Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
1.
Redox Biol ; 76: 103341, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39244794

RESUMO

AIMS: Acute heart failure (AHF) is typified by inflammatory and oxidative stress responses, which are associated with unfavorable patient outcomes. Given the anti-inflammatory and antioxidant properties of high-density lipoprotein (HDL), this study sought to examine the relationship between impaired HDL function and mortality in AHF patients. The complex interplay between various HDL-related biomarkers and clinical outcomes remains poorly understood. METHODS: HDL subclass distribution was quantified by nuclear magnetic resonance spectroscopy. Lecithin-cholesterol acyltransferase (LCAT) activity, cholesterol ester transfer protein (CETP) activity, and paraoxonase (PON-1) activity were assessed using fluorometric assays. HDL-cholesterol efflux capacity (CEC) was assessed in a validated assay using [3H]-cholesterol-labeled J774 macrophages. RESULTS: Among the study participants, 74 (23.5 %) out of 315 died within three months after hospitalization due to AHF. These patients exhibited lower activities of the anti-oxidant enzymes PON1 and LCAT, impaired CEC, and lower concentration of small HDL subclasses, which remained significant after accounting for potential confounding factors. Smaller HDL particles, particularly HDL3 and HDL4, exhibited a strong association with CEC, PON1 activity, and LCAT activity. CONCLUSIONS: In patients with AHF, impaired HDL CEC, HDL antioxidant and anti-inflammatory function, and impaired HDL metabolism are associated with increased mortality. Assessment of HDL function and subclass distribution could provide valuable clinical information and help identify patients at high risk.


Assuntos
Antioxidantes , Arildialquilfosfatase , Biomarcadores , Insuficiência Cardíaca , Lipoproteínas HDL , Fosfatidilcolina-Esterol O-Aciltransferase , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/sangue , Humanos , Masculino , Lipoproteínas HDL/sangue , Lipoproteínas HDL/metabolismo , Idoso , Feminino , Antioxidantes/metabolismo , Arildialquilfosfatase/metabolismo , Arildialquilfosfatase/sangue , Biomarcadores/sangue , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/sangue , Estresse Oxidativo , Pessoa de Meia-Idade , Doença Aguda , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/sangue
2.
Nutrients ; 16(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125351

RESUMO

Syrian hamsters are valuable models for studying lipid metabolism due to their sensitivity to dietary cholesterol, yet the precise impact of varying cholesterol levels has not been comprehensively assessed. This study examined the impact of varying dietary cholesterol levels on lipid metabolism in Syrian hamsters. Diets ranging from 0% to 1% cholesterol were administered to assess lipid profiles and oxidative stress markers. Key findings indicate specific cholesterol thresholds for inducing distinct lipid profiles: below 0.13% for normal lipids, 0.97% for elevated LDL-C, 0.43% for increased VLDL-C, and above 0.85% for heightened hepatic lipid accumulation. A cholesterol supplementation of 0.43% induced hypercholesterolemia without adverse liver effects or abnormal lipoprotein expression. Furthermore, cholesterol supplementation significantly increased liver weight, plasma total cholesterol, LDL-C, and VLDL-C levels while reducing the HDL-C/LDL-C ratio. Fecal cholesterol excretion increased, with stable bile acid levels. High cholesterol diets correlated with elevated plasma ALT activities, reduced hepatic lipid peroxidation, and altered leptin and CETP levels. These findings underscore Syrian hamsters as robust models for hyperlipidemia research, offering insights into experimental methodologies. The identified cholesterol thresholds facilitate precise lipid profile manipulation, enhancing the hamster's utility in lipid metabolism studies and potentially informing clinical approaches to managing lipid disorders.


Assuntos
Colesterol na Dieta , Metabolismo dos Lipídeos , Fígado , Mesocricetus , Animais , Colesterol na Dieta/administração & dosagem , Fígado/metabolismo , Masculino , Cricetinae , Fezes/química , Estresse Oxidativo , Hipercolesterolemia/metabolismo , Hipercolesterolemia/sangue , LDL-Colesterol/sangue , Peroxidação de Lipídeos , Colesterol/sangue , Colesterol/metabolismo , Ácidos e Sais Biliares/metabolismo , Leptina/sangue , Leptina/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/metabolismo
3.
Bioanalysis ; 16(16): 863-871, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119687

RESUMO

Cholesteryl ester transfer protein (CETP) inhibitor is a target for both lowering low-density lipoproteins and raising high-density lipoproteins. Anacetrapib was the lead compound in our cholesteryl ester transfer protein inhibitor program. Preclinical studies were initiated to support the safety of anacetrapib deposition in adipose tissue, followed by a clinical trial to evaluate the effects of anacetrapib in people with vascular disease. An ultra-high performance liquid chromatography/tandem mass spectrometry method was developed to determine tissue anacetrapib concentrations in the adipose of three animal species and humans. The assays were validated in the concentration ranges of 5-5000 ng/ml and 0.1-100 µg/ml. The anacetrapib concentrations in adipose tissue from preclinical and clinical studies were determined.


[Box: see text].


Assuntos
Tecido Adiposo , Oxazolidinonas , Espectrometria de Massas em Tandem , Humanos , Animais , Tecido Adiposo/metabolismo , Tecido Adiposo/química , Oxazolidinonas/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Ratos , Cromatografia Líquida/métodos , Camundongos
4.
Function (Oxf) ; 5(4)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38984977

RESUMO

Cholesteryl ester transfer protein (CETP) increases the atherosclerosis risk by lowering HDL-cholesterol levels. It also exhibits tissue-specific effects independent of HDL. However, sexual dimorphism of CETP effects remains largely unexplored. Here, we hypothesized that CETP impacts the perivascular adipose tissue (PVAT) phenotype and function in a sex-specific manner. PVAT function, gene and protein expression, and morphology were examined in male and female transgenic mice expressing human or simian CETP and their non-transgenic counterparts (NTg). PVAT exerted its anticontractile effect in aortas from NTg males, NTg females, and CETP females, but not in CETP males. CETP male PVAT had reduced NO levels, decreased eNOS and phospho-eNOS levels, oxidative stress, increased NOX1 and 2, and decreased SOD2 and 3 expressions. In contrast, CETP-expressing female PVAT displayed increased NO and phospho-eNOS levels with unchanged NOX expression. NOX inhibition and the antioxidant tempol restored PVAT anticontractile function in CETP males. Ex vivo estrogen treatment also restored PVAT function in CETP males. Moreover, CETP males, but not female PVAT, show increased inflammatory markers. PVAT lipid content increased in CETP males but decreased in CETP females, while PVAT cholesterol content increased in CETP females. CETP male PVAT exhibited elevated leptin and reduced Prdm16 (brown adipocyte marker) expression. These findings highlight CETP sex-specific impact on PVAT. In males, CETP impaired PVAT anticontractile function, accompanied by oxidative stress, inflammation, and whitening. Conversely, in females, CETP expression increased NO levels, induced an anti-inflammatory phenotype, and preserved the anticontractile function. This study reveals sex-specific vascular dysfunction mediated by CETP.


Assuntos
Tecido Adiposo , Proteínas de Transferência de Ésteres de Colesterol , Camundongos Transgênicos , Estresse Oxidativo , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/genética , Animais , Masculino , Feminino , Camundongos , Tecido Adiposo/metabolismo , Humanos , Caracteres Sexuais , Óxido Nítrico/metabolismo
5.
Front Immunol ; 15: 1389551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966642

RESUMO

Introduction: Pathogenesis of cutaneous leishmaniases involves parasite growth, persistent inflammation, and likely participation of lipoproteins (LP). The cholesteryl ester transfer protein (CETP), involved in LP remodeling, has been shown to participate in the inflammatory response and the evolution of infectious conditions. Methods: We evaluated the impact of the presence of CETP on infection by Leishmania (L.) amazonensis in an experimental model of cutaneous leishmaniasis using C57BL6/J mice transgenic for human CETP (CETP), having as control their littermates that do not express the protein, wild-type (WT) mice. The progression of the lesion after infection in the footpad was monitored for 12 weeks. Two groups of animals were formed to collect the plantar pad in the 4th and 12th week post-infection. Results: The lesion increased from the 3rd week onwards, in both groups, with a gradual decrease from the 10th week onwards in the CETP group compared to the WT group, showing a reduction in parasitism and an improvement in the healing process, a reduction in CD68+ cells, and an increase in CD163+ and CD206, characterizing a population of M2 macrophages. A reduction in ARG1+ cells and an increase in INOS+ cells were observed. During infection, the LP profile showed an increase in triglycerides in the VLDL fraction in the CETP group at 12 weeks. Gene expression revealed a decrease in the CD36 receptor in the CETP group at 12 weeks, correlating with healing and parasite reduction. In vitro, macrophages derived from bone marrow cells from CETP mice showed lower parasite load at 48 h and, a reduction in arginase activity at 4 h accompanied by increased NO production at 4 and 24 h compared to WT macrophages, corroborating the in vivo findings. Discussion: The data indicate that the presence of CETP plays an important role in resolving Leishmania (L.) amazonensis infection, reducing parasitism, and modulating the inflammatory response in controlling infection and tissue repair.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol , Leishmaniose Cutânea , Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Animais , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/metabolismo , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Humanos , Progressão da Doença , Modelos Animais de Doenças
6.
Circ Res ; 135(2): 335-349, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38828596

RESUMO

BACKGROUND: Individuals with type 1 diabetes (T1D) generally have normal or even higher HDL (high-density lipoprotein)-cholesterol levels than people without diabetes yet are at increased risk for atherosclerotic cardiovascular disease (CVD). Human HDL is a complex mixture of particles that can vary in cholesterol content by >2-fold. To investigate if specific HDL subspecies contribute to the increased atherosclerosis associated with T1D, we created mouse models of T1D that exhibit human-like HDL subspecies. We also measured HDL subspecies and their association with incident CVD in a cohort of people with T1D. METHODS: We generated LDL receptor-deficient (Ldlr-/-) mouse models of T1D expressing human APOA1 (apolipoprotein A1). Ldlr-/-APOA1Tg mice exhibited the main human HDL subspecies. We also generated Ldlr-/-APOA1Tg T1D mice expressing CETP (cholesteryl ester transfer protein), which had lower concentrations of large HDL subspecies versus mice not expressing CETP. HDL particle concentrations and sizes and proteins involved in lipoprotein metabolism were measured by calibrated differential ion mobility analysis and targeted mass spectrometry in the mouse models of T1D and in a cohort of individuals with T1D. Endothelial transcytosis was analyzed by total internal reflection fluorescence microscopy. RESULTS: Diabetic Ldlr-/-APOA1Tg mice were severely hyperglycemic and hyperlipidemic and had markedly elevated plasma APOB levels versus nondiabetic littermates but were protected from the proatherogenic effects of diabetes. Diabetic Ldlr-/-APOA1Tg mice expressing CETP lost the atheroprotective effect and had increased lesion necrotic core areas and APOB accumulation, despite having lower plasma APOB levels. The detrimental effects of low concentrations of larger HDL particles in diabetic mice expressing CETP were not explained by reduced cholesterol efflux. Instead, large HDL was more effective than small HDL in preventing endothelial transcytosis of LDL mediated by scavenger receptor class B type 1. Finally, in humans with T1D, increased concentrations of larger HDL particles relative to APOB100 negatively predicted incident CVD independently of HDL-cholesterol levels. CONCLUSIONS: Our results suggest that the balance between APOB lipoproteins and the larger HDL subspecies contributes to atherosclerosis progression and incident CVD in the setting of T1D and that larger HDLs exert atheroprotective effects on endothelial cells rather than by promoting macrophage cholesterol efflux.


Assuntos
Apolipoproteína A-I , Aterosclerose , Diabetes Mellitus Tipo 1 , Receptores de LDL , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Apolipoproteína A-I/sangue , Apolipoproteína A-I/metabolismo , Apolipoproteína B-100/metabolismo , Apolipoproteína B-100/genética , Apolipoproteína B-100/sangue , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/sangue , Aterosclerose/patologia , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/sangue , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/sangue , Modelos Animais de Doenças , Lipoproteínas HDL/sangue , Lipoproteínas HDL/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de LDL/genética , Receptores de LDL/deficiência , Receptores de LDL/metabolismo
7.
Life Sci ; 351: 122823, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38866219

RESUMO

Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide, primarily affecting the heart and blood vessels, with atherosclerosis being a major contributing factor to their onset. Epidemiological and clinical studies have linked high levels of low-density lipoprotein (LDL) emanating from distorted cholesterol homeostasis as its major predisposing factor. Cholesterol homeostasis, which involves maintaining the balance in body cholesterol level, is mediated by several proteins or receptors, transcription factors, and even genes, regulating cholesterol influx (through dietary intake or de novo synthesis) and efflux (by their conversion to bile acids). Previous knowledge about CVDs management has evolved around modulating these receptors' activities through synthetic small molecules/antibodies, with limited interest in natural products. The central roles of the cholesteryl ester transfer protein (CETP), proprotein convertase subtilisin/kexin type 9 (PCSK9), and cytochrome P450 family 7 subfamily A member 1 (CYP7A1), among other proteins or receptors, have fostered growing scientific interests in understanding more on their regulatory activities and potential as drug targets. We present up-to-date knowledge on the contributions of CETP, PCSK9, and CYP7A1 toward CVDs, highlighting the clinical successes and failures of small molecules/antibodies to modulate their activities. In recommendation for a new direction to improve cardiovascular health, we have presented recent findings on natural products (including functional food, plant extracts, phytochemicals, bioactive peptides, and therapeutic carbohydrates) that also modulate the activities of CETP, PCSK-9, and CYP7A1, and emphasized the need for more research efforts redirected toward unraveling more on natural products potentials even at clinical trial level for CVD management.


Assuntos
Produtos Biológicos , Colesterol 7-alfa-Hidroxilase , Proteínas de Transferência de Ésteres de Colesterol , Colesterol , Hipercolesterolemia , Pró-Proteína Convertase 9 , Humanos , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Pró-Proteína Convertase 9/metabolismo , Produtos Biológicos/uso terapêutico , Produtos Biológicos/farmacologia , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/metabolismo , Animais , Colesterol/metabolismo , Colesterol 7-alfa-Hidroxilase/metabolismo
8.
IUBMB Life ; 76(9): 712-730, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38733508

RESUMO

The cholesterogenic phenotype, encompassing de novo biosynthesis and accumulation of cholesterol, aids cancer cell proliferation and survival. Previously, the role of cholesteryl ester (CE) transfer protein (CETP) has been implicated in breast cancer aggressiveness, but the molecular basis of this observation is not clearly understood, which this study aims to elucidate. CETP knock-down resulted in a >50% decrease in cell proliferation in both 'estrogen receptor-positive' (ER+; Michigan Cancer Foundation-7 (MCF7) breast cancer cells) and 'triple-negative' breast cancer (TNBC; MDA-MB-231) cell lines. Intriguingly, the abrogation of CETP together with the combination treatment of tamoxifen (5 µM) and acetyl plumbagin (a cholesterol-depleting agent) (5 µM) resulted in twofold to threefold increase in apoptosis in both cell lines. CETP knockdown also showed decreased intracellular CE levels, lipid raft and lipid droplets in both cell lines. In addition, RT2 Profiler PCR array (Qiagen, Germany)-based gene expression analysis revealed an overall downregulation of genes associated in cholesterol biosynthesis, lipid signalling and drug resistance in MCF7 cells post-CETP knock-down. On the contrary, resistance in MDA-MB-231 cells was reduced through increased expression in cholesterol efflux genes and the expression of targetable surface receptors by endocrine therapy. The pilot xenograft mice study substantiated CETP's role as a cancer survival gene as knock-down of CETP stunted the growth of TNBC tumour by 86%. The principal findings of this study potentiate CETP as a driver in breast cancer growth and aggressiveness and thus targeting CETP could limit drug resistance via the reduction in cholesterol accumulation in breast cancer cells, thereby reducing cancer aggressiveness.


Assuntos
Apoptose , Neoplasias da Mama , Proliferação de Células , Proteínas de Transferência de Ésteres de Colesterol , Colesterol , Resistencia a Medicamentos Antineoplásicos , Tamoxifeno , Humanos , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Tamoxifeno/farmacologia , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Animais , Colesterol/metabolismo , Camundongos , Proliferação de Células/efeitos dos fármacos , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Apoptose/efeitos dos fármacos , Antineoplásicos Hormonais/farmacologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Técnicas de Silenciamento de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células MCF-7 , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Camundongos Nus
9.
JCI Insight ; 9(8)2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646937

RESUMO

Sepsis is a leading cause of mortality worldwide, and pneumonia is the most common cause of sepsis in humans. Low levels of high-density lipoprotein cholesterol (HDL-C) levels are associated with an increased risk of death from sepsis, and increasing levels of HDL-C by inhibition of cholesteryl ester transfer protein (CETP) decreases mortality from intraabdominal polymicrobial sepsis in APOE*3-Leiden.CETP mice. Here, we show that treatment with the CETP inhibitor (CETPi) anacetrapib reduced mortality from Streptococcus pneumoniae-induced sepsis in APOE*3-Leiden.CETP and APOA1.CETP mice. Mechanistically, CETP inhibition reduced the host proinflammatory response via attenuation of proinflammatory cytokine transcription and release. This effect was dependent on the presence of HDL, leading to attenuation of immune-mediated organ damage. In addition, CETP inhibition promoted monocyte activation in the blood prior to the onset of sepsis, resulting in accelerated macrophage recruitment to the lung and liver. In vitro experiments demonstrated that CETP inhibition significantly promoted the activation of proinflammatory signaling in peripheral blood mononuclear cells and THP1 cells in the absence of HDL; this may represent a mechanism responsible for improved bacterial clearance during sepsis. These findings provide evidence that CETP inhibition represents a potential approach to reduce mortality from pneumosepsis.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol , Monócitos , Streptococcus pneumoniae , Animais , Feminino , Humanos , Camundongos , Apolipoproteína E3/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , HDL-Colesterol/sangue , HDL-Colesterol/metabolismo , Modelos Animais de Doenças , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/mortalidade , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/microbiologia , Sepse/imunologia , Sepse/mortalidade , Sepse/microbiologia , Sepse/metabolismo , Streptococcus pneumoniae/imunologia , Células THP-1
10.
Curr Pharm Des ; 30(10): 742-756, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425105

RESUMO

Lipid metabolism plays an essential role in the pathogenesis of cardiovascular and metabolic diseases. Cholesteryl ester transfer protein (CETP) is a crucial glycoprotein involved in lipid metabolism by transferring cholesteryl esters (CE) and triglycerides (TG) between plasma lipoproteins. CETP activity results in reduced HDL-C and increased VLDL- and LDL-C concentrations, thus increasing the risk of cardiovascular and metabolic diseases. In this review, we discuss the structure of CETP and its mechanism of action. Furthermore, we focus on recent experiments on animal CETP-expressing models, deciphering the regulation and functions of CETP in various genetic backgrounds and interaction with different external factors. Finally, we discuss recent publications revealing the association of CETP single nucleotide polymorphisms (SNPs) with the risk of cardiovascular and metabolic diseases, lifestyle factors, diet and therapeutic interventions. While CETP SNPs can be used as effective diagnostic markers, diet, lifestyle, gender and ethnic specificity should also be considered for effective treatment.


Assuntos
Doenças Cardiovasculares , Proteínas de Transferência de Ésteres de Colesterol , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Humanos , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/genética , Animais , Polimorfismo de Nucleotídeo Único , Lipídeos/sangue , Metabolismo dos Lipídeos/genética
11.
Arch Med Res ; 55(2): 102937, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301446

RESUMO

BACKGROUND: The nasal vaccine HB-ATV-8 has emerged as a promising approach for NAFLD (non-alcoholic fatty liver disease) and atherosclerosis prevention. HB-ATV-8 contains peptide seq-1 derived from the carboxy-end of the Cholesteryl Ester Transfer Protein (CETP), shown to reduce liver fibrosis, inflammation, and atherosclerotic plaque formation in animal models. Beyond the fact that this vaccine induces B-cell lymphocytes to code for antibodies against the seq-1 sequence, inhibiting CETP's cholesterol transfer activity, we have hypothesized that beyond the modulation of CETP activity carried out by neutralizing antibodies, the observed molecular effects may also correspond to the direct action of peptide seq-1 on diverse cellular systems and molecular features involved in the development of liver fibrosis. METHODS: The HepG2 hepatoma-derived cell line was employed to establish an in vitro steatosis model. To obtain a conditioned cell medium to be used with hepatic stellate cell (HSC) cultures, HepG2 cells were exposed to fatty acids or fatty acids plus peptide seq-1, and the culture medium was collected. Gene regulation of COL1A1, ACTA2, TGF-ß, and the expression of proteins COL1A1, MMP-2, and TIMP-2 were studied. AIM: To establish an in vitro steatosis model employing HepG2 cells that mimics molecular processes observed in vivo during the onset of liver fibrosis. To evaluate the effect of peptide Seq-1 on lipid accumulation and pro-fibrotic responses. To study the effect of Seq-1-treated steatotic HepG2 cell supernatants on lipid accumulation, oxidative stress, and pro-fibrotic responses in HSC. RESULTS AND CONCLUSION: Peptide seq-1-treated HepG2 cells show a downregulation of COLIA1, ACTA2, and TGF-ß genes, and a decreased expression of proteins such as COL1A1, MMP-2, and TIMP-2, associated with the remodeling of extracellular matrix components. The same results are observed when HSCs are incubated with peptide Seq-1-treated steatotic HepG2 cell supernatants. The present study consolidates the nasal vaccine HB-ATV-8 as a new prospect in the treatment of NASH directly associated with the development of cardiovascular disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Vacinas , Animais , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Inibidor Tecidual de Metaloproteinase-2/farmacologia , Metaloproteinase 2 da Matriz , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Regulação para Baixo , Hepatócitos/metabolismo , Fibrose , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Ácidos Graxos/metabolismo , Lipídeos/farmacologia , Fígado/metabolismo
12.
PLoS One ; 18(12): e0294764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38039300

RESUMO

BACKGROUND: Cholesteryl ester transfer protein (CETP) transfers cholesteryl esters in plasma from high density lipoprotein (HDL) to very low density lipoprotein and low density lipoprotein. Loss-of-function variants in the CETP gene cause elevated levels of HDL cholesterol. In this study, we have determined the functional consequences of 24 missense variants in the CETP gene. The 24 missense variants studied were the ones reported in the Human Gene Mutation Database and in the literature to affect HDL cholesterol levels, as well as two novel variants identified at the Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital in subjects with hyperalphalipoproteinemia. METHODS: HEK293 cells were transiently transfected with mutant CETP plasmids. The amounts of CETP protein in lysates and media were determined by Western blot analysis, and the lipid transfer activities of the CETP variants were determined by a fluorescence-based assay. RESULTS: Four of the CETP variants were not secreted. Five of the variants were secreted less than 15% compared to the WT-CETP, while the other 15 variants were secreted in varying amounts. There was a linear relationship between the levels of secreted protein and the lipid transfer activities (r = 0.96, p<0.001). Thus, the secreted variants had similar specific lipid transfer activities. CONCLUSION: The effect of the 24 missense variants in the CETP gene on the lipid transfer activity was mediated predominantly by their impact on the secretion of the CETP protein. The four variants that prevented CETP secretion cause autosomal dominant hyperalphalipoproteinemia. The five variants that markedly reduced secretion of the respective variants cause mild hyperalphalipoproteinemia. The majority of the remaining 15 variants had minor effects on the secretion of CETP, and are considered neutral genetic variants.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol , Ésteres do Colesterol , Humanos , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , HDL-Colesterol , Células HEK293 , Transporte Biológico , Ésteres do Colesterol/metabolismo
13.
Biomolecules ; 13(10)2023 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-37892238

RESUMO

CETP activity reduces plasma HDL-cholesterol concentrations, a correlate of an increased risk of atherosclerotic events. However, our recent findings suggest that CETP expression in macrophages promotes an intracellular antioxidant state, reduces free cholesterol accumulation and phagocytosis, and attenuates pro-inflammatory gene expression. To determine whether CETP expression in macrophages affects atherosclerosis development, we transplanted bone marrow from transgenic mice expressing simian CETP or non-expressing littermates into hypercholesterolemic LDL-receptor-deficient mice. The CETP expression did not change the lipid-stained lesion areas but decreased the macrophage content (CD68), neutrophil accumulation (LY6G), and TNF-α aorta content of young male transplanted mice and decreased LY6G, TNF-α, iNOS, and nitrotyrosine (3-NT) in aged female transplanted mice. These findings suggest that CETP expression in bone-marrow-derived cells reduces the inflammatory features of atherosclerosis. These novel mechanistic observations may help to explain the failure of CETP inhibitors in reducing atherosclerotic events in humans.


Assuntos
Aterosclerose , Medula Óssea , Humanos , Camundongos , Animais , Masculino , Feminino , Idoso , Medula Óssea/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Aterosclerose/metabolismo , Colesterol/metabolismo , Camundongos Transgênicos , Camundongos Endogâmicos C57BL
14.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569628

RESUMO

Current structural and functional investigations of cholesteryl ester transfer protein (CETP) inhibitor design are nearly entirely based on a fully active mutation (CETPMutant) constructed for protein crystallization, limiting the study of the dynamic structural features of authentic CETP involved in lipid transport under physiological conditions. In this study, we conducted comprehensive molecular dynamics (MD) simulations of both authentic CETP (CETPAuthentic) and CETPMutant. Considering the structural differences between the N- and C-terminal domains of CETPAuthentic and CETPMutant, and their crucial roles in lipid transfer, we identified the two domains as binding pockets of the ligands for virtual screening to discover potential lead compounds targeting CETP. Our results revealed that CETPAuthentic displays greater flexibility and pronounced curvature compared to CETPMutant. Employing virtual screening and MD simulation strategies, we found that ZINC000006242926 has a higher binding affinity for the N- and C-termini, leading to reduced N- and C-opening sizes, disruption of the continuous tunnel, and increased curvature of CETP. In conclusion, CETPAuthentic facilitates the formation of a continuous tunnel in the "neck" region, while CETPMutant does not exhibit such characteristics. The ligand ZINC000006242926 screened for binding to the N- and C-termini induces structural changes in the CETP unfavorable to lipid transport. This study sheds new light on the relationship between the structural and functional mechanisms of CETP. Furthermore, it provides novel ideas for the precise regulation of CETP functions.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol , Simulação de Dinâmica Molecular , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Lipídeos , Ésteres do Colesterol/metabolismo
15.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511116

RESUMO

A specific feature of dyslipidemia in pregnancy is increased high-density lipoprotein (HDL) cholesterol concentration, which is probably associated with maternal endothelium protection. However, preeclampsia is most often associated with low HDL cholesterol, and the mechanisms behind this change are scarcely explored. We aimed to investigate changes in HDL metabolism in risky pregnancies and those complicated by late-onset preeclampsia. We analyze cholesterol synthesis (cholesterol precursors: desmosterol, 7-dehydrocholesterol, and lathosterol) and absorption markers (phytosterols: campesterol and ß-sitosterol) within HDL particles (NCSHDL), the activities of principal modulators of HDL cholesterol's content, and major HDL functional proteins levels in mid and late pregnancy. On the basis of the pregnancy outcome, participants were classified into the risk group (RG) (70 women) and the preeclampsia group (PG) (20 women). HDL cholesterol was lower in PG in the second trimester compared to RG (p < 0.05) and followed by lower levels of cholesterol absorption markers (p < 0.001 for campesterolHDL and p < 0.05 for ß-sitosterolHDL). Lowering of HDL cholesterol between trimesters in RG (p < 0.05) was accompanied by a decrease in HDL phytosterol content (p < 0.001), apolipoprotein A-I (apoA-I) concentration (p < 0.05), and paraoxonase 1 (PON1) (p < 0.001), lecithin-cholesterol acyltransferase (LCAT) (p < 0.05), and cholesterol ester transfer protein (CETP) activities (p < 0.05). These longitudinal changes were absent in PG. Development of late-onset preeclampsia is preceded by the appearance of lower HDL cholesterol and NCSHDL in the second trimester. We propose that reduced capacity for intestinal HDL synthesis, decreased LCAT activity, and impaired capacity for HDL-mediated cholesterol efflux could be the contributing mechanisms resulting in lower HDL cholesterol.


Assuntos
Pré-Eclâmpsia , Humanos , Feminino , Gravidez , HDL-Colesterol/metabolismo , Colesterol/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Transporte Biológico , Apolipoproteína A-I/metabolismo , Arildialquilfosfatase/metabolismo
16.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37373432

RESUMO

Cholesteryl ester transfer protein (CETP) is known to influence HDL-C levels, potentially altering the profile of HDL subfractions and consequently cardiovascular risk (CVR). This study aimed to investigate the effect of five single-nucleotide polymorphisms (SNPs; rs1532624, rs5882, rs708272, rs7499892, and rs9989419) and their haplotypes (H) in the CETP gene on 10-year CVR estimated by the Systematic Coronary Risk Evaluation (SCORE), the Framingham Risk Score for Coronary Heart Disease (FRSCHD) and Cardiovascular Disease (FRSCVD) algorithms. Adjusted linear and logistic regression analyses were used to investigate the association of SNPs and 10 haplotypes (H1-H10) on 368 samples from the Hungarian general and Roma populations. The T allele of rs7499892 showed a significant association with increased CVR estimated by FRS. H5, H7, and H8 showed a significant association with increased CVR based on at least one of the algorithms. The impact of H5 was due to its effect on TG and HDL-C levels, while H7 showed a significant association with FRSCHD and H8 with FRSCVD mediated by a mechanism affecting neither TG nor HDL-C levels. Our results suggest that polymorphisms in the CETP gene may have a significant effect on CVR and that this is not mediated exclusively by their effect on TG and HDL-C levels but also by presently unknown mechanisms.


Assuntos
Doenças Cardiovasculares , Proteínas de Transferência de Ésteres de Colesterol , Humanos , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Haplótipos , Doenças Cardiovasculares/genética , Fatores de Risco , HDL-Colesterol/metabolismo , Polimorfismo de Nucleotídeo Único , Fatores de Risco de Doenças Cardíacas
17.
J Chem Inf Model ; 63(10): 3054-3067, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37161266

RESUMO

Cholesteryl ester transfer protein (CETP) is a plasma glycoprotein that assists the transfer of cholesteryl esters (CEs) from antiatherogenic high-density lipoproteins (HDLs) to proatherogenic low-density lipoproteins (LDLs), initiating cholesterol plaques in the arteries. Consequently, inhibiting the activity of CETP is therefore being pursued as a novel strategy to reduce the risk of cardiovascular diseases (CVDs). The crystal structure of CETP has revealed the presence of two CEs running in the hydrophobic tunnel and two plugged-in phospholipids (PLs) near the concave surface. Other than previous animal models that rule out the PL transfer by CETP and PLs in providing the structural stability, the functional importance of bound phospholipids in CETP is not fully explored. Here, we employ a series of molecular dynamics (MD) simulations, steered molecular dynamics (SMD) simulations, and free energy calculations to unravel the effect of PLs on the functionality of the protein. Our results suggest that PLs play an important role in the transfer of neutral lipids by transforming the unfavorable bent conformation of CEs into a favorable linear conformation to facilitate the smooth transfer. The results also suggest that the making and breaking interactions of the hydrophobic tunnel residues with CEs with a combined effort from PLs are responsible for the transfer of CEs. Further, the findings demonstrate that the N-PL has a more pronounced effort on CE transfer than C-PL but efforts from both PLs are essential in the transfer. Thus, we propose that the functionally important PLs can be considered with potential research interest in targeting cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Proteínas de Transferência de Ésteres de Colesterol , Animais , Proteínas de Transferência de Ésteres de Colesterol/química , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Ésteres do Colesterol/química , Ésteres do Colesterol/metabolismo , Fosfolipídeos/química , Colesterol
18.
Int J Obes (Lond) ; 47(3): 236-243, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36732416

RESUMO

OBJECTIVES: Studies in mice have recently linked increased dietary choline consumption to increased incidence of obesity-related metabolic diseases, while several clinical trials have reported an anti-obesity effect of high dietary choline intake. Since the underlying mechanisms by which choline affects obesity are incompletely understood, the aim of the present study was to investigate the role of dietary choline supplementation in adiposity. METHODS: Female APOE*3-Leiden.CETP mice, a well-established model for human-like lipoprotein metabolism and cardiometabolic diseases, were fed a Western-type diet supplemented with or without choline (1.2%, w/w) for up to 16 weeks. RESULTS: Dietary choline reduced body fat mass gain, prevented adipocyte enlargement, and attenuated adipose tissue inflammation. Besides, choline ameliorated liver steatosis and damage, associated with an upregulation of hepatic genes involved in fatty acid oxidation. Moreover, choline reduced plasma cholesterol, as explained by a reduction of plasma non-HDL cholesterol. Mechanistically, choline reduced hepatic VLDL-cholesterol secretion and enhanced the selective uptake of fatty acids from triglyceride-rich lipoprotein (TRL)-like particles by brown adipose tissue (BAT), consequently accelerating the clearance of the cholesterol-enriched TRL remnants by the liver. CONCLUSIONS: In APOE*3-Leiden.CETP mice, dietary choline reduces body fat by enhancing TRL-derived fatty acids by BAT, resulting in accelerated TRL turnover to improve hypercholesterolemia. These data provide a mechanistic basis for the observation in human intervention trials that high choline intake is linked with reduced body weight.


Assuntos
Tecido Adiposo Marrom , Colina , Camundongos , Feminino , Humanos , Animais , Tecido Adiposo Marrom/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E3/farmacologia , Colina/farmacologia , Colina/metabolismo , Colesterol , Triglicerídeos , Lipoproteínas/metabolismo , Lipoproteínas/farmacologia , Fígado/metabolismo , Dieta , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo
19.
Clin Transl Sci ; 16(3): 489-501, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36645160

RESUMO

Sepsis accounts for one in three hospital deaths. Higher concentrations of high-density lipoprotein cholesterol (HDL-C) are associated with apparent protection from sepsis, suggesting a potential therapeutic role for HDL-C or drugs, such as cholesteryl ester transport protein (CETP) inhibitors that increase HDL-C. However, these beneficial clinical associations might be due to confounding; genetic approaches can address this possibility. We identified 73,406 White adults admitted to Vanderbilt University Medical Center with infection; 11,612 had HDL-C levels, and 12,377 had genotype information from which we constructed polygenic risk scores (PRS) for HDL-C and the effect of CETP on HDL-C. We tested the associations between predictors (measured HDL-C, HDL-C PRS, CETP PRS, and rs1800777) and outcomes: sepsis, septic shock, respiratory failure, and in-hospital death. In unadjusted analyses, lower measured HDL-C concentrations were significantly associated with increased risk of sepsis (p = 2.4 × 10-23 ), septic shock (p = 4.1 × 10-12 ), respiratory failure (p = 2.8 × 10-8 ), and in-hospital death (p = 1.0 × 10-8 ). After adjustment (age, sex, electronic health record length, comorbidity score, LDL-C, triglycerides, and body mass index), these associations were markedly attenuated: sepsis (p = 2.6 × 10-3 ), septic shock (p = 8.1 × 10-3 ), respiratory failure (p = 0.11), and in-hospital death (p = 4.5 × 10-3 ). HDL-C PRS, CETP PRS, and rs1800777 significantly predicted HDL-C (p < 2 × 10-16 ), but none were associated with sepsis outcomes. Concordant findings were observed in 13,254 Black patients hospitalized with infections. Lower measured HDL-C levels were significantly associated with increased risk of sepsis and related outcomes in patients with infection, but a causal relationship is unlikely because no association was found between the HDL-C PRS or the CETP PRS and the risk of adverse sepsis outcomes.


Assuntos
Sepse , Choque Séptico , Adulto , Humanos , HDL-Colesterol/genética , HDL-Colesterol/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Mortalidade Hospitalar , LDL-Colesterol/metabolismo , Sepse/genética
20.
J Lipid Res ; 64(1): 100316, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410424

RESUMO

The large HDL particles generated by administration of cholesteryl ester transfer protein inhibitors (CETPi) remain poorly characterized, despite their potential importance in the routing of cholesterol to the liver for excretion, which is the last step of the reverse cholesterol transport. Thus, the effects of the CETPi dalcetrapib and anacetrapib on HDL particle composition were studied in rabbits and humans. The association of rabbit HDL to the LDL receptor (LDLr) in vitro was also evaluated. New Zealand White rabbits receiving atorvastatin were treated with dalcetrapib or anacetrapib. A subset of patients from the dal-PLAQUE-2 study treated with dalcetrapib or placebo were also studied. In rabbits, dalcetrapib and anacetrapib increased HDL-C by more than 58% (P < 0.01) and in turn raised large apo E-containing HDL by 66% (P < 0.001) and 59% (P < 0.01), respectively. Additionally, HDL from CETPi-treated rabbits competed with human LDL for binding to the LDLr on HepG2 cells more than control HDL (P < 0.01). In humans, dalcetrapib increased concentrations of large HDL particles (+69%, P < 0.001) and apo B-depleted plasma apo E (+24%, P < 0.001), leading to the formation of apo E-containing HDL (+47%, P < 0.001) devoid of apo A-I. Overall, in rabbits and humans, CETPi increased large apo E-containing HDL particle concentration, which can interact with hepatic LDLr. The catabolism of these particles may depend on an adequate level of LDLr to contribute to reverse cholesterol transport.


Assuntos
Anticolesterolemiantes , Humanos , Coelhos , Animais , Anticolesterolemiantes/farmacologia , Anticolesterolemiantes/uso terapêutico , Colesterol/metabolismo , Apolipoproteínas E/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , HDL-Colesterol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA