Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.554
Filtrar
1.
Nat Commun ; 15(1): 4237, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762492

RESUMO

Immune checkpoint inhibition targeting the PD-1/PD-L1 pathway has become a powerful clinical strategy for treating cancer, but its efficacy is complicated by various resistance mechanisms. One of the reasons for the resistance is the internalization and recycling of PD-L1 itself upon antibody binding. The inhibition of lysosome-mediated degradation of PD-L1 is critical for preserving the amount of PD-L1 recycling back to the cell membrane. In this study, we find that Hsc70 promotes PD-L1 degradation through the endosome-lysosome pathway and reduces PD-L1 recycling to the cell membrane. This effect is dependent on Hsc70-PD-L1 binding which inhibits the CMTM6-PD-L1 interaction. We further identify an Hsp90α/ß inhibitor, AUY-922, which induces Hsc70 expression and PD-L1 lysosomal degradation. Either Hsc70 overexpression or AUY-922 treatment can reduce PD-L1 expression, inhibit tumor growth and promote anti-tumor immunity in female mice; AUY-922 can further enhance the anti-tumor efficacy of anti-PD-L1 and anti-CTLA4 treatment. Our study elucidates a molecular mechanism of Hsc70-mediated PD-L1 lysosomal degradation and provides a target and therapeutic strategies for tumor immunotherapy.


Assuntos
Antígeno B7-H1 , Proteínas de Choque Térmico HSC70 , Lisossomos , Proteínas de Choque Térmico HSC70/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Lisossomos/metabolismo , Animais , Camundongos , Humanos , Feminino , Linhagem Celular Tumoral , Proteólise , Endossomos/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno CTLA-4/metabolismo , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Membrana Celular/metabolismo , Proteínas da Mielina , Proteínas com Domínio MARVEL
2.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 443-449, 2024 Apr 10.
Artigo em Chinês | MEDLINE | ID: mdl-38565510

RESUMO

OBJECTIVE: To explore the clinical manifestations and genetic basis for a Chinese pedigree affected with atypical Charcot-Marie-Tooth disease type 1 A (CMT1A). METHODS: A patient admitted to the Department of Neurology, Xijing Hospital Affiliated to Air Force Medical University in June 2022 was selected as the study subject. Clinical data of the patient was collected, and 17 family members from four generations of this pedigree were traced based on pes arcuatus and atypical clinical symptoms. Neuroultrasound and genetic testing were carried out on available family members. Whole exome sequencing and multiple ligation-dependent probe amplification assay were carried out for the proband and some of the affected members of the pedigree. RESULTS: The proband, a 15-year-old male, had presented with paroxystic limb pain with weakness, accompanied by pes cavus and hypertrophy of gastrocnemius muscles, without stork leg sign caused by muscles atrophy in the distal lower extremities. MRI has revealed no sign of fat infiltration in the muscles of both legs. Nerve conduction examination had indicated damages of the sensory and motor nerves of the limbs, mainly with demyelinating changes. Seven members of the pedigree had pes arcuatus, including 5 presenting with paroxysmal neuropathic pain and myasthenia in the limbs, whilst 2 were without any clinical symptoms. Neurosonography of the proband, his brother, father and aunt showed thickened peripheral nerves of the extremities with unclear bundle structure. Genetic analysis revealed a large repeat encompassing exons 1 to 5 of the PMP22 gene and flanking regions (chr17: 15133768_15502298) in some of the affected members, which was predicted to be pathogenic. CONCLUSION: The duplication of PMP22 gene was considered to be pathogenic for this CMT1A pedigree.


Assuntos
Doença de Charcot-Marie-Tooth , Masculino , Humanos , Adolescente , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Linhagem , Proteínas da Mielina/genética , Músculo Esquelético , China , Duplicação Gênica
3.
J Gene Med ; 26(5): e3685, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38686653

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is identified as one of the most prevalent and malignant brain tumors, characterized by poor treatment outcomes and a limited prognosis. CMTM6, a membrane protein, has been found to upregulate the expression of programmed cell death 1 ligand 1 protein (PD-L1) and acts as an immune checkpoint inhibitor by inhibiting the programmed death 1 protein/PD-L1 signaling pathway. Recent research has demonstrated a high expression of CMTM6 in GBM, suggesting its potential role in influencing the pathogenesis and progression of GBM, as well as its association with immune cell infiltration in the tumor microenvironment. However, the underlying mechanism of CMTM6 in GBM requires further investigation. METHODS: Data from cancer patients in The Cancer Genome Atlas, Gene Expression Omnibus and Chinese Glioma Genome Atlas cohorts were consolidated for the current study. Through multi-omics analysis, the study systematically examined the expression profile of CMTM6, epigenetic modifications, prognostic significance, biological functions, potential mechanisms of action and alterations in the immune microenvironment. Additionally, the study investigated CMTM6 expression in GBM cell lines and normal cells using reverse transcription PCR and western blot analysis. The impact of CMTM6 on GBM cell proliferation, migration and invasion was evaluated using a combination of cell counting kit-8 assay, clone formation assay, 5-ethynyl-2'-deoxyuridine incorporation assay, wound healing assay and Transwell assay. In order to explore the mechanism of CMTM6, the Wnt/ß-catenin signaling pathway and autophagy-related genes were further verified through western blot analysis. RESULTS: CMTM6 is highly expressed in multiple tumors, particularly GBM. CMTM6 has been shown to be a valuable diagnostic and prognostic biomarker by various bioinformatics approaches. Additionally, CMTM6 plays a pivotal role in the pathogenesis of cancer, specifically GBM, by modulating various biological processes such as DNA methyltransferase expression, RNA modification, copy number variation, genomic heterogeneity, tumor stemness and DNA methylation. The findings of the experiment indicate a significant correlation between elevated CMTM6 expression and the proliferation, invasion, migration and autophagy of GBM cells, with potential key roles mediated through the Wnt/ß-catenin signaling pathway. Furthermore, CMTM6 is implicated in modulating tumor immune cell infiltration and is closely linked to the expression of various immune checkpoint inhibitors and immune modulators, particularly within the context of GBM. High levels of CMTM6 expression also enhance the responsiveness of GBM patients to radiotherapy and chemotherapy, thereby offering valuable insights for guiding treatment strategies for GBM. CONCLUSIONS: Autophagy-related CMTM6 is highly expressed in various types of cancer, especially GBM, and it can regulate GBM progression through the Wnt/ß-catenin signaling pathway and is capable of being used as an underlying target for the diagnosis, treatment selection and prognosis of patients with GBM.


Assuntos
Autofagia , Biomarcadores Tumorais , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Proteínas com Domínio MARVEL , Microambiente Tumoral , Via de Sinalização Wnt , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteínas com Domínio MARVEL/metabolismo , Proteínas com Domínio MARVEL/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Autofagia/genética , Prognóstico , Proliferação de Células , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Movimento Celular/genética , beta Catenina/metabolismo , beta Catenina/genética
4.
Mol Med Rep ; 29(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38362940

RESUMO

The myelin and lymphocyte protein (MAL) family is a novel gene family first identified and characterized in 2002. This family is comprised of seven members, including MAL, MAL2, plasmolipin, MALL, myeloid differentiation­associated marker (MYADM), MYADML2 and CMTM8, which are located on different chromosomes. In addition to exhibiting extensive activity during transcytosis, the MAL family plays a vital role in the neurological, digestive, respiratory, genitourinary and other physiological systems. Furthermore, the intimate association between MAL and the pathogenesis, progression and metastasis of malignancies, attributable to several mechanisms such as DNA methylation has also been elucidated. In the present review, an overview of the structural and functional properties of the MAL family and the latest research findings regarding the relationship between several MAL members and various cancers is provided. Furthermore, the potential clinical and scientific significance of MAL is discussed and directions for future research are summarized.


Assuntos
Neoplasias , Proteolipídeos , Humanos , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina , Proteolipídeos/química , Proteolipídeos/genética , Proteolipídeos/metabolismo , Proteínas da Mielina/genética , Proteínas , Neoplasias/genética , Transformação Celular Neoplásica , Carcinogênese/genética , Linfócitos/metabolismo , Quimiocinas , Proteínas com Domínio MARVEL
5.
J Mol Diagn ; 26(4): 304-309, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301867

RESUMO

The utility of the next-generation sequencing (NGS) panel could be increased in hereditary peripheral neuropathies, given that the duplication of PMP22 is a major abnormality. In the present study, the analytical performance of an algorithm for detecting PMP22 copy number variation (CNV) from the NGS panel data was evaluated. The NGS panel covers 141 genes, including PMP22 and five genes within 1.5-megabase duplicated region at 17p11.2. CNV calling was performed using a laboratory-developed algorithm. Among the 92 cases subjected to targeted NGS panel from March 2018 to January 2021, 26 were suggestive of PMP22 CNV. Multiplex ligation-dependent probe amplification analysis was performed in 58 cases, and the results were 100% concordant with the NGS data (23 duplications, 2 deletions, and 33 negatives). Analytical performance of the pipeline was further validated by another blind data set, including 14 positive and 20 negative samples. Reliable detection of PMP22 CNV was possible by analyzing not only PMP22 but also the adjacent genes within the 1.5-megabase region of 17p11.2. On the basis of the high accuracy of CNV calling for PMP22, the testing strategy for diagnosis of peripheral polyneuropathies could be simplified by reducing the need for multiplex ligation-dependent probe amplification.


Assuntos
Doenças do Sistema Nervoso Periférico , Humanos , Doenças do Sistema Nervoso Periférico/genética , Variações do Número de Cópias de DNA/genética , Reprodutibilidade dos Testes , Testes Genéticos/métodos , Proteínas da Mielina/genética
6.
EMBO Mol Med ; 16(3): 616-640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383802

RESUMO

Haplo-insufficiency of the gene encoding the myelin protein PMP22 leads to focal myelin overgrowth in the peripheral nervous system and hereditary neuropathy with liability to pressure palsies (HNPP). Conversely, duplication of PMP22 causes Charcot-Marie-Tooth disease type 1A (CMT1A), characterized by hypomyelination of medium to large caliber axons. The molecular mechanisms of abnormal myelin growth regulation by PMP22 have remained obscure. Here, we show in rodent models of HNPP and CMT1A that the PI3K/Akt/mTOR-pathway inhibiting phosphatase PTEN is correlated in abundance with PMP22 in peripheral nerves, without evidence for direct protein interactions. Indeed, treating DRG neuron/Schwann cell co-cultures from HNPP mice with PI3K/Akt/mTOR pathway inhibitors reduced focal hypermyelination. When we treated HNPP mice in vivo with the mTOR inhibitor Rapamycin, motor functions were improved, compound muscle amplitudes were increased and pathological tomacula in sciatic nerves were reduced. In contrast, we found Schwann cell dedifferentiation in CMT1A uncoupled from PI3K/Akt/mTOR, leaving partial PTEN ablation insufficient for disease amelioration. For HNPP, the development of PI3K/Akt/mTOR pathway inhibitors may be considered as the first treatment option for pressure palsies.


Assuntos
Artrogripose , Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt , Roedores/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Serina-Treonina Quinases TOR
7.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38378628

RESUMO

Altered expression of peripheral myelin protein 22 (PMP22) results in demyelinating peripheral neuropathy. PMP22 exhibits a highly restricted tissue distribution with marked expression in the myelinating Schwann cells of peripheral nerves. Auditory and vestibular Schwann cells and the afferent neurons also express PMP22, suggesting a unique role in hearing and balancing. Indeed, neuropathic patients diagnosed with PMP22-linked hereditary neuropathies often present with auditory and balance deficits, an understudied clinical complication. To investigate the mechanism by which abnormal expression of PMP22 may cause auditory and vestibular deficits, we studied gene-targeted PMP22-null mice. PMP22-null mice exhibit an unsteady gait, have difficulty maintaining balance, and live for only ∼3-5 weeks relative to unaffected littermates. Histological analysis of the inner ear revealed reduced auditory and vestibular afferent nerve myelination and profound Na+ channel redistribution without PMP22. Yet, Na+ current density was unaltered, in stark contrast to increased K+ current density. Atypical postsynaptic densities and a range of neuronal abnormalities in the organ of Corti were also identified. Analyses of auditory brainstem responses (ABRs) and vestibular sensory-evoked potential (VsEP) revealed that PMP22-null mice had auditory and vestibular hypofunction. These results demonstrate that PMP22 is required for hearing and balance, and the protein is indispensable for the formation and maintenance of myelin in the peripheral arm of the eighth nerve. Our findings indicate that myelin abnormalities and altered signal propagation in the peripheral arm of the auditory nerve are likely causes of auditory deficits in patients with PMP22-linked neuropathies.


Assuntos
Doenças Desmielinizantes , Proteínas da Mielina , Animais , Humanos , Camundongos , Doenças Desmielinizantes/metabolismo , Camundongos Knockout , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Células de Schwann/metabolismo
8.
Neurobiol Dis ; 192: 106414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253209

RESUMO

Alteration in protein citrullination (PC), a common posttranslational modification (PTM), contributes to pathogenesis in various inflammatory disorders. We previously reported that PC and protein arginine deiminase 2 (PAD2), the predominant enzyme isoform that catalyzes this PTM in the central nervous system (CNS), are altered in mouse models of amyotrophic lateral sclerosis (ALS). We now demonstrate that PAD2 expression and PC are altered in human postmortem ALS spinal cord and motor cortex compared to controls, increasing in astrocytes while trending lower in neurons. Furthermore, PC is enriched in protein aggregates that contain the myelin proteins PLP and MBP in ALS. These results confirm our findings in ALS mouse models and suggest that altered PAD2 and PC contribute to neurodegeneration in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Citrulinação , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Gliose/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Proteínas da Mielina/metabolismo , Bainha de Mielina/patologia , Agregados Proteicos , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Proteínas/metabolismo , Medula Espinal/patologia
9.
Brain Res Bull ; 207: 110885, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246200

RESUMO

Multiple sclerosis (MS), a demyelinating autoimmune disease of the central nervous system (CNS), predominately affects females compared to males. Tumor necrosis factor (TNF), a pro-inflammatory cytokine, signaling through TNF receptor 1 contributes to inflammatory disease pathogenesis. In contrast, TNF receptor 2 signaling is neuroprotective. Current anti-TNF MS therapies are shown to be detrimental to patients due to pleiotropic effects on both pro- and anti-inflammatory functions. Using a non-pertussis toxin (nPTX) experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice, we systemically administered a TNFR2 agonist (p53-sc-mTNFR2) to investigate behavioral and pathophysiological changes in both female and male mice. Our data shows that TNFR2 activation alleviates motor and sensory symptoms in females. However, in males, the agonist only alleviates sensory symptoms and not motor. nPTX EAE induction in TNFR2 global knockout mice caused exacerbated motor symptoms in females along with an earlier day of onset, but not in males. Our data demonstrates that TNFR2 agonist efficacy is sex-specific for alleviation of motor symptoms, however, it effectively reduces mechanical hypersensitivity in both females and males. Altogether, these data support the therapeutic promise TNFR2 agonism holds as an MS therapeutic and, more broadly, to treat central neuropathic pain.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Masculino , Feminino , Camundongos , Animais , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/uso terapêutico , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Camundongos Endogâmicos C57BL , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Proteínas da Mielina , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Knockout
10.
Invest Ophthalmol Vis Sci ; 65(1): 4, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165704

RESUMO

Purpose: To investigate the impact of transmembrane protein CMTM6 on the pathogenesis of dry eye disease (DED) and elucidate its potential mechanisms. Methods: CMTM6 expression was confirmed by database analysis, real-time polymerase chain reaction (RT-PCR), western blot, and immunohistochemistry. Tear secretion was measured using the phenol red thread test. Immune cell infiltration was assessed through flow cytometry. Barrier function was evaluated by fluorescein sodium staining, immunofluorescence staining of zonula occludens 1 (ZO-1), and electric cell-substrate impedance sensing (ECIS) assessment. For silencing CMTM6 expression, siRNA and shRNA were employed, along with lentiviral vector-mediated overexpression of CMTM6. Proinflammatory cytokine levels were analyzed by RT-PCR and cytometric bead array (CBA) analysis. Results: CMTM6 showed high expression in healthy human and mouse corneal and conjunctival epithelium but was notably reduced in DED. Notably, this downregulation was correlated with disease severity. Cmtm6-/- dry eye (DE) mice displayed reduced tear secretion, severe corneal epithelial defects, decreased conjunctival goblet cell density, and upregulated inflammatory response. Additionally, Cmtm6-/- DE mice and CMTM6 knockdown human corneal epithelial cell-transformed (HCE-T) cells showed more severe barrier disruption and reduced expression of ZO-1. Knockdown of CMTM6 in HCE-T cells increased inflammatory responses induced by hyperosmotic stress, which was significantly mitigated by CMTM6 overexpression. Moreover, the level of phospho-p65 in hyperosmolarity-stimulated HCE-T cells increased after silencing CMTM6. Nuclear factor kappa B (NF-κB) p65 inhibition (JSH-23) reversed the excessive inflammatory responses caused by hyperosmolarity in CMTM6 knockdown HCE-T cells. Conclusions: The reduction in CMTM6 expression on the ocular surface contributes to the pathogenesis of DED. The CMTM6-NF-κB p65 signaling pathway may serve as a promising therapeutic target for DED.


Assuntos
Síndromes do Olho Seco , Epitélio Corneano , Proteínas com Domínio MARVEL , Proteínas da Mielina , Animais , Humanos , Camundongos , Córnea/metabolismo , Síndromes do Olho Seco/metabolismo , Epitélio Corneano/metabolismo , NF-kappa B/metabolismo , Proteínas com Domínio MARVEL/genética , Proteínas com Domínio MARVEL/metabolismo , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo
11.
Funct Integr Genomics ; 24(1): 10, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38221563

RESUMO

Thyroid cancer is the most common type of endocrine cancer. Chemokine-like factor (CKLF)-like MARVEL transmembrane domain containing 6 (CMTM6) is recognized as one of its potential immunotherapy targets. The purpose of this study was to investigate the role and molecular mechanism of CMTM6 in regulating the development of thyroid cancer cells. In this study, expression levels of CMTM6 and the sodium/iodide symporter (NIS) were detected by qRT-PCR. Additionally, colony formation assay and flow cytometry were used to detect cell proliferation and apoptosis, while expression levels of various proteins were assessed using Western blotting. Further, the apoptosis and invasion capacity of cells were investigated by scratch and transwell experiments. Finally, the effect of CMTM6 on the epithelial-mesenchymal transition (EMT) of thyroid cancer cells was determined by immunofluorescence assay, which measured the expression levels of epithelial and mesenchymal phenotypic markers. The results of qRT-PCR experiments showed that CMTM6 was highly expressed in thyroid cancer tissues and cells. In addition, knockdown of CMTM6 expression significantly increased NIS expression. Function experiments demonstrated that small interfering (si)-CMTM6 treatment inhibited the proliferation, migration, invasion, and EMT of thyroid cancer cells, while promoting apoptosis of FTC133 cells. Furthermore, mechanistic studies showed that mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) phosphorylation were inhibited by si-CMTM6, as demonstrated by Western blot experiments. In conclusion, our findings demonstrated the role of CMTM6 in the metastasis of thyroid cancer. Briefly, CMTM6 exerts its tumor-promoting effect through the MAPK signaling pathway and could potentially be used as a valuable biomarker for thyroid cancer diagnosis and prognosis.


Assuntos
Proteínas com Domínio MARVEL , Proteínas da Mielina , Simportadores , Neoplasias da Glândula Tireoide , Humanos , Linhagem Celular Tumoral , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Simportadores/genética , Simportadores/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Proteínas com Domínio MARVEL/genética , Proteínas com Domínio MARVEL/metabolismo , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo
12.
J Biomol Struct Dyn ; 42(5): 2257-2269, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37129165

RESUMO

Enterotoxaemia (ET) is a severe disease that affects domestic ruminants, including sheep and goats, and is caused by Clostridium perfringens type B and D strains. The disease is characterized by the production of Epsilon toxin (ETX), which has a significant impact on the farming industry due to its high lethality. The binding of ETX to the host cell receptor is crucial, but still poorly understood. Therefore, the structural features of goat Myelin and lymphocytic (MAL) protein were investigated and defined in this study. We induced the mutations in aromatic amino acid residues of ETX and substituted them with aliphatic residues at domains I and II. Subsequently, protein-protein interactions (PPI) were performed between ETX (wild)-MAL and ETX (mutated)-MAL protein predicting the domain sites of ETX structure. Further, molecular dynamics (MD) simulation studies were performed for both complexes to investigate the dynamic behavior of the proteins. The binding efficiency between 'ETX (wild)-MAL protein' and 'ETX (mutated)-MAL protein complex' interactions were compared and showed that the former had stronger interactions and binding efficiency due to the higher stability of the complex. The MD analysis showed destabilization and higher fluctuations in the PPI of the mutated heterodimeric ETX-MAL complex which is otherwise essential for its functional conformation. Such kind of interactions with mutated functional domains of ligands provided much-needed clarity in understanding the pre-pore complex formation of epsilon toxin with the MAL protein receptor of goats. The findings from this study would provide an impetus for designing a novel vaccine for Enterotoxaemia in goats.Communicated by Ramaswamy H. Sarma.


Assuntos
Toxinas Bacterianas , Clostridium perfringens , Bainha de Mielina , Animais , Aminoácidos/metabolismo , Clostridium perfringens/genética , Clostridium perfringens/metabolismo , Enterotoxemia , Cabras , Linfócitos , Mutação , Proteínas da Mielina/genética , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo
13.
Intern Med ; 63(2): 315-318, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37225480

RESUMO

Charcot-Marie-Tooth (CMT) disease is a heterogeneous hereditary motor and sensory neuropathy of the peripheral nervous system, with CMT1A in particular being the most common form. We encountered a 76-year-old woman with CMT1A who had a history of pain attacks and hearing loss from a young age, with motor symptoms manifesting late in life. Her pain and hearing loss may have been related to CMT. Our case also raises the possibility that neuropathic pain and hearing loss may precede the classic motor symptoms of CMT1A.


Assuntos
Doença de Charcot-Marie-Tooth , Surdez , Perda Auditiva , Neuropatia Hereditária Motora e Sensorial , Feminino , Humanos , Idoso , Doença de Charcot-Marie-Tooth/complicações , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Perda Auditiva/etiologia , Perda Auditiva/genética , Dor , Proteínas da Mielina/genética
14.
J Control Release ; 366: 52-64, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154541

RESUMO

The poor penetration of monoclonal antibodies (mAb) across the blood-brain barrier (BBB) impedes the development of regenerative therapies for neurological diseases. For example, Nogo-A is a myelin-associated protein highly expressed in the central nervous system (CNS) whose inhibitory effects on neuronal plasticity can be neutralized with direct administration of 11C7 mAb in CNS tissues/fluids, but not with peripheral administrations such as intravenous injections. Therefore, in the present study, we engineered a CNS-penetrating antibody against Nogo-A by combining 11C7 mAb and the single-chain variable fragment (scFv) of 8D3, a rat antibody binding transferrin receptor 1 (TfR) and mediating BBB transcytosis (11C7-scFv8D3). The binding of 11C7-scFv8D3 to Nogo-A and to TfR/CD71 was validated by capture ELISA and Biolayer Interferometry. After intravenous injection in mice, capture ELISA measurements revealed fast plasma clearance of 11C7-scFv8D3 concomitantly with brain and spinal cord accumulation at levels up to 19 fold as high as those of original 11C7 mAb. 11C7-scFv8D3 detection in the parenchyma indicated effective blood-to-CNS transfer. A single dose of 11C7-scFv8D3 induced stronger activation of the growth-promoting AkT/mTOR/S6 signaling pathway than 11C7 mAb or control antibody. Taken together, our results show that BBB-crossing 11C7-scFv8D3 engages Nogo-A in the mouse CNS and stimulates neuronal growth mechanisms.


Assuntos
Anticorpos Monoclonais , Barreira Hematoencefálica , Ratos , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Proteínas Nogo , Anticorpos Monoclonais/metabolismo , Encéfalo/metabolismo , Proteínas da Mielina/metabolismo
15.
Methods Mol Biol ; 2746: 179-200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38070090

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is a neuroinflammatory disease with facets in common with multiple sclerosis (MS). It is induced in susceptible mammalian species, with rodents as the preferred hosts, and has been used for decades as a model to investigate the immunopathogenesis of MS as well as for preclinical evaluation of candidate MS therapeutics. Most commonly, EAE is generated by active immunization with central nervous system (CNS) antigens, such as whole CNS homogenate, myelin proteins, or peptides derived from these proteins. However, EAE actually represents a spectrum of diseases in which specific combinations of host/CNS antigen exhibit defined clinical profiles, each associated with unique immunological and pathological features. Similar to MS, EAE is a complex disease where development and progression are also modulated by environmental factors; therefore, the establishment of any given EAE variant can be challenging and requires careful optimization. Here, we describe protocols for three EAE variants, successfully generated in our laboratory, and provide additional information as to how to maintain their unique features and reproducibility.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Esclerose Múltipla/patologia , Reprodutibilidade dos Testes , Sistema Nervoso Central/patologia , Proteínas da Mielina , Camundongos Endogâmicos C57BL , Mamíferos
16.
Cell Signal ; 115: 111012, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38113979

RESUMO

BACKGROUND: The chemokine-like factor (CKLF)-like Marvel transmembrane structural domain (CMTM) family is widely expressed in the tumor and immune systems and is essential in human cancer progression. However, the multi-omic profile of CMTM family genes and their role in tumor patient prognosis and immune microenvironment have not been explored. METHODS: We collected data from 33 cancers and 33 non-cancers and then comprehensively analyzed the basal expression levels of CMTM family genes in normal human tissues as well as abnormal expression in diseases, genomic alterations, diagnostic and prognostic roles, subcellular localization, pathway enrichment, the immune microenvironment, associations with immune checkpoints, and drug sensitivities as well as to predict the immunotherapeutic response of patients to ICIs and targeting of small molecule drugs, the above results were validated by immunohistochemical staining, pathology sections and experiments. We also performed protein docking of immune checkpoints binding to CMTM6 and screening of small molecule drugs targeting CMTM6 based on mass spectrometry results and molecular docking techniques. Finally, we experimentally confirmed the role of CMTM6 in bladder cancer. RESULTS: We found differential expression and diagnostic biomarker value of the CMTMs family in diseases (cancer and non-cancer). CMTMs were also found to play a key role in pan-cancer with the tumor microenvironment. CMTMs were closely associated with common immune checkpoints, TMB and MSI, so we scored CMTMs based on CMTMs expression in patients undergoing ICI, and patients with lower scores had better survival and showed higher immunotherapy response after immunotherapy. Finally, molecular docking was used to identify small molecule inhibitors that could target CMTM6 and binding poses of CMTM6 to other immune checkpoint genes. Finally, it was determined experimentally that knockdown of CMTM6 gene expression inhibited the proliferation and invasion of bladder cancer cells. CONCLUSIONS: Our findings provide a valuable strategy to guide the diagnostic and therapeutic direction of CMTM family genes in disease.


Assuntos
Proteínas com Domínio MARVEL , Proteínas da Mielina , Neoplasias da Bexiga Urinária , Humanos , Biologia Computacional , Células Epiteliais , Simulação de Acoplamento Molecular , Microambiente Tumoral , Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Proteínas da Mielina/genética , Proteínas com Domínio MARVEL/genética
17.
Curr Opin Neurol ; 36(6): 516-522, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865850

RESUMO

PURPOSE OF REVIEW: After traumatic spinal cord injury (SCI), neurological deficits persist due to the disconnection of surviving neurons. While repair of connectivity may restore function, no medical therapy exists today.This review traces the development of the neural repair-based therapeutic AXER-204 from animal studies to the recent clinical trial for chronic cervical SCI. RECENT FINDINGS: Molecular studies reveal a Nogo-66 Receptor 1 (NgR1, RTN4R) pathway inhibiting axon regeneration, sprouting, and plasticity in the adult mammalian central nervous system (CNS). Rodent and nonhuman primate studies demonstrate that the soluble receptor decoy NgR(310)ecto-Fc or AXER-204 promotes neural repair and functional recovery in transection and contusion SCI. Recently, this biological agent completed a first-in-human and randomized clinical trial for chronic cervical SCI. The intervention was safe and well tolerated. Across all participants, upper extremity strength did not improve with treatment. However, posthoc and biomarker analyses suggest that AXER-204 may benefit treatment-naïve patients with incomplete SCI in the chronic stage. SUMMARY: NgR1 signaling restricts neurological recovery in animal studies of CNS injury. The recent clinical trial of AXER-204 provides encouraging signals supporting future focused trials of this neural repair therapeutic. Further, AXER-204 studies provide a roadmap for the development of additional and synergistic therapies for chronic SCI.


Assuntos
Axônios , Traumatismos da Medula Espinal , Animais , Humanos , Axônios/metabolismo , Receptores Nogo/metabolismo , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Proteínas da Mielina/uso terapêutico , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/terapia , Receptor Nogo 1/metabolismo , Recuperação de Função Fisiológica , Medula Espinal , Mamíferos/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto
18.
Nat Commun ; 14(1): 6015, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758703

RESUMO

Although engulfment is a hallmark of microglia function, fully validated platforms that facilitate high-throughput quantification of this process are lacking. Here, we present FEAST (Flow cytometric Engulfment Assay for Specific Target proteins), which enables interrogation of in vivo engulfment of synaptic material by brain resident macrophages at single-cell resolution. We optimize FEAST for two different analyses: quantification of fluorescent material inside live cells and of engulfed endogenous proteins within fixed cells. To overcome false-positive engulfment signals, we introduce an approach suitable for interrogating engulfment in microglia from perfusion-fixed tissue. As a proof-of-concept for the specificity and versatility of FEAST, we examine the engulfment of synaptic proteins after optic nerve crush and of myelin in two mouse models of demyelination (treatment with cuprizone and injections of lysolecithin). We find that microglia, but not brain-border associated macrophages, engulf in these contexts. Our work underscores how FEAST can be utilized to gain critical insight into functional neuro-immune interactions that shape development, homeostasis, and disease.


Assuntos
Microglia , Proteínas da Mielina , Animais , Camundongos , Citometria de Fluxo , Bainha de Mielina , Macrófagos
20.
Cancer Cell ; 41(10): 1817-1828.e9, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37683639

RESUMO

The dysregulated expression of immune checkpoint molecules enables cancer cells to evade immune destruction. While blockade of inhibitory immune checkpoints like PD-L1 forms the basis of current cancer immunotherapies, a deficiency in costimulatory signals can render these therapies futile. CD58, a costimulatory ligand, plays a crucial role in antitumor immune responses, but the mechanisms controlling its expression remain unclear. Using two systematic approaches, we reveal that CMTM6 positively regulates CD58 expression. Notably, CMTM6 interacts with both CD58 and PD-L1, maintaining the expression of these two immune checkpoint ligands with opposing functions. Functionally, the presence of CMTM6 and CD58 on tumor cells significantly affects T cell-tumor interactions and response to PD-L1-PD-1 blockade. Collectively, these findings provide fundamental insights into CD58 regulation, uncover a shared regulator of stimulatory and inhibitory immune checkpoints, and highlight the importance of tumor-intrinsic CMTM6 and CD58 expression in antitumor immune responses.


Assuntos
Antígeno B7-H1 , Proteínas com Domínio MARVEL , Proteínas da Mielina , Neoplasias , Linfócitos T , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Imunidade , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Linfócitos T/imunologia , Proteínas da Mielina/metabolismo , Proteínas com Domínio MARVEL/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA