Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.202
Filtrar
1.
Protein Sci ; 33(6): e5004, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723164

RESUMO

Dysregulation of RNA splicing processes is intricately linked to tumorigenesis in various cancers, especially breast cancer. Cdc2-like kinase 2 (CLK2), an oncogenic RNA-splicing kinase pivotal in breast cancer, plays a significant role, particularly in the context of triple-negative breast cancer (TNBC), a subtype marked by substantial medical challenges due to its low survival rates. In this study, we employed a structure-based virtual screening (SBVS) method to identify potential CLK2 inhibitors with novel chemical structures for treating TNBC. Compound 670551 emerged as a novel CLK2 inhibitor with a 50% inhibitory concentration (IC50) value of 619.7 nM. Importantly, Compound 670551 exhibited high selectivity for CLK2 over other protein kinases. Functionally, this compound significantly reduced the survival and proliferation of TNBC cells. Results from a cell-based assay demonstrated that this inhibitor led to a decrease in RNA splicing proteins, such as SRSF4 and SRSF6, resulting in cell apoptosis. In summary, we identified a novel CLK2 inhibitor as a promising potential treatment for TNBC therapy.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Feminino , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Proliferação de Células/efeitos dos fármacos
3.
Oncotarget ; 15: 313-325, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753413

RESUMO

The diheteroarylamide-based compound 1C8 and the aminothiazole carboxamide-related compound GPS167 inhibit the CLK kinases, and affect the proliferation of a broad range of cancer cell lines. A chemogenomic screen previously performed with GPS167 revealed that the depletion of components associated with mitotic spindle assembly altered sensitivity to GPS167. Here, a similar screen performed with 1C8 also established the impact of components involved in mitotic spindle assembly. Accordingly, transcriptome analyses of cells treated with 1C8 and GPS167 indicated that the expression and RNA splicing of transcripts encoding mitotic spindle assembly components were affected. The functional relevance of the microtubule connection was confirmed by showing that subtoxic concentrations of drugs affecting mitotic spindle assembly increased sensitivity to GPS167. 1C8 and GPS167 impacted the expression and splicing of transcripts in pathways relevant to tumor progression, including MYC targets and the epithelial mesenchymal transition (EMT). Finally, 1C8 and GPS167 altered the expression and alternative splicing of transcripts involved in the antiviral immune response. Consistent with this observation, depleting the double-stranded RNA sensor DHX33 suppressed GPS167-mediated cytotoxicity on HCT116 cells. Our study uncovered molecular mechanisms through which 1C8 and GPS167 affect cancer cell proliferation as well as processes critical for metastasis.


Assuntos
Proliferação de Células , Transição Epitelial-Mesenquimal , Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Tiazóis/farmacologia , Antivirais/farmacologia , Células HCT116 , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Perfilação da Expressão Gênica
5.
J Med Chem ; 67(9): 6922-6937, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38648167

RESUMO

Tauopathy, neuronal atrophy, and psychological impairments are hallmarks of neurodegenerative diseases, such as Alzheimer's disease, that currently lack efficacious clinical treatments capable of rectifying these issues. To address these unmet needs, we used rational drug design to combine the pharmacophores of DYRK1A inhibitors and isoDMTs to develop psychoplastogenic DYRK1A inhibitors. Using this approach, we discovered a nonhallucinogenic compound capable of promoting cortical neuron growth and suppressing tau hyperphosphorylation while also having the potential to mitigate the biological and psychological symptoms of dementia. Together, our results suggest that hybridization of the DYRK1A and psychoplastogen pharmacophores represents a promising strategy for identifying compounds that might address the cognitive as well as the behavioral and psychological symptoms of dementia.


Assuntos
Doença de Alzheimer , Quinases Dyrk , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Proteínas tau , Doença de Alzheimer/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Humanos , Animais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/síntese química , Proteínas tau/metabolismo , Proteínas tau/antagonistas & inibidores , Camundongos , Fosforilação , Desenho de Fármacos
6.
Expert Opin Ther Targets ; 28(4): 283-294, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629385

RESUMO

INTRODUCTION: Epilepsy is a chronic neurological condition characterized by a persistent propensity for seizure generation. About one-third of patients do not achieve seizure control with the first-line treatment options, which include >20 antiseizure medications. It is therefore imperative that new medications with novel targets and mechanisms of action are developed. AREAS COVERED: Clinical studies and preclinical research increasingly implicate Non-receptor tyrosine kinases (nRTKs) in the pathogenesis of epilepsy. To date, several nRTK members have been linked to processes relevant to the development of epilepsy. Therefore, in this review, we provide insight into the molecular mechanisms by which the various nRTK subfamilies can contribute to the pathogenesis of epilepsy. We further highlight the prospective use of specific nRTK inhibitors in the treatment of epilepsy deriving evidence from existing literature providing a rationale for their use as therapeutic targets. EXPERT OPINION: Specific small-molecule inhibitors of NRTKs can be employed for the targeted therapy as already seen in other diseases by examining the precise molecular pathways regulated by them contributing to the development of epilepsy. However, the evidence supporting NRTKs as therapeutic targets are limiting in nature thus, necessitating more research to fully comprehend their function in the development and propagation of seizures.


Assuntos
Anticonvulsivantes , Desenvolvimento de Medicamentos , Epilepsia , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases , Humanos , Epilepsia/tratamento farmacológico , Epilepsia/fisiopatologia , Animais , Anticonvulsivantes/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo
7.
Eur J Med Chem ; 271: 116409, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38663285

RESUMO

Inspite of established symptomatic relief drug targets, a multi targeting approach is highly in demand to cure Alzheimer's disease (AD). Simultaneous inhibition of cholinesterase (ChE), ß secretase-1 (BACE-1) and Dyrk1A could be promising in complete cure of AD. A series of 18 diaryl triazine based molecular hybrids were successfully designed, synthesized, and tested for their hChE, hBACE-1, Dyrk1A and Aß aggregation inhibitory potentials. Compounds S-11 and S-12 were the representative molecules amongst the series with multi-targeted inhibitory effects. Compound S-12 showed hAChE inhibition (IC50 value = 0.486 ± 0.047 µM), BACE-1 inhibition (IC50 value = 0.542 ± 0.099 µM) along with good anti-Aß aggregation effects in thioflavin-T assay. Only compound S-02 of the series has shown Dyrk1A inhibition (IC50 value = 2.000 ± 0.360 µM). Compound S-12 has also demonstrated no neurotoxic liabilities against SH-SY5Y as compared to donepezil. The in vivo behavioral studies of the compound S-12 in the scopolamine- and Aß-induced animal models also demonstrated attanuation of learning and memory functions in rats models having AD-like characteristics. The ex vivo studies, on the rat hippocampal brain demonstrated reduction in certain biochemical markers of the AD brain with a significant increase in ACh level. The Western blot and Immunohistochemistry further revealed lower tau, APP and BACE-1 molecular levels. The drosophilla AD model also revealed improved eyephenotype after treatment with compound S-12. The molecular docking studies of the compounds suggested that compound S-12 was interacting with the ChE-PAS & CAS residues and catalytic dyad residues of the BACE-1 enzymes. The 100 ns molecular dynamics simulation studies of the ligand-protein complexed with hAChE and hBACE-1 also suggested stable ligand-protein confirmation throughout the simulation run.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Inibidores da Colinesterase , Desenho de Fármacos , Triazinas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Ratos , Relação Estrutura-Atividade , Acetilcolinesterase/metabolismo , Triazinas/química , Triazinas/farmacologia , Triazinas/síntese química , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Estrutura Molecular , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Simulação de Acoplamento Molecular , Quinases Dyrk , Relação Dose-Resposta a Droga , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Masculino , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Butirilcolinesterase/metabolismo
8.
Cancer Med ; 13(8): e7201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629293

RESUMO

BACKGROUND: The proto-oncogene ROS1 encodes an intrinsic type I membrane protein of the tyrosine kinase/insulin receptor family. ROS1 facilitates the progression of various malignancies via self-mutations or rearrangements. Studies on ROS1-directed tyrosine kinase inhibitors have been conducted, and some have been approved by the FDA for clinical use. However, the adverse effects and mechanisms of resistance associated with ROS1 inhibitors remain unknown. In addition, next-generation ROS1 inhibitors, which have the advantage of treating central nervous system metastases and alleviating endogenous drug resistance, are still in the clinical trial stage. METHOD: In this study, we searched relevant articles reporting the mechanism and clinical application of ROS1 in recent years; systematically reviewed the biological mechanisms, diagnostic methods, and research progress on ROS1 inhibitors; and provided perspectives for the future of ROS1-targeted therapy. RESULTS: ROS1 is most expressed in malignant tumours. Only a few ROS1 kinase inhibitors are currently approved for use in NSCLC, the efficacy of other TKIs for NSCLC and other malignancies has not been ascertained. There is no effective standard treatment for adverse events or resistance to ROS1-targeted therapy. Next-generation TKIs appear capable of overcoming resistance and delaying central nervous system metastasis, but with a greater incidence of adverse effects. CONCLUSIONS: Further research on next-generation TKIs regarding the localization of ROS1 and its fusion partners, binding sites for targeted drugs, and coadministration with other drugs is required. The correlation between TKIs and chemotherapy or immunotherapy in clinical practice requires further study.


Assuntos
Neoplasias , Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases , Humanos , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Neoplasias/tratamento farmacológico
9.
J Chem Inf Model ; 64(8): 3488-3502, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38546820

RESUMO

Covalent inhibitors represent a promising class of therapeutic compounds. Nonetheless, rationally designing covalent inhibitors to achieve a right balance between selectivity and reactivity remains extremely challenging. To better understand the covalent binding mechanism, a computational study is carried out using the irreversible covalent inhibitor of Bruton tyrosine kinase (BTK) ibrutinib as an example. A multi-µs classical molecular dynamics trajectory of the unlinked inhibitor is generated to explore the fluctuations of the compound associated with the kinase binding pocket. Then, the reaction pathway leading to the formation of the covalent bond with the cysteine residue at position 481 via a Michael addition is determined using the string method in collective variables on the basis of hybrid quantum mechanical-molecular mechanical (QM/MM) simulations. The reaction pathway shows a strong correlation between the covalent bond formation and the protonation/deprotonation events taking place sequentially in the covalent inhibition reaction, consistent with a 3-step reaction with transient thiolate and enolates intermediate states. Two possible atomistic mechanisms affecting deprotonation/protonation events from the thiolate to the enolate intermediate were observed: a highly correlated direct pathway involving proton transfer to the Cα of the acrylamide warhead from the cysteine involving one or a few water molecules and a more indirect pathway involving a long-lived enolate intermediate state following the escape of the proton to the bulk solution. The results are compared with experiments by simulating the long-time kinetics of the reaction using kinetic modeling.


Assuntos
Adenina , Simulação de Dinâmica Molecular , Piperidinas , Proteínas Tirosina Quinases , Adenina/análogos & derivados , Adenina/química , Adenina/farmacologia , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/metabolismo , Tirosina Quinase da Agamaglobulinemia/química , Piperidinas/química , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/química , Teoria Quântica
10.
ACS Chem Biol ; 19(4): 999-1010, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38513196

RESUMO

Nonreceptor tyrosine kinase c-Src plays a crucial role in cell signaling and contributes to tumor progression. However, the development of selective c-Src inhibitors turns out to be challenging. In our previous study, we performed posttranslational modification-inspired drug design (PTMI-DD) to provide a plausible way for designing selective kinase inhibitors. In this study, after identifying a unique pocket comprising a less conserved cysteine and an autophosphorylation site in c-Src as well as a promiscuous covalent inhibitor, chemical optimization was performed to obtain (R)-LW-Srci-8 with nearly 75-fold improved potency (IC50 = 35.83 ± 7.21 nM). Crystallographic studies revealed the critical C-F···C═O interactions that may contribute to tight binding. The kinact and Ki values validated the improved binding affinity and decreased warhead reactivity of (R)-LW-Srci-8 for c-Src. Notably, in vitro tyrosine kinase profiling and cellular activity-based protein profiling (ABPP) cooperatively indicated a specific inhibition of c-Src by (R)-LW-Srci-8. Intriguingly, (R)-LW-Srci-8 preferentially binds to inactive c-Src with unphosphorylated Y419 both in vitro and in cells, subsequently disrupting the autophosphorylation. Collectively, our study demonstrated the feasibility of developing selective kinase inhibitors by cotargeting a nucleophilic residue and a posttranslational modification site and providing a chemical probe for c-Src functional studies.


Assuntos
Proteína Tirosina Quinase CSK , Inibidores de Proteínas Quinases , Humanos , Proteína Tirosina Quinase CSK/antagonistas & inibidores , Proteína Tirosina Quinase CSK/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais , Quinases da Família src
11.
Sci Bull (Beijing) ; 69(9): 1286-1301, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38519399

RESUMO

Adavosertib (ADA) is a WEE1 inhibitor that exhibits a synthetic lethal effect on p53-mutated gallbladder cancer (GBC). However, drug resistance due to DNA damage response compensation pathways and high toxicity limits further applications. Herein, estrone-targeted ADA-encapsulated metal-organic frameworks (ADA@MOF-EPL) for GBC synthetic lethal treatment by inducing conditional factors are developed. The high expression of estrogen receptors in GBC enables ADA@MOF-EPL to quickly enter and accumulate near the cell nucleus through estrone-mediated endocytosis and release ADA to inhibit WEE1 upon entering the acidic tumor microenvironment. Ultrasound irradiation induces ADA@MOF-EPL to generate reactive oxygen species (ROS), which leads to a further increase in DNA damage, resulting in a higher sensitivity of p53-mutated cancer cells to WEE1 inhibitor and promoting cell death via conditional synthetic lethality. The conditional factor induced by ADA@MOF-EPL further enhances the antitumor efficacy while significantly reducing systemic toxicity. Moreover, ADA@MOF-EPL demonstrates similar antitumor abilities in other p53-mutated solid tumors, revealing its potential as a broad-spectrum antitumor drug.


Assuntos
Antineoplásicos , Neoplasias da Vesícula Biliar , Estruturas Metalorgânicas , Proteínas Tirosina Quinases , Pirimidinonas , Proteína Supressora de Tumor p53 , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Neoplasias da Vesícula Biliar/tratamento farmacológico , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/patologia , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas Tirosina Quinases/antagonistas & inibidores , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Mutações Sintéticas Letais , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Mutação , Camundongos Nus , Dano ao DNA/efeitos dos fármacos , Feminino
13.
Eur J Clin Pharmacol ; 80(6): 827-838, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38483545

RESUMO

INTRODUCTION: Since the first experimentally proven tyrosine kinase inhibitor (TKI) imatinib was introduced in the clinical setting, TKIs have attracted widespread attention because of their remarkable therapeutic effects and improvement of survival rates. TKIs are small-molecule, multi-target, anti-cancer agents that target different tyrosine kinases and block downstream signaling. ADVERSE REACTIONS AND CONCERNS: However, with in-depth research on TKI drugs, the adverse reactions-for example, thyroid dysfunction-have become a concern and thus have attracted the attention of numerous researchers. Thyroid dysfunction, especially hypothyroidism, that occurs in high incidence during TKI therapy has a close relationship with treatment efficacy, but the mechanism of TKI-induced thyroid dysfunction is obscure. DISCUSSION: This review discusses the epidemiology, possible mechanisms, and clinical significance of hypothyroidism in cancer patients treated with TKI.


Assuntos
Antineoplásicos , Hipotireoidismo , Inibidores de Proteínas Quinases , Humanos , Hipotireoidismo/induzido quimicamente , Inibidores de Proteínas Quinases/efeitos adversos , Antineoplásicos/efeitos adversos , Proteínas Tirosina Quinases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Animais
16.
N Engl J Med ; 390(2): 118-131, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38197815

RESUMO

BACKGROUND: The early-generation ROS1 tyrosine kinase inhibitors (TKIs) that are approved for the treatment of ROS1 fusion-positive non-small-cell lung cancer (NSCLC) have antitumor activity, but resistance develops in tumors, and intracranial activity is suboptimal. Repotrectinib is a next-generation ROS1 TKI with preclinical activity against ROS1 fusion-positive cancers, including those with resistance mutations such as ROS1 G2032R. METHODS: In this registrational phase 1-2 trial, we assessed the efficacy and safety of repotrectinib in patients with advanced solid tumors, including ROS1 fusion-positive NSCLC. The primary efficacy end point in the phase 2 trial was confirmed objective response; efficacy analyses included patients from phase 1 and phase 2. Duration of response, progression-free survival, and safety were secondary end points in phase 2. RESULTS: On the basis of results from the phase 1 trial, the recommended phase 2 dose of repotrectinib was 160 mg daily for 14 days, followed by 160 mg twice daily. Response occurred in 56 of the 71 patients (79%; 95% confidence interval [CI], 68 to 88) with ROS1 fusion-positive NSCLC who had not previously received a ROS1 TKI; the median duration of response was 34.1 months (95% CI, 25.6 to could not be estimated), and median progression-free survival was 35.7 months (95% CI, 27.4 to could not be estimated). Response occurred in 21 of the 56 patients (38%; 95% CI, 25 to 52) with ROS1 fusion-positive NSCLC who had previously received one ROS1 TKI and had never received chemotherapy; the median duration of response was 14.8 months (95% CI, 7.6 to could not be estimated), and median progression-free survival was 9.0 months (95% CI, 6.8 to 19.6). Ten of the 17 patients (59%; 95% CI, 33 to 82) with the ROS1 G2032R mutation had a response. A total of 426 patients received the phase 2 dose; the most common treatment-related adverse events were dizziness (in 58% of the patients), dysgeusia (in 50%), and paresthesia (in 30%), and 3% discontinued repotrectinib owing to treatment-related adverse events. CONCLUSIONS: Repotrectinib had durable clinical activity in patients with ROS1 fusion-positive NSCLC, regardless of whether they had previously received a ROS1 TKI. Adverse events were mainly of low grade and compatible with long-term administration. (Funded by Turning Point Therapeutics, a wholly owned subsidiary of Bristol Myers Squibb; TRIDENT-1 ClinicalTrials.gov number, NCT03093116.).


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Tirosina Quinases , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Antineoplásicos/uso terapêutico , Resultado do Tratamento
17.
Cell Chem Biol ; 31(2): 284-297.e10, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37848034

RESUMO

Multiple tyrosine kinase inhibitors (TKIs) are often developed for the same indication. However, their relative overall efficacy is frequently incompletely understood and they may harbor unrecognized targets that cooperate with the intended target. We compared several ROS1 TKIs for inhibition of ROS1-fusion-positive lung cancer cell viability, ROS1 autophosphorylation and kinase activity, which indicated disproportionately higher cellular potency of one TKI, lorlatinib. Quantitative chemical and phosphoproteomics across four ROS1 TKIs and differential network analysis revealed that lorlatinib uniquely impacted focal adhesion signaling. Functional validation using pharmacological probes, RNA interference, and CRISPR-Cas9 knockout uncovered a polypharmacology mechanism of lorlatinib by dual targeting ROS1 and PYK2, which form a multiprotein complex with SRC. Rational multi-targeting of this complex by combining lorlatinib with SRC inhibitors exhibited pronounced synergy. Taken together, we show that systems pharmacology-based differential network analysis can dissect mixed canonical/non-canonical polypharmacology mechanisms across multiple TKIs enabling the design of rational drug combinations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Lactamas , Neoplasias Pulmonares , Proteínas Tirosina Quinases , Pirazóis , Humanos , Aminopiridinas/farmacologia , Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Quinase 2 de Adesão Focal/antagonistas & inibidores , Lactamas Macrocíclicas , Neoplasias Pulmonares/tratamento farmacológico , Polifarmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas
18.
Bioorg Chem ; 143: 107053, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159497

RESUMO

Threonine tyrosine kinase (TTK) is a critical component of the spindle assembly checkpoint and plays a pivotal role in mitosis. TTK has been identified as a potential therapeutic target for human cancers. Here, we describe our design, synthesis and evaluation of a class of covalent TTK inhibitors, exemplified by 16 (SYL1073). Compound 16 potently inhibits TTK kinase with an IC50 of 0.016 µM and displays improved selectivity in a panel of kinases. Mass spectrometry analysis reveals that 16 covalently binds to the C604 cysteine residue in the hinge region of the TTK kinase domain. Furthermore, 16 achieves strong potency in inhibiting the growth of various human cancer cell lines, outperforming its relative reversible inhibitor, and eliciting robust downstream effects. Taken together, compound 16 provides a valuable lead compound for further optimization toward the development of drug for treatment of human cancers.


Assuntos
Proteínas de Ciclo Celular , Treonina , Humanos , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases/antagonistas & inibidores , /farmacologia
19.
Crit Rev Oncol Hematol ; 193: 104233, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103761

RESUMO

WEE1 kinase is renowned as an S-G2 checkpoint inhibitor activated by ATR-CHK1 in response to replication stress. WEE1 inhibition enhances replication stress and effectively circumvents checkpoints into mitosis, which triggers significant genetic impairs and culminates in cell death. This approach has been validated clinically for its promising anti-tumor efficacy across various cancer types, notably in cases of ovarian cancers. Nonetheless, the initial stage of clinical trials has shown that the first-in-human WEE1 inhibitor adavosertib is limited by dose-limiting adverse events. As a result, recent efforts have been made to explore predictive biomarkers and smart combination schedules to alleviate adverse effects. In this review, we focused on the exploration of therapeutic biomarkers, as well as schedules of combination utilizing WEE1 inhibitors and canonical anticancer drugs, according to the latest preclinical and clinical studies, indicating that the optimal application of WEE1 inhibitors will likely be as part of dose-reducing combination and be tailored to specific patient populations.


Assuntos
Humanos , Biomarcadores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Combinação de Medicamentos , Proteínas Tirosina Quinases/antagonistas & inibidores , /uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA