RESUMO
The regulatory process for assessing the risks of pesticides to bees relies heavily on the use of the honeybee, Apis mellifera, as a model for other bee species. However, the validity of using A. mellifera as a surrogate for other Apis and non-Apis bees in pesticide risk assessment has been questioned. Related to this line of research, recent work on A. mellifera has shown that specific P450 enzymes belonging to the CYP9Q subfamily act as critically important determinants of insecticide sensitivity in this species by efficiently detoxifying certain insecticide chemotypes. However, the extent to which the presence of functional orthologs of these enzymes is conserved across the diversity of bees is unclear. Here we used a phylogenomic approach to identify > 100 putative CYP9Q functional orthologs across 75 bee species encompassing all major bee families. Functional analysis of 26 P450s from 20 representative bee species revealed that P450-mediated detoxification of certain systemic insecticides, including the neonicotinoid thiacloprid and the butenolide flupyradifurone, is conserved across all major bee pollinator families. However, our analyses also reveal that CYP9Q-related genes are not universal to all bee species, with some Megachilidae species lacking such genes. Thus, our results reveal an evolutionary conserved capacity to metabolize certain insecticides across all major bee families while identifying a small number of bee species where this function may have been lost. Furthermore, they illustrate the potential of a toxicogenomic approach to inform pesticide risk assessment for nonmanaged bee species by predicting the capability of bee pollinator species to break down synthetic insecticides.
Assuntos
Abelhas , Sistema Enzimático do Citocromo P-450 , Evolução Molecular , Genes de Insetos , Inativação Metabólica , Proteínas de Insetos , Inseticidas , Animais , Abelhas/enzimologia , Abelhas/genética , Sequência Conservada , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Inseticidas/metabolismo , Inseticidas/toxicidade , Neonicotinoides/metabolismo , Neonicotinoides/toxicidade , FilogeniaRESUMO
The CP2 transcription factors are highly conserved in metazoans, where they are divided into two groups: grainyhead and late SV40 factor (LSF). We traced their evolutionary history in the Hexapoda using over 500 insect transcriptomes, to test the hypothesis that the evolution of holometaboly involved novel isoforms of these genes. All insects appear to express at least one grainyhead and one LSFlike gene, regardless of life cycle, as in most known metazoa. No major evolutionary events in these gene families occurred during the evolution of insects.
Assuntos
Evolução Molecular , Proteínas de Insetos/genética , Insetos/genética , Fatores de Transcrição/genética , Animais , Genes de Insetos , Proteínas de Insetos/classificação , Proteínas de Insetos/fisiologia , Insetos/fisiologia , Metamorfose Biológica/genética , Filogenia , Fatores de Transcrição/classificação , Fatores de Transcrição/fisiologiaRESUMO
Intraspecific competition is a major force in mediating population dynamics, fuelling adaptation, and potentially leading to evolutionary diversification. Among the evolutionary arms races between parasites, one of the most fundamental and intriguing behavioural adaptations and counter-adaptations are superparasitism and superparasitism avoidance. However, the underlying mechanisms and ecological contexts of these phenomena remain underexplored. Here, we apply the Drosophila parasite Leptopilina boulardi as a study system and find that this solitary endoparasitic wasp provokes a host escape response for superparasitism avoidance. We combine multi-omics and in vivo functional studies to characterize a small set of RhoGAP domain-containing genes that mediate the parasite's manipulation of host escape behaviour by inducing reactive oxygen species in the host central nervous system. We further uncover an evolutionary scenario in which neofunctionalization and specialization gave rise to the novel role of RhoGAP domain in avoiding superparasitism, with an ancestral origin prior to the divergence between Leptopilina specialist and generalist species. Our study suggests that superparasitism avoidance is adaptive for a parasite and adds to our understanding of how the molecular manipulation of host behaviour has evolved in this system.
Assuntos
Drosophila melanogaster/parasitologia , Proteínas Ativadoras de GTPase/genética , Interações Hospedeiro-Parasita/genética , Proteínas de Insetos/genética , Vespas/genética , Vespas/patogenicidade , Animais , Aprendizagem da Esquiva , Comportamento Animal , Coevolução Biológica , Sistema Nervoso Central/parasitologia , Ingestão de Alimentos , Feminino , Proteínas Ativadoras de GTPase/classificação , Proteínas Ativadoras de GTPase/metabolismo , Expressão Gênica , Proteínas de Insetos/classificação , Proteínas de Insetos/metabolismo , Larva/parasitologia , Masculino , Família Multigênica , Espécies Reativas de Oxigênio/metabolismo , Vespas/metabolismoRESUMO
Pyrethroids are one of the few classes of insecticides available to control Aedes aegypti, the major vector of dengue, chikungunya, and Zika viruses. Unfortunately, evolving mechanisms of pyrethroid resistance in mosquito populations threaten our ability to control disease outbreaks. Two common pyrethroid resistance mechanisms occur in Ae. aegypti: 1) knockdown resistance, which involves amino acid substitutions at the pyrethroid target site-the voltage-gated sodium channel (VGSC)-and 2) enhanced metabolism by detoxification enzymes. When a heterogeneous population of mosquitoes is exposed to pyrethroids, different responses occur. During exposure, a proportion of mosquitoes exhibit immediate knockdown, whereas others are not knocked-down and are designated knockdown resistant (kdr). When these individuals are removed from the source of insecticide, the knocked-down mosquitoes can either remain in this status and lead to dead or recover within a few hours. The proportion of these phenotypic responses is dependent on the pyrethroid concentration and the genetic background of the population tested. In this study, we sequenced and performed pairwise genome comparisons between kdr, recovered, and dead phenotypes in a pyrethroid-resistant colony from Tapachula, Mexico. We identified single-nucleotide polymorphisms (SNPs) associated with each phenotype and identified genes that are likely associated with the mechanisms of pyrethroid resistance, including detoxification, the cuticle, and insecticide target sites. We identified high association between kdr and mutations at VGSC and moderate association with additional insecticide target site, detoxification, and cuticle protein coding genes. Recovery was associated with cuticle proteins, the voltage-dependent calcium channel, and a different group of detoxification genes. We provide a list of detoxification genes under directional selection in this field-resistant population. Their functional roles in pyrethroid metabolism and their potential uses as genomic markers of resistance require validation.
Assuntos
Aedes/efeitos dos fármacos , Inativação Metabólica/genética , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Permetrina/farmacologia , Canais de Sódio Disparados por Voltagem/genética , Aedes/genética , Aedes/metabolismo , Substituição de Aminoácidos , Animais , Expressão Gênica , Perfilação da Expressão Gênica , Proteínas de Insetos/classificação , Proteínas de Insetos/metabolismo , Inseticidas/metabolismo , Anotação de Sequência Molecular , Mosquitos Vetores , Mutação , Permetrina/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Canais de Sódio Disparados por Voltagem/metabolismoRESUMO
Inquiline ants are highly specialized and obligate social parasites that infiltrate and exploit colonies of closely related species. They have evolved many times convergently, are often evolutionarily young lineages, and are almost invariably rare. Focusing on the leaf-cutting ant genus Acromyrmex, we compared genomes of three inquiline social parasites with their free-living, closely-related hosts. The social parasite genomes show distinct signatures of erosion compared to the host lineages, as a consequence of relaxed selective constraints on traits associated with cooperative ant colony life and of inquilines having very small effective population sizes. We find parallel gene losses, particularly in olfactory receptors, consistent with inquiline species having highly reduced social behavioral repertoires. Many of the genomic changes that we uncover resemble those observed in the genomes of obligate non-social parasites and intracellular endosymbionts that branched off into highly specialized, host-dependent niches.
Assuntos
Formigas/genética , Genoma de Inseto/genética , Parasitos/genética , Comportamento Social , Animais , Formigas/classificação , Formigas/fisiologia , Evolução Molecular , Feminino , Rearranjo Gênico/genética , Genômica/métodos , Interações Hospedeiro-Parasita , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Masculino , Parasitos/classificação , Parasitos/fisiologia , Filogenia , Receptores Odorantes/classificação , Receptores Odorantes/genética , Especificidade da EspécieRESUMO
During oviposition, ectoparasitoid wasps not only inject their eggs but also a complex mixture of proteins and peptides (venom) in order to regulate the host physiology to benefit their progeny. Although several endoparasitoid venom proteins have been identified, little is known about the components of ectoparasitoid venom. To characterize the protein composition of Torymus sinensis Kamijo (Hymenoptera: Torymidae) venom, we used an integrated transcriptomic and proteomic approach and identified 143 venom proteins. Moreover, focusing on venom gland transcriptome, we selected additional 52 transcripts encoding putative venom proteins. As in other parasitoid venoms, hydrolases, including proteases, phosphatases, esterases, and nucleases, constitute the most abundant families in T. sinensis venom, followed by protease inhibitors. These proteins are potentially involved in the complex parasitic syndrome, with different effects on the immune system, physiological processes and development of the host, and contribute to provide nutrients to the parasitoid progeny. Although additional in vivo studies are needed, initial findings offer important information about venom factors and their putative host effects, which are essential to ensure the success of parasitism.
Assuntos
Desoxirribonucleases/genética , Esterases/genética , Proteínas de Insetos/genética , Peptídeo Hidrolases/genética , Monoéster Fosfórico Hidrolases/genética , Proteoma/genética , Venenos de Vespas/química , Animais , Desoxirribonucleases/classificação , Desoxirribonucleases/isolamento & purificação , Desoxirribonucleases/metabolismo , Esterases/classificação , Esterases/isolamento & purificação , Esterases/metabolismo , Ontologia Genética , Proteínas de Insetos/classificação , Proteínas de Insetos/isolamento & purificação , Proteínas de Insetos/metabolismo , Anotação de Sequência Molecular , Oviposição/fisiologia , Peptídeo Hidrolases/classificação , Peptídeo Hidrolases/isolamento & purificação , Peptídeo Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/classificação , Monoéster Fosfórico Hidrolases/isolamento & purificação , Monoéster Fosfórico Hidrolases/metabolismo , Inibidores de Proteases/classificação , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/metabolismo , Proteoma/classificação , Proteoma/isolamento & purificação , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma , Venenos de Vespas/toxicidade , Vespas/química , Vespas/patogenicidade , Vespas/fisiologiaRESUMO
Plants protect themselves with a vast array of toxic secondary metabolites, yet most plants serve as food for insects. The evolutionary processes that allow herbivorous insects to resist plant defenses remain largely unknown. The whitefly Bemisia tabaci is a cosmopolitan, highly polyphagous agricultural pest that vectors several serious plant pathogenic viruses and is an excellent model to probe the molecular mechanisms involved in overcoming plant defenses. Here, we show that, through an exceptional horizontal gene transfer event, the whitefly has acquired the plant-derived phenolic glucoside malonyltransferase gene BtPMaT1. This gene enables whiteflies to neutralize phenolic glucosides. This was confirmed by genetically transforming tomato plants to produce small interfering RNAs that silence BtPMaT1, thus impairing the whiteflies' detoxification ability. These findings reveal an evolutionary scenario whereby herbivores harness the genetic toolkit of their host plants to develop resistance to plant defenses and how this can be exploited for crop protection.
Assuntos
Hemípteros/genética , Proteínas de Insetos/metabolismo , Solanum lycopersicum/genética , Toxinas Biológicas/metabolismo , Animais , Transferência Genética Horizontal , Genes de Plantas , Glucosídeos/química , Glucosídeos/metabolismo , Hemípteros/fisiologia , Herbivoria , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Mucosa Intestinal/metabolismo , Solanum lycopersicum/metabolismo , Malonil Coenzima A/metabolismo , Filogenia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Toxinas Biológicas/químicaRESUMO
Sucrose-hydrolyzing enzymes are largely divided into ß-fructofuranosidase and sucrose α-glucosidase. The domestic silkworm Bombyx mori possesses both enzymes, BmSUC1 and BmSUH, belonging to the glycoside hydrolase family 32 (GH32) and GH13, respectively. BmSUC1 was presumed to be acquired by horizontal gene transfer from bacteria based on phylogenetic analysis and related to tolerance to sugar-mimic alkaloids contained in mulberry latex. Here we investigated the substrate specificity of recombinant BmSUC1 that can hydrolyze not only sucrose but also fructooligosaccharides and fructans, and revealed that the enzyme was competitively inhibited by 1,4-dideoxy-1,4-imino-D-arabinitol, one of the alkaloids. Moreover, the crystal structures of BmSUC1 in apo form and complex with sucrose were determined, and the active site pocket was shallow and suitable for shorter substrates but was related to more relaxed substrate specificity than the strict sucrose α-glucosidase BmSUH. Considering together with the distribution of BmSUC1-orthologous genes in many lepidopterans, our results suggest that BmSUC1 contributes to the digestion of fructooligosaccharides and fructans derived from feed plants.
Assuntos
Bombyx/genética , Proteínas de Insetos/genética , beta-Frutofuranosidase/genética , Sequência de Aminoácidos , Animais , Bombyx/crescimento & desenvolvimento , Bombyx/metabolismo , Glicosídeo Hidrolases/classificação , Proteínas de Insetos/química , Proteínas de Insetos/classificação , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Família Multigênica , Filogenia , Alinhamento de Sequência , Especificidade por Substrato , beta-Frutofuranosidase/química , beta-Frutofuranosidase/classificação , beta-Frutofuranosidase/metabolismoRESUMO
The metabolic adaptations by which phloem-feeding insects counteract plant defense compounds are poorly known. Two-component plant defenses, such as glucosinolates, consist of a glucosylated protoxin that is activated by a glycoside hydrolase upon plant damage. Phloem-feeding herbivores are not generally believed to be negatively impacted by two-component defenses due to their slender piercing-sucking mouthparts, which minimize plant damage. However, here we document that glucosinolates are indeed activated during feeding by the whitefly Bemisia tabaci. This phloem feeder was also found to detoxify the majority of the glucosinolates it ingests by the stereoselective addition of glucose moieties, which prevents hydrolytic activation of these defense compounds. Glucosylation of glucosinolates in B. tabaci was accomplished via a transglucosidation mechanism, and two glycoside hydrolase family 13 (GH13) enzymes were shown to catalyze these reactions. This detoxification reaction was also found in a range of other phloem-feeding herbivores.
Assuntos
Arabidopsis/parasitologia , Glucosinolatos/química , Glicosídeo Hidrolases/metabolismo , Hemípteros/enzimologia , Proteínas de Insetos/metabolismo , Floema/parasitologia , Animais , Arabidopsis/imunologia , Arabidopsis/metabolismo , Comportamento Alimentar/fisiologia , Expressão Gênica , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/classificação , Glicosídeo Hidrolases/genética , Glicosilação , Hemípteros/classificação , Hemípteros/genética , Interações Hospedeiro-Parasita/imunologia , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Floema/imunologia , Floema/metabolismo , Filogenia , Imunidade VegetalRESUMO
The highly organized societies of the Western honey bee Apis mellifera feature a highly reproductive queen at the center of attention and a large cohort of daughters that suppress their own reproduction to help rear more sisters, some of whom become queens themselves. This reproductive altruism is peculiar because in theory it evolves via indirect selection on genes for altruism that are expressed in the sterile workers but not in the reproductive queens. In this study we attempt to situate lists of genes previously implicated in queenright worker sterility into a broader regulatory framework. To do so we use a model bee brain transcriptional regulatory network as a template to infer how sets of genes responsive to ovary-suppressing queen pheromone are functionally interconnected over the model's topology. We predict that genes jointly involved in the regulation of worker sterility should be tightly networked, relative to genes whose functions are unrelated to each other. We find that sets of mapped genes - ranging in size from 17 to 250 - are well dispersed across the network's substructural scaffolds, suggesting that ovary de-activation involves genes that reside within more than one transcriptional regulatory module. For some sets, however, this dispersion is biased into certain areas of the network's substructure. Our analysis identifies the regions enriched for sterility genes and likewise identifies local hub genes that are presumably critical to subnetwork function. Our work offers a glimpse into the gene regulatory context of honey bee worker sterility and uses this context to identify new candidate gene targets for functional analysis. Finally, to the extent that any sterility-related modules identified here have evolved via selection for worker altruism, we can assume that this selection was indirect and of the type specifically invoked by inclusive fitness theory.
Assuntos
Abelhas/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Animais , Abelhas/fisiologia , Análise por Conglomerados , Feminino , Ontologia Genética , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Modelos Genéticos , Feromônios/metabolismo , Feromônios/fisiologia , Reprodução/genética , Comportamento SocialRESUMO
BACKGROUND: We performed an in-depth analysis of the ABC gene family in Aedes aegypti (Diptera: Culicidae), which is an important vector species of arthropod-borne viral infections such as chikungunya, dengue, and Zika. Despite its importance, previous studies of the Arthropod ABC family have not focused on this species. Reports of insecticide resistance among pests and vectors indicate that some of these ATP-dependent efflux pumps are involved in compound traffic and multidrug resistance phenotypes. RESULTS: We identified 53 classic complete ABC proteins annotated in the A. aegypti genome. A phylogenetic analysis of Aedes aegypti ABC proteins was carried out to assign the novel proteins to the ABC subfamilies. We also determined 9 full-length sequences of DNA repair (MutS, RAD50) and structural maintenance of chromosome (SMC) proteins that contain the ABC signature. CONCLUSIONS: After inclusion of the putative ABC proteins into the evolutionary tree of the gene family, we classified A. aegypti ABC proteins into the established subfamilies (A to H), but the phylogenetic positioning of MutS, RAD50 and SMC proteins among ABC subfamilies-as well as the highly supported grouping of RAD50 and SMC-prompted us to name a new J subfamily of A. aegypti ABC proteins.
Assuntos
Transportadores de Cassetes de Ligação de ATP/classificação , Aedes/genética , Proteínas de Insetos/classificação , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Proteínas de Insetos/genética , Família Multigênica , FilogeniaRESUMO
The arms race between entomopathogenic bacteria and their insect hosts is an excellent model for decoding the intricate coevolutionary processes of host-pathogen interaction. Here, we demonstrate that the MAPK signaling pathway is a general switch to trans-regulate differential expression of aminopeptidase N and other midgut genes in an insect host, diamondback moth (Plutella xylostella), thereby countering the virulence effect of Bacillus thuringiensis (Bt) toxins. Moreover, the MAPK cascade is activated and fine-tuned by the crosstalk between two major insect hormones, 20-hydroxyecdysone (20E) and juvenile hormone (JH) to elicit an important physiological response (i.e. Bt resistance) without incurring the significant fitness costs often associated with pathogen resistance. Hormones are well known to orchestrate physiological trade-offs in a wide variety of organisms, and our work decodes a hitherto undescribed function of these classic hormones and suggests that hormonal signaling plasticity is a general cross-kingdom strategy to fend off pathogens.
Assuntos
Bacillus thuringiensis/metabolismo , Toxinas Bacterianas/metabolismo , Hormônios de Inseto/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mariposas/metabolismo , Transdução de Sinais , Animais , Bacillus thuringiensis/fisiologia , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/metabolismo , Antígenos CD13/classificação , Antígenos CD13/genética , Antígenos CD13/metabolismo , Endotoxinas/metabolismo , Regulação da Expressão Gênica , Proteínas Hemolisinas/metabolismo , Interações Hospedeiro-Patógeno , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas/genética , Mariposas/genética , Mariposas/microbiologia , Filogenia , Células Sf9 , SpodopteraRESUMO
Identifying the basis of phenotypic variation is a key objective of genetics. This work has been mostly limited to model systems with a plethora of genetic manipulation and functional characterization tools. With the development of high-throughput sequencing and new computational tools, it is possible to identify candidate genes related to phenotypic variation in non-model organisms. Fireflies are excellent for studying phenotypic variation because of their diverse and well-characterized behaviors. Most adult fireflies emit a single mating flash pattern and do not eat. In contrast, adult females of many species in the genus Photuris employ multiple flash patterns and prey upon mate-seeking males of other firefly species. To investigate the genetic basis for this variation, we used comparative transcriptomics to identify positively selected genes between a predatory firefly, Photuris sp., and a non-predatory relative, Photuris frontalis, controlling for genes generally under selection in fireflies by comparing to a Photinus firefly. Nine gene families were identified under positive selection in the predatory versus non-predatory Photuris comparison, including genes involved in digestion, detoxification, vision, reproduction, and neural processes. These results generate intriguing hypotheses about the genetic basis for insect behavior and highlight the utility of comparative transcriptomic tools to investigate complex behaviors in non-model systems.
Assuntos
Vaga-Lumes/genética , Proteínas de Insetos/genética , Comportamento Predatório/fisiologia , Transcriptoma/genética , Animais , Feminino , Vaga-Lumes/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas de Insetos/classificação , Masculino , Reprodução/genética , Comportamento Sexual Animal/fisiologiaRESUMO
Parapanteles Ashmead (Braconidae: Microgastrinae) is a medium-sized genus of microgastrine wasps that was erected over a century ago and lacks a unique synapomorphic character, and its monophyly has not been tested by any means. Parapanteles usually are parasitoids of large, unconcealed caterpillars (macrolepidoptera) and have been reared from an unusually large diversity of hosts for a relatively small microgastrine genus. We used Cytochrome Oxidase I sequences ("DNA barcodes") available for Parapanteles and other microgastrines to sample the generic diversity of described and undescribed species currently placed in Parapanteles, and then sequenced four additional genes for this subsample (wingless, elongation factor 1-alpha, ribosomal subunit 28s, and NADH dehydrogenase subunit 1). We constructed individual gene trees and concatenated Bayesian and maximum-likelihood phylogenies for this 5-gene subsample. In these phylogenies, most Parapanteles species formed a monophyletic clade within another genus, Dolichogenidea, while the remaining Parapanteles species were recovered polyphyletically within several other genera. The latter likely represent misidentified members of other morphologically similar genera. Species in the monophyletic clade containing most Parapanteles parasitized caterpillars from only five families - Erebidae (Arctiinae), Geometridae, Saturniidae, Notodontidae, and Crambidae. We do not make any formal taxonomic decisions here because we were not able to include representatives of type species for Parapanteles or other relevant genera, and because we feel such decisions should be reserved until a comprehensive morphological analysis of the boundaries of these genera is accomplished.
Assuntos
Himenópteros/classificação , Animais , Teorema de Bayes , Complexo IV da Cadeia de Transporte de Elétrons/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Himenópteros/genética , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , NADH Desidrogenase/classificação , NADH Desidrogenase/genética , Filogenia , RNA Ribossômico 28S/classificação , RNA Ribossômico 28S/genéticaRESUMO
Through an exhaustive homology-based approach, coupled with manual efforts, we annotated and characterized 128 sensory neuron membrane proteins (SNMPs) from genomes and transcriptomes of 22 coleopteran species, with 107 novel candidates. Remarkably, we discovered, for the first time, a novel SNMP group, defined as Group 4 based on the phylogeny, sequence characteristics, gene structure and organization. The lineage-specific expansions in SNMPs occurred mainly in the family Scarabaeidae, harboring 12 representatives in Onthophagus taurus as a typical gene duplication and the most massive set of SNMPs in insects to date. Transcriptome sequencing of Rhaphuma horsfieldi resulted in the yields of approximately 611.9 million clean reads that were further assembled into 543,841 transcripts and 327,550 unigenes, respectively. From the transcriptome, 177 transcripts encoding 84 odorant (ORs), 62 gustatory (GRs), 20 ionotropic (IRs), and 11 ionotropic glutamate (iGluRs) receptors were identified. Phylogenetic analysis classified RhorORs into six groups, RhorGRs into four subfamilies, and RhorIRs into 10 conserved antennal IRs and one divergent IRs. Expression profiles revealed that over 80% of chemosensory genes were specifically or highly transcribed in antennae or tarsi, suggestive of their olfactory and/or gustatory roles. This study has greatly complemented the resources for chemosensory genes in the cerambycid beetles, and most importantly, identifies a novel group of SNMPs in Coleoptera.
Assuntos
Besouros/genética , Proteínas de Insetos/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Receptores de Superfície Celular/genética , Animais , Feminino , Genes de Insetos , Genoma de Inseto , Proteínas de Insetos/classificação , Masculino , Proteínas de Membrana/classificação , Família Multigênica , Proteínas do Tecido Nervoso/classificação , Filogenia , Receptores Odorantes/classificação , Receptores Odorantes/genética , TranscriptomaRESUMO
Multicopper oxidase (MCO) genes comprise multigene families in bacteria, fungi, plants and animals. Two families of MCO genes, MCO1 (laccase1) and MCO2 (laccase2), are conserved among diverse insects and relatively well-characterized, whereas additional MCO genes, whose biological functions have been poorly understood, are also found in some insects. Previous studies reported that MCO1 participates in gut immunity and MCO2 plays important roles in cuticle sclerotization and pigmentation of insects. In mosquitoes, MCO2 was reported to be involved in eggshell sclerotization and pigmentation, on the ground that knockdown of MCO2 caused deformity and fragility of the eggshell. Here we identified a total of 7 MCO genes, including PsMCO1 and PsMCO2, and investigated their expression and function in the brown-winged green stinkbug Plautia stali. RNA interference (RNAi) knockdown of MCO genes by injecting double-stranded RNA (dsRNA) into nymphs revealed that MCO2, but not the other 6 MCOs, is required for cuticle sclerotization and pigmentation, and also for survival of P. stali. Trans-generational knockdown of MCO2 by injecting dsRNA into adult females (maternal RNAi) resulted in the production of unhatched eggs despite the absence of deformity or fragility of the eggshell. These results suggested that MCO2 plays an important role in sclerotization and pigmentation of the cuticle but not in eggshell integrity in P. stali. Maternal RNAi of any of the other 6 MCO genes and 3 tyrosinase genes affected neither survival nor eggshell integrity of P. stali. Contrary to the observations in the red flour beetle and the brown rice planthopper, RNAi knockdown of MCO6 (MCORP; Multicopper oxidase related protein) exhibited no lethal effects on P. stali. Taken together, our findings provide insight into the functional diversity and commonality of MCOs across hemipteran and other insect groups.
Assuntos
Heterópteros/enzimologia , Proteínas de Insetos/metabolismo , Lacase/metabolismo , Animais , Casca de Ovo/metabolismo , Feminino , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Lacase/antagonistas & inibidores , Lacase/classificação , Lacase/genética , Família Multigênica , Ninfa/genética , Ninfa/metabolismo , Filogenia , Pigmentação , Interferência de RNA , RNA de Cadeia Dupla/metabolismoRESUMO
The parasitoid of whiteflies Encarsia formosa has been widely applied to reduce whitefly-mediated damage on vegetables and ornamental plants grown in greenhouses. Although its chemosensory behavior has been described, the mechanism by which E. formosa recognizes chemical volatiles at the molecular level remains unknown. In this study, we obtained 66,632 unigenes from antennae transcriptomic architecture of E. formosa, of which 19,473 (29.2%) were functionally annotated. All that matters is that we manually identified 39 odorant-binding proteins (OBPs) from above dataset, and further investigated the tissue and stage-specific expression profiles of all identified OBP genes by real-time quantitative PCR. Among these OBP genes, 32 were enriched in antennae, and 2 in body. In addition, 4 OBPs were highly expressed in pupae, and 32 in 6-hour-age adults after eclosion. In addition to identifying OBP genes from E. formosa, this study provides a molecular basis for further functional studies of OBPs and the interactions of hosts and parasitic wasps.
Assuntos
Antenas de Artrópodes/metabolismo , Proteínas de Insetos/genética , Receptores Odorantes/genética , Vespas/genética , Animais , Antenas de Artrópodes/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/classificação , Proteínas de Insetos/metabolismo , Filogenia , RNA-Seq , Receptores Odorantes/classificação , Receptores Odorantes/metabolismo , Transcriptoma , Vespas/crescimento & desenvolvimento , Vespas/metabolismoRESUMO
The large and diverse P450 (CYP) superfamily encodes enzymes with a wide spectrum of monooxygenase and related activities. Insect P450 enzymes of the CYP4G subfamily are known to catalyze the synthesis of cuticular hydrocarbons that serve multiple functions from desiccation resistance to chemical communication. These functions are essential for survival. In order to understand the evolution of insect CYP4G genes, 368 sequences from 24 insect orders and 167 species were mined and analyzed. The genomes of most species of Neoptera carry at least two CYP4G genes that are paralogs of the two Drosophila CYP4G genes. The duplication of the original CYP4G is basal to Neoptera and no CYP4G is found in Paleoptera, or beyond the class Insecta. The sequences of CYP4G and particularly their active site have been highly conserved over 400 MY, but all CYP4G sequences are characterized by a +44 residue insertion between the G and H helices, which protrudes from the globular structure of the enzyme distally from the membrane anchor. Although it is generally considered that genes with highly conserved sequence and function are evolutionarily "stable", the evidence from the CYP4G subfamily shows that since their initial duplication over 400 MYA, these genes have experienced many gene births and deaths. The CYP4G1 homolog has been lost several times, and is missing in five orders of insects. These losses are both ancient, as in all Hemiptera and Thysanoptera, and more recent as in honey bees. Serial duplications leading to CYP4G gene clusters have also been observed, as in house flies and in fireflies. The detailed evolutionary history of CYP4G genes does not support the "stability" of these essential genes, but rather a "revolving door" pattern where their essential function is maintained despite an apparently random birth and death process. The dual function of cuticular hydrocarbons, in desiccation resistance achieved mainly by the quantity of hydrocarbons produced and in chemical communication, achieved by the blend of hydrocarbons produced, may explain the apparently paradoxical evolution of CYP4G genes.
Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Evolução Molecular , Hidrocarbonetos/metabolismo , Proteínas de Insetos/metabolismo , Insetos/genética , Escamas de Animais/metabolismo , Animais , Abelhas/classificação , Abelhas/genética , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/genética , Drosophila/classificação , Drosophila/genética , Proteínas de Insetos/química , Proteínas de Insetos/classificação , Insetos/classificação , FilogeniaRESUMO
Species' ecological preferences are often deduced from habitat characteristics thought to represent more or less optimal conditions for physiological functioning. Evolution has led to stenotopic and eurytopic species, the former having decreased niche breadths and lower tolerances to environmental variability. Species inhabiting freshwater springs are often described as being stenotopic specialists, adapted to the stable thermal conditions found in these habitats. Whether due to past local adaptation these species have evolved or have lost intra-generational adaptive mechanisms to cope with increasing thermal variability has, to our knowledge, never been investigated. By studying how the proteome of a stenotopic species changes as a result of increasing temperatures, we investigate if the absence or attenuation of molecular mechanisms is indicative of local adaptation to freshwater springs. An understanding of compensatory mechanisms is especially relevant as spring specialists will experience thermal conditions beyond their physiological limits due to climate change. In this study, the stenotopic species Crunoecia irrorata (Trichoptera: Lepidostomatidae, Curtis 1834) was acclimated to 10, 15 and 20°C for 168 hr. We constructed a homology-based database and via liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based shotgun proteomics identified 1,358 proteins. Differentially abundant proteins and protein norms of reaction revealed candidate proteins and molecular mechanisms facilitating compensatory responses such as trehalose metabolism, tracheal system alteration and heat-shock protein regulation. A species-specific understanding of compensatory physiologies challenges the characterization of species as having narrow tolerances to environmental variability if that characterization is based on occurrences and habitat characteristics alone.
Assuntos
Aclimatação , Proteínas de Insetos/classificação , Insetos/fisiologia , Proteoma , Adaptação Fisiológica , Animais , Cromatografia Líquida , Mudança Climática , Ecossistema , Água Doce , Alemanha , Proteínas de Insetos/metabolismo , Insetos/genética , Larva , Proteômica , Especificidade da Espécie , Espectrometria de Massas em Tandem , TemperaturaRESUMO
To reveal overwintering dormancy (diapause) mechanisms of Culex pipiens pallens (L.), global protein expression differences at three separate time points represent nondiapause, diapause preparation and overwintering diapause phases of Cx. pipiens pallens were compared using iTRAQ. Cx. pipiens pallens females accumulate more lipid droplets during diapause preparation and overwintering diapause maintenance than during the nondiapause phase. A total of 1030 proteins were identified, among which 1020 were quantified and compared. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), Domain and Clusters of Orthologous Groups (COG) analyses revealed key groups of proteins, pathways and domains differentially regulated during diapause preparation and overwintering diapause maintenance phases in this mosquito, including major shifts in energy production and conversion, fatty acid metabolism, the citrate (TCA) cycle, and the cytoskeletal reorganization pathway. Our results provide novel insight into the molecular bases of diapause in mosquitoes and corroborate previously reported diapause-associated features in invertebrates. More interestingly, the phototransduction pathway exists in Cx. pipiens pallens, in particular, actin, rather than other proteins, appears to have substantial role in diapause regulation. In addition, the differential changes in calmodulin protein expression in each stage implicate its important regulatory role of the Cx. pipiens pallens biological clock. Finally, 24 proteins were selected for verification of differential expression using a parallel reaction monitoring strategy. The findings of this study provide a unique opportunity to explore the molecular modifications underlying diapause in mosquitoes and might therefore enable the future design and development of novel genetic tools for improving management strategies in mosquitoes.