oxaliplatin, consistent with a model in which nuclear TAZ in the context of DNA damage and p53 activity pushes cells towards apoptosis.


Assuntos
Antineoplásicos , Neoplasias do Colo , Via de Sinalização Hippo , Compostos Organoplatínicos , Oxaliplatina , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteína Supressora de Tumor p53 , Humanos , Oxaliplatina/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Transativadores/metabolismo , Transativadores/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células HCT116 , Transdução de Sinais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/uso terapêutico , Antineoplásicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Verteporfina/farmacologia , Verteporfina/uso terapêutico , Linhagem Celular Tumoral , Proteína Tumoral p73/metabolismo , Proteína Tumoral p73/genética , Proteínas de Sinalização YAP/metabolismo , Porfirinas/farmacologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Apoptose/efeitos dos fármacos
14.
Front Endocrinol (Lausanne) ; 15: 1392063, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715801

RESUMO

Introduction: Understanding the genetic factors contributing to variations in bone mineral density (BMD) and vitamin D could provide valuable insights into the pathogenesis of osteoporosis. This study aimed to evaluate the association of single nucleotide variants in MARK3 (rs11623869), PLCB4 (rs6086746), and GEMIN2 (rs2277458) with BMD in Mexican women. Methods: The gene-gene interaction was evaluated in these variants in serum 25(OH)D levels and BMD. A genetic risk score (GRS) was created on the basis of the three genetic variants. Genotyping was performed using predesigned TaqMan assays. Results: A significant association was found between the rs6086746-A variant and BMD at the total hip, femoral neck, and lumbar spine, in women aged 45 years or older. However, no association was observed between the variants rs11623869 and rs2277458. The rs11623869 × rs2277458 interaction was associated with total hip (p=0.002) and femoral neck BMD (p=0.013). Similarly, for vitamin D levels, we observed an interaction between the variants rs6086746 × rs2277458 (p=0.021). GRS revealed a significant association with total hip BMD (p trend=0.003) and femoral neck BMD (p trend=0.006), as well as increased vitamin D levels (p trend=0.0003). These findings provide evidence of the individual and joint effect of the MARK3, PLCB4, and GEMIN2 variants on BMD and serum vitamin D levels in Mexican women. Discussion: This knowledge could help to elucidate the interaction mechanism between BMD-related genetic variants and 25OHD, contributing to the determination of the pathogenesis of osteoporosis and its potential implications during early interventions.


Assuntos
Densidade Óssea , Polimorfismo de Nucleotídeo Único , Vitamina D , Humanos , Feminino , Densidade Óssea/genética , México , Pessoa de Meia-Idade , Vitamina D/sangue , Vitamina D/análogos & derivados , Proteínas Serina-Treonina Quinases/genética , Osteoporose/genética , Osteoporose/sangue , Idoso , Adulto , Proteínas de Ligação ao GTP/genética , Predisposição Genética para Doença , Genótipo
15.
Proc Natl Acad Sci U S A ; 121(20): e2316266121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709923

RESUMO

Neurons regulate the microtubule-based transport of certain vesicles selectively into axons or dendrites to ensure proper polarization of function. The mechanism of this polarized vesicle transport is still not fully elucidated, though it is known to involve kinesins, which drive anterograde transport on microtubules. Here, we explore how the kinesin-3 family member KIF13A is regulated such that vesicles containing transferrin receptor (TfR) travel only to dendrites. In experiments involving live-cell imaging, knockout of KIF13A, BioID assay, we found that the kinase MARK2 phosphorylates KIF13A at a 14-3-3 binding motif, strengthening interaction of KIF13A with 14-3-3 such that it dissociates from TfR-containing vesicles, which therefore cannot enter axons. Overexpression of KIF13A or knockout of MARK2 leads to axonal transport of TfR-containing vesicles. These results suggest a unique kinesin-based mechanism for polarized transport of vesicles to dendrites.


Assuntos
Proteínas 14-3-3 , Dendritos , Cinesinas , Proteínas Serina-Treonina Quinases , Receptores da Transferrina , Cinesinas/metabolismo , Cinesinas/genética , Proteínas 14-3-3/metabolismo , Dendritos/metabolismo , Fosforilação , Receptores da Transferrina/metabolismo , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Humanos , Sítios de Ligação , Microtúbulos/metabolismo , Ratos , Camundongos , Ligação Proteica
16.
COPD ; 21(1): 2342797, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38712759

RESUMO

Objective: To investigate the effects of cigarette smoke (CS) on Serine/Threonine Kinase 11 (STK11) and to determine STK11's role in CS-induced airway epithelial cell cytotoxicity.Methods: STK11 expression levels in the lung tissues of smokers with or without COPD and mice exposed to CS or room air (RA) were determined by immunoblotting and RT-PCR. BEAS-2Bs-human bronchial airway epithelial cells were exposed to CS extract (CSE), and the changes in STK11 expression levels were determined by immunoblotting and RT-PCR. BEAS-2B cells were transfected with STK11-specific siRNA or STK11 expression plasmid, and the effects of CSE on airway epithelial cell cytotoxicity were measured. To determine the specific STK11 degradation-proteolytic pathway, BEAS-2Bs were treated with cycloheximide alone or combined with MG132 or leupeptin. Finally, to identify the F-box protein mediating the STK11 degradation, a screening assay was performed using transfection with a panel of FBXL E3 ligase subunits.Results: STK11 protein levels were significantly decreased in the lung tissues of smokers with COPD relative to smokers without COPD. STK11 protein levels were also significantly decreased in mouse lung tissues exposed to CS compared to RA. Exposure to CSE shortened the STK11 mRNA and protein half-life to 4 h in BEAS-2B cells. STK11 protein overexpression attenuated the CSE-induced cytotoxicity; in contrast, its knockdown augmented CSE-induced cytotoxicity. FBXL19 mediates CSE-induced STK11 protein degradation via the ubiquitin-proteasome pathway in cultured BEAS-2B cells. FBXL19 overexpression led to accelerated STK11 ubiquitination and degradation in a dose-dependent manner.Conclusions: Our results suggest that CSE enhances the degradation of STK11 protein in airway epithelial cells via the FBXL19-mediated ubiquitin-proteasomal pathway, leading to augmented cell death.HIGHLIGHTSLung tissues of COPD-smokers exhibited a decreased STK11 RNA and protein expression.STK11 overexpression attenuates CS-induced airway epithelial cell cytotoxicity.STK11 depletion augments CS-induced airway epithelial cell cytotoxicity.CS diminishes STK11 via FBXL19-mediated ubiquitin-proteasome degradation.


Assuntos
Proteínas Quinases Ativadas por AMP , Células Epiteliais , Proteínas F-Box , Proteínas Serina-Treonina Quinases , Doença Pulmonar Obstrutiva Crônica , Fumaça , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Camundongos , Fumaça/efeitos adversos , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Quinases Proteína-Quinases Ativadas por AMP , Linhagem Celular , Proteólise/efeitos dos fármacos , Leupeptinas/farmacologia , Masculino , Cicloeximida/farmacologia , RNA Interferente Pequeno , Camundongos Endogâmicos C57BL , Mucosa Respiratória/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Fumar Cigarros/efeitos adversos
17.
Arch Virol ; 169(5): 116, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722402

RESUMO

In this study, we investigated the role of serum/glucocorticoid-regulated kinase 1 (SGK1) in varicella-zoster virus (VZV) replication. VZV DNA replication and plaque formation were inhibited by SGK1 knockout and treatment with an SGK1 inhibitor. Furthermore, SGK1 inhibition suppressed the increase in cyclin B1 expression induced by VZV infection. These results suggest that VZV infection induces SGK1 activation, which is required for efficient viral proliferation through the expression of cyclin B1. This is the first study to report that SGK1 is involved in the VZV life cycle.


Assuntos
Ciclina B1 , Herpesvirus Humano 3 , Proteínas Imediatamente Precoces , Proteínas Serina-Treonina Quinases , Replicação Viral , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Humanos , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ciclina B1/metabolismo , Ciclina B1/genética , Linhagem Celular , Replicação do DNA
18.
Planta ; 259(6): 149, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724681

RESUMO

MAIN CONCLUSION: The rice SnRK2 members SAPK4, SAPK5, SAPK7 and SAPK10 are positive regulators involved in the regulation of rice flowering, while other single mutants exhibited no effect on rice flowering. The rice SnRK2 family, comprising 10 members known as SAPK (SnRK2-Associated Protein Kinase), is pivotal in the abscisic acid (ABA) pathway and crucial for various biological processes, such as drought resistance and salt tolerance. Additionally, these members have been implicated in the regulation of rice heading date, a key trait influencing planting area and yield. In this study, we utilized gene editing technology to create mutants in the Songjing 2 (SJ2) background, enabling a comprehensive analyze the role of each SAPK member in rice flowering. We found that SAPK1, SAPK2, and SAPK3 may not directly participate in the regulatory network of rice heading date, while SAPK4, SAPK5, and SAPK7 play positive roles in rice flowering regulation. Notably, polygene deletion resulted in an additive effect on delaying flowering. Our findings corroborate the previous studies indicating the positive regulatory role of SAPK10 in rice flowering, as evidenced by delayed flowering observed in sapk9/10 double mutants. Moving forward, our future research will focus on analyzing the molecular mechanisms underlying SAPKs involvement in rice flowering regulation, aiming to enhance our understanding of the rice heading date relationship network and lay a theoretical foundation for breeding efforts to alter rice ripening dates.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Oryza/enzimologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação , Edição de Genes , Estresse Fisiológico/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ácido Abscísico/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
19.
Mol Biol Rep ; 51(1): 636, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727863

RESUMO

BACKGROUND: Osteoporosis (OP), characterized by compromised bone integrity and increased fracture risk, poses a significant health challenge. Circular RNAs (circRNAs) have emerged as crucial regulators in various pathophysiological processes, prompting investigation into their role in osteoporosis. This study aimed to elucidate the involvement of circCOX6A1 in OP progression and understand its underlying molecular mechanisms. The primary objective was to explore the impact of circCOX6A1 on bone marrow-derived mesenchymal stem cells (BMSCs) and its potential interactions with miR-512-3p and DYRK2. METHODS: GSE161361 microarray analysis was employed to assess circCOX6A1 expression in OP patients. We utilized in vitro and in vivo models, including BMSC cultures, osteogenic differentiation assays, and an OVX-induced mouse model of OP. Molecular techniques such as quantitative RT-PCR, western blotting, and functional assays like alizarin red staining (ARS) were employed to evaluate circCOX6A1 effects on BMSC proliferation, apoptosis, and osteogenic differentiation. The interaction between circCOX6A1, miR-512-3p, and DYRK2 was investigated through dual luciferase reporter assays, RNA immunoprecipitation, and RNA pull-down assays. RESULTS: CircCOX6A1 was found to be upregulated in osteoporosis patients, and its expression inversely correlated with osteogenic differentiation of BMSCs. CircCOX6A1 knockdown enhanced osteogenic differentiation, as evidenced by increased mineralized nodule formation and upregulation of osteogenic markers. In vivo, circCOX6A1 knockdown ameliorated osteoporosis progression in OVX mice. Mechanistically, circCOX6A1 acted as a sponge for miR-512-3p, subsequently regulating DYRK2 expression. CONCLUSION: This study provides compelling evidence for the role of circCOX6A1 in osteoporosis pathogenesis. CircCOX6A1 negatively regulates BMSC osteogenic differentiation through the miR-512-3p/DYRK2 axis, suggesting its potential as a therapeutic target for mitigating OP progression.


Assuntos
Diferenciação Celular , Quinases Dyrk , Células-Tronco Mesenquimais , MicroRNAs , Osteogênese , Osteoporose , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , RNA Circular , Osteoporose/genética , Osteoporose/metabolismo , Osteoporose/patologia , Osteogênese/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Diferenciação Celular/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Humanos , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Camundongos , Células-Tronco Mesenquimais/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Feminino , Proliferação de Células/genética , Modelos Animais de Doenças , Apoptose/genética , Pessoa de Meia-Idade
20.
Nat Commun ; 15(1): 3779, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710684

RESUMO

The α-Aurora kinase is a crucial regulator of spindle microtubule organization during mitosis in plants. Here, we report a post-mitotic role for α-Aurora in reorganizing the phragmoplast microtubule array. In Arabidopsis thaliana, α-Aurora relocated from spindle poles to the phragmoplast midzone, where it interacted with the microtubule cross-linker MAP65-3. In a hypomorphic α-Aurora mutant, MAP65-3 was detected on spindle microtubules, followed by a diffuse association pattern across the phragmoplast midzone. Simultaneously, phragmoplast microtubules remained belatedly in a solid disk array before transitioning to a ring shape. Microtubules at the leading edge of the matured phragmoplast were often disengaged, accompanied by conspicuous retentions of MAP65-3 at the phragmoplast interior edge. Specifically, α-Aurora phosphorylated two residues towards the C-terminus of MAP65-3. Mutation of these residues to alanines resulted in an increased association of MAP65-3 with microtubules within the phragmoplast. Consequently, the expansion of the phragmoplast was notably slower compared to wild-type cells or cells expressing a phospho-mimetic variant of MAP65-3. Moreover, mimicking phosphorylation reinstated disrupted MAP65-3 behaviors in plants with compromised α-Aurora function. Overall, our findings reveal a mechanism in which α-Aurora facilitates cytokinesis progression through phosphorylation-dependent restriction of MAP65-3 associating with microtubules at the phragmoplast midzone.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citocinese , Proteínas Associadas aos Microtúbulos , Microtúbulos , Arabidopsis/metabolismo , Arabidopsis/genética , Microtúbulos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Fosforilação , Mutação , Fuso Acromático/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Plantas Geneticamente Modificadas , Mitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA