Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.019
Filtrar
1.
Mol Cell ; 84(9): 1811-1815.e3, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701742

RESUMO

Post-translational modifications of proteins (PTMs) introduce an extra layer of complexity to cellular regulation. Although phosphorylation of serine, threonine, and tyrosine residues is well-known as PTMs, lysine is, in fact, the most heavily modified amino acid, with over 30 types of PTMs on lysine having been characterized. One of the most recently discovered PTMs on lysine residues is polyphosphorylation, which sees linear chains of inorganic polyphosphates (polyP) attached to lysine residues. The labile nature of phosphoramidate bonds raises the question of whether this modification is covalent in nature. Here, we used buffers with very high ionic strength, which would disrupt any non-covalent interactions, and confirmed that lysine polyphosphorylation occurs covalently on proteins containing PASK domains (polyacidic, serine-, and lysine-rich), such as the budding yeast protein nuclear signal recognition 1 (Nsr1) and the mammalian protein nucleolin. This Matters Arising Response paper addresses the Neville et al. (2024) Matters Arising paper, published concurrently in Molecular Cell.


Assuntos
Lisina , Fosfoproteínas , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA , Fosforilação , Lisina/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Nucleolina , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Animais , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Polifosfatos/metabolismo , Polifosfatos/química , Concentração Osmolar
2.
Biomol NMR Assign ; 18(1): 99-104, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38668800

RESUMO

As sessile organisms, plants need to counteract different biotic and abiotic stresses to survive. RNA interference provides natural immunity against various plant pathogens, especially against viral infections via inhibition of viral genome replication or translation. In plants, DRB3, a multi-domain protein containing two N-terminal dsRNA binding domains (dsRBD), plays a vital role in RNA-directed DNA methylation of the geminiviral genome. Additionally, DRB3 arrests the replication of the viral genome in the viral replication complex of RNA viruses through a mechanism that has yet to be fully deciphered. Therefore, as a first step towards exploring the structural details of DRB3, we present a nearly complete backbone and side chain assignment of the two N-terminal dsRBD domains.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ressonância Magnética Nuclear Biomolecular , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Interferência de RNA , Domínios Proteicos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo
3.
FEBS Lett ; 598(9): 1061-1079, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649155

RESUMO

The molecular mechanisms of selective RNA loading into exosomes and other extracellular vesicles are not yet completely understood. In order to show that a pool of RNA sequences binds both the amino acid arginine and lipid membranes, we constructed a bifunctional RNA 10Arg aptamer specific for arginine and lipid vesicles. The preference of RNA 10Arg for lipid rafts was visualized and confirmed using FRET microscopy in neuroblastoma cells. The selection-amplification (SELEX) method using a doped (with the other three nucleotides) pool of RNA 10Arg sequences yielded several RNA 10Arg(D) sequences, and the affinities of these RNAs both to arginine and liposomes are improved in comparison to pre-doped RNA. Generation of these bispecific aptamers supports the hypothesis that an RNA molecule can bind both to RNA-binding proteins (RBPs) through arginine within the RBP-binding site and to membrane lipid rafts, thus facilitating RNA loading into exosomes and other extracellular vesicles.


Assuntos
Arginina , Lipossomos , Arginina/química , Arginina/metabolismo , Humanos , Lipossomos/química , Lipossomos/metabolismo , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/genética , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Sequência de Bases , RNA/metabolismo , RNA/química , RNA/genética , Exossomos/metabolismo , Exossomos/genética , Exossomos/química , Transferência Ressonante de Energia de Fluorescência
4.
Int J Biol Macromol ; 266(Pt 2): 131195, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565363

RESUMO

We fabricated hybrid nanoparticles consisting of organic semiconducting material with peptide sequence to reflect the target protein interaction. A phosphorescent OLED material, platinum octaethylporphyrin (PtOEP) was self-assembled by reprecipitation with the A17 peptide (YCAYYSPRHKTTF) selected as a probe ligand in order to recognize heat shock protein 70 (HSP70). The phosphorescence intensity of the PtOEP-A17 assembly was enhanced by 125 % after treatment with HSP70. The specificity of the protein interaction was confirmed in both solution and solid states of the PtOEP-A17 assembly against to BSA and nucleolin. We figured out that the phosphorescence lifetime of PtOEP-A17 assembly after exposed to HSP70 increased significantly to 153 ns from initial 115 ns. These simultaneous enhancements in phosphorescence and lifetime triggered by the specific protein interaction would open new applications of PtOEP, a representative material of light-emitting device fields.


Assuntos
Peptídeos , Peptídeos/química , Ligação Proteica , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/química , Medições Luminescentes , Porfirinas/química , Platina/química , Soroalbumina Bovina/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Nucleolina , Animais
5.
Biochem Soc Trans ; 52(2): 899-909, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38533854

RESUMO

RNA, a dynamic and flexible molecule with intricate three-dimensional structures, has myriad functions in disease development. Traditional methods, such as X-ray crystallography and nuclear magnetic resonance, face limitations in capturing real-time, single-molecule dynamics crucial for understanding RNA function. This review explores the transformative potential of single-molecule force spectroscopy using optical tweezers, showcasing its capability to directly probe time-dependent structural rearrangements of individual RNA molecules. Optical tweezers offer versatility in exploring diverse conditions, with the potential to provide insights into how environmental changes, ligands and RNA-binding proteins impact RNA behaviour. By enabling real-time observations of large-scale structural dynamics, optical tweezers emerge as an invaluable tool for advancing our comprehension of RNA structure and function. Here, we showcase their application in elucidating the dynamics of RNA elements in virology, such as the pseudoknot governing ribosomal frameshifting in SARS-CoV-2.


Assuntos
COVID-19 , Conformação de Ácido Nucleico , Pinças Ópticas , SARS-CoV-2 , Imagem Individual de Molécula , SARS-CoV-2/genética , Imagem Individual de Molécula/métodos , COVID-19/virologia , Humanos , RNA Viral/química , RNA/química , Mudança da Fase de Leitura do Gene Ribossômico , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo
6.
Nucleic Acids Res ; 52(8): 4523-4540, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38477398

RESUMO

In archaea and eukaryotes, the evolutionarily conserved KEOPS is composed of four core subunits-Kae1, Bud32, Cgi121 and Pcc1, and a fifth Gon7/Pcc2 that is found in fungi and metazoa. KEOPS cooperates with Sua5/YRDC to catalyze the biosynthesis of tRNA N6-threonylcarbamoyladenosine (t6A), an essential modification needed for fitness of cellular organisms. Biochemical and structural characterizations of KEOPSs from archaea, yeast and humans have determined a t6A-catalytic role for Kae1 and auxiliary roles for other subunits. However, the precise molecular workings of KEOPSs still remain poorly understood. Here, we investigated the biochemical functions of A. thaliana KEOPS and determined a cryo-EM structure of A. thaliana KEOPS dimer. We show that A. thaliana KEOPS is composed of KAE1, BUD32, CGI121 and PCC1, which adopts a conserved overall arrangement. PCC1 dimerization leads to a KEOPS dimer that is needed for an active t6A-catalytic KEOPS-tRNA assembly. BUD32 participates in direct binding of tRNA to KEOPS and modulates the t6A-catalytic activity of KEOPS via its C-terminal tail and ATP to ADP hydrolysis. CGI121 promotes the binding of tRNA to KEOPS and potentiates the t6A-catalytic activity of KEOPS. These data and findings provide insights into mechanistic understanding of KEOPS machineries.


Assuntos
Adenosina , Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/química , RNA de Transferência/metabolismo , RNA de Transferência/química , Modelos Moleculares , Microscopia Crioeletrônica , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
7.
Nat Struct Mol Biol ; 31(5): 747-751, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467876

RESUMO

Pre-mRNA splicing by the spliceosome requires the biogenesis and recycling of its small nuclear ribonucleoprotein (snRNP) complexes, which are consumed in each round of splicing. The human U5 snRNP is the ~1 MDa 'heart' of the spliceosome and is recycled through an unknown mechanism involving major architectural rearrangements and the dedicated chaperones CD2BP2 and TSSC4. Late steps in U5 snRNP biogenesis similarly involve these chaperones. Here we report cryo-electron microscopy structures of four human U5 snRNP-CD2BP2-TSSC4 complexes, revealing how a series of molecular events primes the U5 snRNP to generate the ~2 MDa U4/U6.U5 tri-snRNP, the largest building block of the spliceosome.


Assuntos
Microscopia Crioeletrônica , Modelos Moleculares , Ribonucleoproteína Nuclear Pequena U5 , Spliceossomos , Humanos , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteína Nuclear Pequena U5/química , Ribonucleoproteína Nuclear Pequena U5/genética , Spliceossomos/metabolismo , Spliceossomos/química , Spliceossomos/ultraestrutura , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Conformação Proteica , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
8.
Nucleic Acids Res ; 52(7): 4037-4052, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38499487

RESUMO

Here, we identify RBM41 as a novel unique protein component of the minor spliceosome. RBM41 has no previously recognized cellular function but has been identified as a paralog of U11/U12-65K, a known unique component of the U11/U12 di-snRNP. Both proteins use their highly similar C-terminal RRMs to bind to 3'-terminal stem-loops in U12 and U6atac snRNAs with comparable affinity. Our BioID data indicate that the unique N-terminal domain of RBM41 is necessary for its association with complexes containing DHX8, an RNA helicase, which in the major spliceosome drives the release of mature mRNA from the spliceosome. Consistently, we show that RBM41 associates with excised U12-type intron lariats, is present in the U12 mono-snRNP, and is enriched in Cajal bodies, together suggesting that RBM41 functions in the post-splicing steps of the minor spliceosome assembly/disassembly cycle. This contrasts with U11/U12-65K, which uses its N-terminal region to interact with U11 snRNP during intron recognition. Finally, while RBM41 knockout cells are viable, they show alterations in U12-type 3' splice site usage. Together, our results highlight the role of the 3'-terminal stem-loop of U12 snRNA as a dynamic binding platform for the U11/U12-65K and RBM41 proteins, which function at distinct stages of the assembly/disassembly cycle.


Assuntos
RNA Helicases DEAD-box , Fatores de Processamento de RNA , RNA Nuclear Pequeno , Proteínas de Ligação a RNA , Ribonucleoproteínas Nucleares Pequenas , Spliceossomos , Spliceossomos/metabolismo , Spliceossomos/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Humanos , RNA Nuclear Pequeno/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/química , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Splicing de RNA , Íntrons/genética , Células HeLa , Ligação Proteica , Corpos Enovelados/metabolismo , Células HEK293
9.
Nature ; 628(8009): 887-893, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538796

RESUMO

Efficient termination is required for robust gene transcription. Eukaryotic organisms use a conserved exoribonuclease-mediated mechanism to terminate the mRNA transcription by RNA polymerase II (Pol II)1-5. Here we report two cryogenic electron microscopy structures of Saccharomyces cerevisiae Pol II pre-termination transcription complexes bound to the 5'-to-3' exoribonuclease Rat1 and its partner Rai1. Our structures show that Rat1 displaces the elongation factor Spt5 to dock at the Pol II stalk domain. Rat1 shields the RNA exit channel of Pol II, guides the nascent RNA towards its active centre and stacks three nucleotides at the 5' terminus of the nascent RNA. The structures further show that Rat1 rotates towards Pol II as it shortens RNA. Our results provide the structural mechanism for the Rat1-mediated termination of mRNA transcription by Pol II in yeast and the exoribonuclease-mediated termination of mRNA transcription in other eukaryotes.


Assuntos
Microscopia Crioeletrônica , Exorribonucleases , RNA Polimerase II , RNA Mensageiro , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Terminação da Transcrição Genética , Exorribonucleases/química , Exorribonucleases/metabolismo , Exorribonucleases/ultraestrutura , Modelos Moleculares , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , RNA Mensageiro/biossíntese , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/ultraestrutura , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/ultraestrutura , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/ultraestrutura , Domínios Proteicos , RNA Fúngico/biossíntese , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/ultraestrutura
10.
Nucleic Acids Res ; 52(9): 5285-5300, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38366771

RESUMO

The signal recognition particle (SRP) is a critical component in protein sorting pathways in all domains of life. Human SRP contains six proteins bound to the 7S RNA and their structures and functions have been mostly elucidated. The SRP68/72 dimer is the largest SRP component and is essential for SRP function. Although the structures of the SRP68/72 RNA binding and dimerization domains have been previously reported, the structure and function of large portions of the SRP68/72 dimer remain unknown. Here, we analyse full-length SRP68/72 using cryo-EM and report that SRP68/72 depend on each other for stability and form an extended dimerization domain. This newly observed dimerization domain is both a protein- and RNA-binding domain. Comparative analysis with current structural models suggests that this dimerization domain undergoes dramatic translocation upon SRP docking onto SRP receptor and eventually comes close to the Alu domain. We propose that the SRP68/72 dimerization domain functions by binding and detaching the Alu domain and SRP9/14 from the ribosomal surface, thus releasing elongation arrest upon docking onto the ER membrane.


Assuntos
Microscopia Crioeletrônica , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Partícula de Reconhecimento de Sinal , Humanos , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/metabolismo , Domínios Proteicos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Sítios de Ligação , RNA/química , RNA/metabolismo
11.
RNA ; 30(6): 644-661, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38423626

RESUMO

UV-crosslinking has proven to be an invaluable tool for the identification of RNA-protein interactomes. The paucity of methods for distinguishing background from bona fide RNA-protein interactions, however, makes attribution of RNA-binding function on UV-crosslinking alone challenging. To address this need, we previously reported an RNA-binding protein (RBP) confidence scoring metric (RCS), incorporating both signal-to-noise (S:N) and protein abundance determinations to distinguish high- and low-confidence candidate RBPs. Although RCS has utility, we sought a direct metric for quantification and comparative evaluation of protein-RNA interactions. Here we propose the use of protein-specific UV-crosslinking efficiency (%CL), representing the molar fraction of a protein that is crosslinked to RNA, for functional evaluation of candidate RBPs. Application to the HeLa RNA interactome yielded %CL values for 1097 proteins. Remarkably, %CL values span over five orders of magnitude. For the HeLa RNA interactome, %CL values comprise a range from high efficiency, high specificity interactions, e.g., the Elav protein HuR and the Pumilio homolog Pum2, with %CL values of 45.9 and 24.2, respectively, to very low efficiency and specificity interactions, for example, the metabolic enzymes glyceraldehyde-3-phosphate dehydrogenase, fructose-bisphosphate aldolase, and alpha-enolase, with %CL values of 0.0016, 0.006, and 0.008, respectively. We further extend the utility of %CL through prediction of protein domains and classes with known RNA-binding functions, thus establishing it as a useful metric for RNA interactome analysis. We anticipate that this approach will benefit efforts to establish functional RNA interactomes and support the development of more predictive computational approaches for RBP identification.


Assuntos
Proteínas de Ligação a RNA , RNA , Raios Ultravioleta , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , RNA/metabolismo , RNA/genética , Humanos , Células HeLa , Ligação Proteica , Reagentes de Ligações Cruzadas/química
12.
J Virol ; 98(3): e0166023, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38421167

RESUMO

Rotavirus (RV) NSP2 is a multifunctional RNA chaperone that exhibits numerous activities that are essential for replication and viral genome packaging. We performed an in silico analysis that highlighted a distant relationship of NSP2 from rotavirus B (RVB) to proteins from other human RVs. We solved a cryo-electron microscopy structure of RVB NSP2 that shows structural differences with corresponding proteins from other human RVs. Based on the structure, we identified amino acid residues that are involved in RNA interactions. Anisotropy titration experiments showed that these residues are important for nucleic acid binding. We also identified structural motifs that are conserved in all RV species. Collectively, our data complete the structural characterization of rotaviral NSP2 protein and demonstrate its structural diversity among RV species.IMPORTANCERotavirus B (RVB), also known as adult diarrhea rotavirus, has caused epidemics of severe diarrhea in China, India, and Bangladesh. Thousands of people are infected in a single RVB epidemic. However, information on this group of rotaviruses remains limited. As NSP2 is an essential protein in the viral life cycle, including its role in the formation of replication factories, it may be a target for future antiviral strategy against viruses with similar mechanisms.


Assuntos
Proteínas de Ligação a RNA , Rotavirus , Proteínas não Estruturais Virais , Adulto , Humanos , Microscopia Crioeletrônica , Diarreia/virologia , RNA/metabolismo , Rotavirus/metabolismo , Infecções por Rotavirus/virologia , Proteínas não Estruturais Virais/química , Proteínas de Ligação a RNA/química
13.
Comput Biol Med ; 171: 108175, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402841

RESUMO

Circular RNAs (circRNAs), a class of endogenous RNA with a covalent loop structure, can regulate gene expression by serving as sponges for microRNAs and RNA-binding proteins (RBPs). To date, most computational methods for predicting RBP binding sites on circRNAs focus on circRNA fragments instead of circRNAs. These methods detect whether a circRNA fragment contains binding sites, but cannot determine where are the binding sites and how many binding sites are on the circRNA transcript. We report a hybrid deep learning-based tool, CircSite, to predict RBP binding sites at single-nucleotide resolution and detect key contributed nucleotides on circRNA transcripts. CircSite takes advantage of convolutional neural networks (CNNs) and Transformer for learning local and global representations of circRNAs binding to RBPs, respectively. We construct 37 datasets of circRNAs interacting with proteins for benchmarking and the experimental results show that CircSite offers accurate predictions of RBP binding nucleotides and detects key subsequences aligning well with known binding motifs. CircSite is an easy-to-use online webserver for predicting RBP binding sites on circRNA transcripts and freely available at http://www.csbio.sjtu.edu.cn/bioinf/CircSite/.


Assuntos
MicroRNAs , RNA Circular , RNA Circular/genética , Ligação Proteica , Sítios de Ligação , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Nucleotídeos/metabolismo
14.
J Chem Inf Model ; 64(5): 1682-1690, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38417111

RESUMO

Epitranscriptomic mRNA modifications affect gene expression, with their altered balance detected in various cancers. YTHDF proteins contain the YTH reader domain recognizing the m6A mark on mRNA and represent valuable drug targets. Crystallographic structures have been determined for all three family members; however, discrepancies are present in the organization of the m6A-binding pocket. Here, we present new crystallographic structures of the YTH domain of YTHDF1, accompanied by computational studies, showing that this domain can exist in different stable conformations separated by a significant energetic barrier. During the transition, additional conformations are explored, with peculiar druggable pockets appearing and offering new opportunities for the design of YTH-interfering small molecules.


Assuntos
Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Maleabilidade , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Conformação Molecular
15.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 3): 67-72, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376822

RESUMO

KHNYN is composed of an N-terminal KH-like RNA-binding domain and a C-terminal PIN/NYN endoribonuclease domain. It forms a complex with zinc-finger antiviral protein (ZAP), leading to the degradation of viral or cellular RNAs depending on the ZAP isoform. Here, the production, crystallization and biochemical analysis of the NYN domain (residues 477-636) of human KHNYN are presented. The NYN domain was crystallized with a heptameric single-stranded RNA from the AU-rich elements of the 3'-UTR of interferon lambda 3. The crystal belonged to space group P4132, with unit-cell parameters a = b = c = 111.3 Å, and diffacted to 1.72 Šresolution. The RNase activity of the NYN domain was demonstrated using different single-stranded RNAs, together with the binding between the NYN domain of KHNYN and the zinc-finger domain of ZAP.


Assuntos
Proteínas de Ligação a RNA , RNA , Humanos , Cristalização , Cristalografia por Raios X , Proteínas de Ligação a RNA/química , Zinco/metabolismo
16.
IEEE J Biomed Health Inform ; 28(3): 1762-1772, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224504

RESUMO

The prediction of interaction sites between circular RNA (circRNA) and RNA binding proteins (RBPs) is crucial for regulating diseases and discovering new treatment approaches. Computational models have been widely used to predict circRNA-RBP interaction sites due to the availability of genome-wide circRNA binding event data. However, efficiently obtaining multi-scale circRNA features to improve prediction accuracy remains a challenging problem. In this study, we propose SSCRB, a lightweight model for predicting circRNA-RBP interaction sites. Our model extracts both sequence and structural features of circRNA and incorporates multi-scale features through the attention mechanism. Furthermore, we develop an ensemble model by combining multiple submodels to enhance predictive performance and generalizability. We evaluate SSCRB on 37 circRNA datasets and compare it with other state-of-the-art methods. The average AUC of SSCRB is 97.66%, demonstrating its efficiency and robustness. SSCRB outperforms other methods in terms of prediction accuracy while requiring significantly fewer computational resources.


Assuntos
RNA Circular , Proteínas de Ligação a RNA , Humanos , RNA Circular/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação , Biologia Computacional/métodos
17.
Comput Biol Med ; 170: 108081, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295475

RESUMO

DNA-binding and RNA-binding proteins are essential to an organism's normal life cycle. These proteins have diverse functions in various biological processes. DNA-binding proteins are crucial for DNA replication, transcription, repair, packaging, and gene expression. Likewise, RNA-binding proteins are essential for the post-transcriptional control of RNAs and RNA metabolism. Identifying DNA- and RNA-binding residue is essential for biological research and understanding the pathogenesis of many diseases. However, most DNA-binding and RNA-binding proteins still need to be discovered. This research explored various properties of the protein sequences, such as amino acid composition type, Position-Specific Scoring Matrix (PSSM) values of amino acids, Hidden Markov model (HMM) profiles, physiochemical properties, structural properties, torsion angles, and disorder regions. We utilized a sliding window technique to extract more information from a target residue's neighbors. We proposed an optimized Light Gradient Boosting Machine (LightGBM) method, named DRBpred, to predict DNA-binding and RNA-binding residues from the protein sequence. DRBpred shows an improvement of 112.00 %, 33.33 %, and 6.49 % for the DNA-binding test set compared to the state-of-the-art method. It shows an improvement of 112.50 %, 16.67 %, and 7.46 % for the RNA-binding test set regarding Sensitivity, Mathews Correlation Coefficient (MCC), and AUC metric.


Assuntos
Algoritmos , Aprendizado de Máquina , Aminoácidos/química , Aminoácidos/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/genética , DNA/química , RNA/genética , RNA/química , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Biologia Computacional/métodos , Bases de Dados de Proteínas
18.
Nucleic Acids Res ; 52(5): e26, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38281241

RESUMO

RNA-protein interactions determine the cellular fate of RNA and are central to regulating gene expression outcomes in health and disease. To date, no method exists that is able to identify proteins that interact with specific regions within endogenous RNAs in live cells. Here, we develop SHIFTR (Selective RNase H-mediated interactome framing for target RNA regions), an efficient and scalable approach to identify proteins bound to selected regions within endogenous RNAs using mass spectrometry. Compared to state-of-the-art techniques, SHIFTR is superior in accuracy, captures minimal background interactions and requires orders of magnitude lower input material. We establish SHIFTR workflows for targeting RNA classes of different length and abundance, including short and long non-coding RNAs, as well as mRNAs and demonstrate that SHIFTR is compatible with sequentially mapping interactomes for multiple target RNAs in a single experiment. Using SHIFTR, we comprehensively identify interactions of cis-regulatory elements located at the 5' and 3'-terminal regions of authentic SARS-CoV-2 RNAs in infected cells and accurately recover known and novel interactions linked to the function of these viral RNA elements. SHIFTR enables the systematic mapping of region-resolved RNA interactomes for any RNA in any cell type and has the potential to revolutionize our understanding of transcriptomes and their regulation.


Assuntos
Proteômica , Proteínas de Ligação a RNA , RNA , Software , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Transcriptoma , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , RNA/química , RNA/metabolismo , Proteômica/métodos
19.
J Gen Appl Microbiol ; 69(5): 239-248, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-37423745

RESUMO

Indole is a very important signal molecule which plays multiple regulatory roles in many physiological and biochemical processes of bacteria, but up to now, the reasons for its wide range of functions have not been revealed. In this study, we found that indole inhibits the motility, promotes glycogen accumulation and enhances starvation resistance of Escherichia coli. However, the regulatory effects of indole became insignificant while the global csrA gene was mutated. To reveal the regulatory relationship between indole and csrA, we studied the effects of indole on the transcription level of csrA, flhDC, glgCAP and cstA, and also the sensing of the promoters of the genes on indole. It was found that indole inhibited the transcription of csrA, and only the promoter of the csrA gene can sense indole. Namely, indole indirectly regulated the translation level of FlhDC, GlgCAP and CstA. These data indicates that indole regulation is related with the regulation of CsrA, which may throw light on the regulation mechanism research of indole.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Indóis/farmacologia , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
20.
J Pept Sci ; 30(5): e3562, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38148630

RESUMO

The non-POU domain-containing octamer-binding protein (NONO) is a nucleic acid-binding protein with diverse functions that has been identified as a potential cancer target in cell biology studies. Little is known about structural motifs that mediate binding to NONO apart from its ability to form homodimers, as well as heterodimers and oligomers with related homologues. We report a stapling approach to macrocyclise helical peptides derived from the insulin-like growth factor binding protein (IGFBP-3) that NONO interacts with, and also from the dimerisation domain of NONO itself. Using a range of chemistries including Pd-catalysed cross-coupling, cysteine arylation and cysteine alkylation, we successfully improved the helicity and observed modest peptide binding to the NONO dimer, although binding could not be saturated at micromolar concentrations. Unexpectedly, we observed cell permeability and preferential nuclear localisation of various dye-labelled peptides in live confocal microscopy, indicating the potential for developing peptide-based tools to study NONO in a cellular context.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Cisteína , Peptídeos/metabolismo , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA