RESUMO
In eukaryotes, integration of sterols into the vacuolar/lysosomal membrane is critically dependent on the Niemann-Pick type C (NPC) system. The system consists of an integral membrane protein, called NCR1 in yeast, and NPC2, a luminal soluble protein that transfers sterols to the N-terminal domain (NTD) of NCR1 before membrane integration. Both proteins have been implicated in sterol homeostasis of yeast and humans. Here, we investigate sterol and lipid binding of the NCR1/NPC2 transport system and determine crystal structures of the sterol binding NTD. The NTD binds both ergosterol and cholesterol, with nearly identical conformations of the binding pocket. Apart from sterols, the NTD can also bind fluorescent analogs of phosphatidylinositol, phosphatidylcholine, and phosphatidylserine, as well as sphingosine and ceramide. We confirm the multi-lipid scope of the NCR1/NPC2 system using photo-crosslinkable and clickable lipid analogs, namely, pac-cholesterol, pac-sphingosine, and pac-ceramide. Finally, we reconstitute the transfer of pac-sphingosine from NPC2 to the NTD in vitro. Collectively, our results support that the yeast NPC system can work as versatile machinery for vacuolar homeostasis of structurally diverse lipids, besides ergosterol.
Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ligantes , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/química , Colesterol/metabolismo , Ligação Proteica , Ergosterol/análogos & derivados , Ergosterol/metabolismo , Ergosterol/química , Esteróis/metabolismo , Esteróis/química , Sítios de Ligação , Humanos , Cristalografia por Raios X , Modelos Moleculares , Transporte Biológico , Ceramidas/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Esfingosina/metabolismo , Esfingosina/análogos & derivados , Conformação ProteicaRESUMO
Immune checkpoint inhibitors targeting programmed cell death 1 (PD-1) or programmed cell death-ligand 1 (PD-L1) have achieved impressive antitumor clinical outcomes. However, the limited response rates suggest the incomplete understanding of PD-L1 regulation. Here, we demonstrate that vacuole protein sorting 11 and 18 (VPS11/18), two key players in vesicular trafficking, positively regulate PD-L1 and confer resistance to immune checkpoint blockade therapy. VPS11/18 interact with PD-L1 in endosome recycling accompanied by promoting PD-L1 glycosylation and protein stability. VPS18 deficiency enhances antitumor immune response. Pharmacological inhibition by VPS18 inhibitor RDN impaired PD-L1 member trafficking and protein stability. Combination treatment of RDN and anti-cytotoxic T lymphocyte-associated antigen 4 synergistically enhances antitumor efficacy in aggressive and drug-resistant tumors. RDN exerted lung-preferred distribution and good bioavailability, suggesting a favorable drug efficacy. Together, our study links VPS18/11-mediated trans-Golgi network recycling of PD-L1 and points to a promising treatment strategy for the enhancement of antitumor immunity.
Assuntos
Antígeno B7-H1 , Imunoterapia , Transporte Proteico , Proteínas de Transporte Vesicular , Antígeno B7-H1/metabolismo , Humanos , Animais , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Camundongos , Imunoterapia/métodos , Linhagem Celular Tumoral , Endossomos/metabolismo , Inibidores de Checkpoint Imunológico/farmacologiaRESUMO
VAMP-associated protein (VAP) is a type IV integral transmembrane protein at the endoplasmic reticulum (ER). Mutations in human VAPB/ALS8 are associated with amyotrophic lateral sclerosis (ALS). The N-terminal major sperm protein (MSP) domain of VAPB (Drosophila Vap33) is cleaved, secreted, and acts as a signaling ligand for several cell-surface receptors. Although extracellular functions of VAPB are beginning to be understood, it is unknown how the VAPB/Vap33 MSP domain facing the cytosol is secreted to the extracellular space. Here we show that Vap33 is transported to the plasma membrane, where the MSP domain is exposed extracellularly by topological inversion. The externalized MSP domain is cleaved by Matrix metalloproteinase 1/2 (Mmp1/2). Overexpression of Mmp1 restores decreased levels of extracellular MSP domain derived from ALS8-associated Vap33 mutants. We propose an unprecedented secretion mechanism for an ER-resident membrane protein, which may contribute to ALS8 pathogenesis.
Assuntos
Esclerose Lateral Amiotrófica , Retículo Endoplasmático , Proteínas de Transporte Vesicular , Retículo Endoplasmático/metabolismo , Humanos , Animais , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Membrana Celular/metabolismo , Mutação , Domínios Proteicos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células HEK293 , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 1 da Matriz/genética , Transporte ProteicoRESUMO
VPS13B/COH1 is the only known causative factor for Cohen syndrome, an early-onset autosomal recessive developmental disorder with intellectual inability, developmental delay, joint hypermobility, myopia, and facial dysmorphism as common features, but the molecular basis of VPS13B/COH1 in pathogenesis remains largely unclear. Here, we identify Sec23 interacting protein (Sec23IP) at the ER exit site (ERES) as a VPS13B adaptor that recruits VPS13B to ERES-Golgi interfaces. VPS13B interacts directly with Sec23IP via the VPS13 adaptor binding domain (VAB), and the interaction promotes the association between ERES and the Golgi. Disease-associated missense mutations of VPS13B-VAB impair the interaction with Sec23IP. Knockout of VPS13B or Sec23IP blocks the formation of tubular ERGIC, an unconventional cargo carrier that expedites ER-to-Golgi transport. In addition, depletion of VPS13B or Sec23IP delays ER export of procollagen, suggesting a link between procollagen secretion and joint laxity in patients with Cohen disease. Together, our study reveals a crucial role of VPS13B-Sec23IP interaction at the ERES-Golgi interface in the pathogenesis of Cohen syndrome.
Assuntos
Retículo Endoplasmático , Complexo de Golgi , Deficiência Intelectual , Microcefalia , Hipotonia Muscular , Miopia , Proteínas de Transporte Vesicular , Humanos , Deficiências do Desenvolvimento , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/genética , Dedos/anormalidades , Complexo de Golgi/metabolismo , Células HEK293 , Células HeLa , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Microcefalia/genética , Microcefalia/metabolismo , Microcefalia/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/metabolismo , Hipotonia Muscular/patologia , Mutação de Sentido Incorreto , Miopia/metabolismo , Miopia/genética , Miopia/patologia , Obesidade , Ligação Proteica , Transporte Proteico , Degeneração Retiniana , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genéticaRESUMO
The acetylation of autophagy protein 9 A (ATG9A) in the lumen of the endoplasmic reticulum (ER) by ATase1 and ATase2 regulates the induction of reticulophagy. Analysis of the ER-specific ATG9A interactome identified calreticulin (CALR), an ER luminal Ca+2-binding chaperone, as key for ATG9A activity. Specifically, if acetylated, ATG9A is sequestered by CALR and prevented from engaging FAM134B and SEC62. Under this condition, ATG9A is unable to activate the autophagy core machinery. In contrast, when non-acetylated, ATG9A is released by CALR and able to engage FAM134B and SEC62. In this study, we report that Ca+2 dynamics across the ER membrane regulate the ATG9A-CALR interaction as well as the ability of ATG9A to trigger reticulophagy. We show that the Ca+2-binding sites situated on the C-domain of CALR are essential for the ATG9A-CALR interaction. Finally, we show that K359 and K363 on ATG9A can influence the ATG9A-CALR interaction. Collectively, our results disclose a previously unidentified aspect of the complex mechanisms that regulate ATG9A activity. They also offer a possible area of intersection between Ca+2 metabolism, acetyl-CoA metabolism, and ER proteostasis.
Assuntos
Proteínas Relacionadas à Autofagia , Cálcio , Calreticulina , Retículo Endoplasmático , Lisina , Proteínas de Membrana , Proteínas de Transporte Vesicular , Calreticulina/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Acetilação , Humanos , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Lisina/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Ligação Proteica , Autofagia , Células HEK293RESUMO
The exocyst is a hetero-octameric complex involved in the exocytosis arm of cellular trafficking. Specifically, it tethers secretory vesicles to the plasma membrane, but it is also a main convergence point for many players of exocytosis: regulatory proteins, motor proteins, lipids and Soluble N-ethylmaleimide-sensitive factor Attachment Protein Receptor (SNARE) proteins are all connected physically by the exocyst. Despite extensive knowledge about its structure and interactions, the exocyst remains an enigma precisely because of its increasingly broad and flexible role across the exocytosis process. To solve the molecular mechanism of such a multi-tasking complex, dynamical structures with self, other proteins, and environment should be described. And to do this, interrogation within contexts increasingly close to native conditions is needed. Here we provide a perspective on how different experimental contexts have been used to study the exocyst, and those that could be used in the future. This review describes the structural breakthroughs on the isolated in vitro exocyst, followed by the use of membrane reconstitution assays for revealing in vitro exocyst functionality. Next, it moves to in situ cell contexts, reviewing imaging techniques that have been, and that ideally could be, used to look for near-native structure and organization dynamics. Finally, it looks at the exocyst structure in situ within evolutionary contexts, and the potential of structure prediction therein. From in vitro, to in situ, cross-context investigation of exocyst structure has begun, and will be critical for functional mechanism elucidation.
Assuntos
Exocitose , Exocitose/fisiologia , Humanos , Animais , Membrana Celular/metabolismo , Proteínas SNARE/metabolismo , Vesículas Secretórias/metabolismo , Proteínas de Transporte Vesicular/metabolismoRESUMO
Endosome fission is required for the release of carrier vesicles and the recycling of receptors to the plasma membrane. Early events in endosome budding and fission rely on actin branching to constrict the endosomal membrane, ultimately leading to nucleotide hydrolysis and enzymatic fission. However, our current understanding of this process is limited, particularly regarding the coordination between the early and late steps of endosomal fission. Here we have identified a novel interaction between the endosomal scaffolding protein, MICAL-L1, and the human homologue of the Drosophila Nervous Wreck (Nwk) protein, FCH and double SH3 domains protein 2 (FCHSD2). We demonstrate that MICAL-L1 recruits FCHSD2 to the endosomal membrane, where it is required for ARP2/3-mediated generation of branched actin, endosome fission and receptor recycling to the plasma membrane. Because MICAL-L1 first recruits FCHSD2 to the endosomal membrane, and is subsequently responsible for recruitment of the ATPase and fission protein EHD1 to endosomes, our findings support a model in which MICAL-L1 orchestrates endosomal fission by connecting between the early actin-driven and subsequent nucleotide hydrolysis steps of the process.
Assuntos
Actinas , Endossomos , Animais , Humanos , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Endossomos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Oxigenases de Função Mista , Transporte Proteico/fisiologia , Proteínas de Transporte Vesicular/metabolismoRESUMO
Gap junctions formed by the major neuronal connexin Cx36 function as electrical synapses in the nervous system and provide unique functions such as synchronizing neuron activities or supporting network oscillations. Although the physiological significance of electrical synapses for neuronal networks is well established, little is known about the pathways that regulate the transport of its main component: Cx36. Here we have used HEK293T cells as an expression system in combination with siRNA and BioID screens to study the transition of Cx36 from the ER to the cis Golgi. Our data indicate that the C-terminal tip of Cx36 is a key factor in this process, mediating binding interactions with two distinct components in the early secretory pathway: the COPII complex and the Golgi stacking protein Grasp55. The C-terminal amino acid valine serves as an ER export signal to recruit COPII cargo receptors Sec24A/B/C at ER exit sites, whereas the PDZ binding motif "SAYV" mediates an interaction with Grasp55. These two interactions have opposing effects in their respective compartments. While Sec24 subunits carry Cx36 out of the ER, Grasp55 stabilizes Cx36 in the Golgi as shown in over expression experiments. These early regulatory steps of Cx36 are expected to be essential for the formation, function, regulation and plasticity of electrical synapses in the developing and mature nervous system.
Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Conexinas , Proteínas da Matriz do Complexo de Golgi , Proteínas de Membrana , Transporte Proteico , Humanos , Conexinas/metabolismo , Conexinas/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Junções Comunicantes/metabolismo , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/genética , Células HEK293 , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Via Secretória , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genéticaRESUMO
The peptide hormone glucagon is a fundamental metabolic regulator that is also being considered as a pharmacotherapeutic option for obesity and type 2 diabetes. Despite this, we know very little regarding how glucagon exerts its pleiotropic metabolic actions. Given that the liver is a chief site of action, we performed in situ time-resolved liver phosphoproteomics to reveal glucagon signaling nodes. Through pathway analysis of the thousands of phosphopeptides identified, we reveal "membrane trafficking" as a dominant signature with the vesicle trafficking protein SEC22 Homolog B (SEC22B) S137 phosphorylation being a top hit. Hepatocyte-specific loss- and gain-of-function experiments reveal that SEC22B was a key regulator of glycogen, lipid and amino acid metabolism, with SEC22B-S137 phosphorylation playing a major role in glucagon action. Mechanistically, we identify several protein binding partners of SEC22B affected by glucagon, some of which were differentially enriched with SEC22B-S137 phosphorylation. In summary, we demonstrate that phosphorylation of SEC22B is a hepatocellular signaling node mediating the metabolic actions of glucagon and provide a rich resource for future investigations on the biology of glucagon action.
Assuntos
Glucagon , Hepatócitos , Proteômica , Transdução de Sinais , Animais , Glucagon/metabolismo , Fosforilação , Proteômica/métodos , Hepatócitos/metabolismo , Camundongos , Fígado/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Fosfoproteínas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Humanos , Metabolismo dos Lipídeos , Glicogênio/metabolismoRESUMO
BACKGROUND: The Coiled-Coil Domain-Containing Protein 88 A (CCDC88A) gene encodes the actin-binding protein Girdin, which plays important roles in maintaining the actin cytoskeleton and in cell migration and was recently associated with a specific form of epileptic encephalopathy. Biallelic protein-truncating variants of CCDC88A have been considered responsible for progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO)-like syndrome. To date, only three consanguineous families with loss-of-function homozygous variants in the CCDC88A gene have been reported. The described patients share many clinical features, such as microcephaly, neonatal hypotonia, seizures, profound developmental delay, face and limb edema, and dysmorphic features, with a similar appearance of the eyes, nose, mouth, and fingers. CASE PRESENTATION: We report on a child from a nonconsanguineous family who presented with profound global developmental delay, severe epilepsy, and brain malformations, including subcortical band heterotopia. The patient harbored two heterozygous pathogenic variants in the trans configuration in the CCDC88A gene, which affected the coiled-coil and C-terminal domains. CONCLUSIONS: We detail the clinical and cerebral imaging data of our patient in the context of previously reported patients with disease-causing variants in the CCDC88A gene, emphasizing the common phenotypes, including cortical malformations, that warrant screening for sequence variants in this gene.
Assuntos
Fenótipo , Humanos , Masculino , Proteínas dos Microfilamentos/genética , Atrofia Óptica/genética , Atrofia Óptica/diagnóstico , Proteínas de Transporte Vesicular/genética , Lactente , Feminino , Epilepsia/genética , Edema Encefálico , Espasmos Infantis , Doenças NeurodegenerativasRESUMO
The African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal disease in swine, for which no antiviral drugs or vaccines are currently available. Studying viral-host protein-protein interactions advances our understanding of the molecular mechanisms underlying viral replication and pathogenesis and can facilitate the discovery of antiviral therapeutics. In this study, we employed affinity tagging and purification mass spectrometry to characterize the interactome of VPS39, an important cellular factor during the early phase of ASFV replication. The interaction network of VPS39 revealed associations with mitochondrial proteins involved in membrane contact sites formation and cellular respiration. We show that the ASFV proteins CP204L and A137R target VPS39 by interacting with its clathrin heavy-chain functional domain. Furthermore, we elaborate on the potential mechanisms by which VPS39 may contribute to ASFV replication and prioritize interactions for further investigation into mitochondrial protein function in the context of ASFV infection.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Replicação Viral , Vírus da Febre Suína Africana/metabolismo , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Animais , Suínos , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Interações Hospedeiro-Patógeno , Chlorocebus aethiops , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Células Vero , Humanos , Ligação ProteicaRESUMO
BACKGROUND: McLeod syndrome (MLS) and chorea-acanthocytosis (ChAc) are exceedingly rare diseases characterized by a variety of movement disorders including chorea, dystonia, and Parkinsonism. Genetic analysis plays a key role in early and accurate diagnosis, but relevant variants are still under investigation. This study aims to explore new pathogenic variants in Chinese patients with MLS and ChAc and to conduct a comprehensive analysis of the clinical heterogeneity among these patients. METHODS: Eighteen Chinese patients who presented with choreatic movements with negative HTT genetic testing were identified and underwent targeted next-generation sequencing, verified by Sanger sequencing. RESULTS: Two novel XK variants (c.970A>T, c.422_423del) were identified in three index MLS patients and six novel VPS13A variants (c.9219C>A, c.3467T>A, c.4208dup, c.9243_9246del, c.5364del, c.556-290_697-483del) in five index ChAc patients. One copy number variant of VPS13A (g.79827595_79828762del/c.556-290_697-483del) was firstly described in Chinese population. CONCLUSION: As the currently largest descriptive study of MLS and ChAc patients in China, this study expands on the clinical and genetic spectrum of XK and VPS13A, contributing to the clinical diagnosis of MLS and ChAc.
Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Neuroacantocitose , Proteínas de Transporte Vesicular , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sistemas de Transporte de Aminoácidos Neutros/genética , Coreia/genética , Coreia/patologia , Variações do Número de Cópias de DNA , População do Leste Asiático , Mutação , Neuroacantocitose/genética , Neuroacantocitose/patologia , Fenótipo , Proteínas de Transporte Vesicular/genéticaRESUMO
Genetic studies of blood pressure (BP) traits to date have been performed on conventional measures by brachial cuff sphygmomanometer for systolic BP (SBP) and diastolic BP, integrating several physiologic occurrences. Genetic associations with central SBP (cSBP) have not been well-studied. Genetic discovery studies of BP have been most often performed in European-ancestry samples. Here, we investigated genetic associations with cSBP in a Chinese population and functionally validated the impact of a novel associated coiled-coil domain containing 93 (CCDC93) gene on BP regulation. An exome-wide association study (EWAS) was performed using a mixed linear model of non-invasive cSBP and peripheral BP traits in a Han Chinese population (N = 5,954) from Beijing, China genotyped with a customized Illumina ExomeChip array. We identified four SNP-trait associations with three SNPs, including two novel associations (rs2165468-SBP and rs33975708-cSBP). rs33975708 is a coding variant in the CCDC93 gene, c.535C>T, p.Arg179Cys (MAF = 0.15%), and was associated with increased cSBP (ß = 29.3 mmHg, P = 1.23x10-7). CRISPR/Cas9 genome editing was used to model the effect of Ccdc93 loss in mice. Homozygous Ccdc93 deletion was lethal prior to day 10.5 of embryonic development. Ccdc93+/- heterozygous mice were viable and morphologically normal, with 1.3-fold lower aortic Ccdc93 protein expression (P = 0.0041) and elevated SBP as compared to littermate Ccdc93+/+ controls (110±8 mmHg vs 125±10 mmHg, P = 0.016). Wire myography of Ccdc93+/- aortae showed impaired acetylcholine-induced relaxation and enhanced phenylephrine-induced contraction. RNA-Seq transcriptome analysis of Ccdc93+/- mouse thoracic aortae identified significantly enriched pathways altered in fatty acid metabolism and mitochondrial metabolism. Plasma free fatty acid levels were elevated in Ccdc93+/- mice (96±7mM vs 124±13mM, P = 0.0031) and aortic mitochondrial dysfunction was observed through aberrant Parkin and Nix protein expression. Together, our genetic and functional studies support a novel role of CCDC93 in the regulation of BP through its effects on vascular mitochondrial function and endothelial function.
Assuntos
Pressão Sanguínea , Mitocôndrias , Polimorfismo de Nucleotídeo Único , Proteínas de Transporte Vesicular , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Pressão Sanguínea/genética , Estudo de Associação Genômica Ampla , Hipertensão/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Vasodilatação/genética , População do Leste Asiático/genética , Proteínas de Transporte Vesicular/genéticaRESUMO
Mutations in VPS13B, a member of a protein family implicated in bulk lipid transport between adjacent membranes, cause Cohen syndrome. VPS13B is known to be concentrated in the Golgi complex, but its precise location within this organelle and thus the site(s) where it achieves lipid transport remains unclear. Here, we show that VPS13B is localized at the interface between proximal and distal Golgi subcompartments and that Golgi complex reformation after Brefeldin A (BFA)-induced disruption is delayed in VPS13B KO cells. This delay is phenocopied by the loss of FAM177A1, a Golgi complex protein of unknown function reported to be a VPS13B interactor and whose mutations also result in a developmental disorder. In zebrafish, the vps13b ortholog, not previously annotated in this organism, genetically interacts with fam177a1. Collectively, these findings raise the possibility that bulk lipid transport by VPS13B may play a role in the dynamics of Golgi membranes and that VPS13B may be assisted in this function by FAM177A1.
Assuntos
Complexo de Golgi , Proteínas de Transporte Vesicular , Peixe-Zebra , Complexo de Golgi/metabolismo , Animais , Peixe-Zebra/genética , Humanos , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Células HeLa , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Brefeldina A/farmacologia , Ligação Proteica , Transporte ProteicoRESUMO
ATG9A is the only integral membrane protein among core autophagy-related (ATG) proteins. We previously found that ATG9A does not co-assemble into synaptophysin-positive vesicles, but rather, localizes to a distinct pool of vesicles within synapsin condensates in both fibroblasts and nerve terminals. The endocytic origin of these vesicles further suggests the existence of different intracellular sorting or segregation mechanisms for ATG9A and synaptophysin in cells. However, the precise underlying mechanism remains largely unknown. In this follow-up study, we investigated the endosomal localization of these two proteins by exploiting the advantages of a Rab5 mutant that induces the formation of enlarged endosomes. Notably, ATG9A and synaptophysin intermix perfectly and do not segregate on giant endosomes, indicating that the separation of these two proteins is not solely caused by the inherent properties of the proteins, but possibly by other unknown factors.
Assuntos
Proteínas Relacionadas à Autofagia , Endossomos , Mutação , Sinaptofisina , Proteínas rab5 de Ligação ao GTP , Endossomos/metabolismo , Mutação/genética , Sinaptofisina/metabolismo , Sinaptofisina/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Humanos , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , CamundongosRESUMO
In this issue of Developmental Cell, Jiang et al. report that the Arabidopsis HOPS tethering complex subunit VPS41 acts to catalyze the formation of a degradation pathway composed of a hybrid of autophagosomes and late endosomes.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Autofagossomos , Autofagia , Endossomos , Vacúolos , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Autofagossomos/metabolismo , Autofagia/fisiologia , Endossomos/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genéticaRESUMO
Variants in membrane trafficking proteins are known to cause rare disorders with severe symptoms. The highly conserved transport protein particle (TRAPP) complexes are key membrane trafficking regulators that are also involved in autophagy. Pathogenic genetic variants in specific TRAPP subunits are linked to neurological disorders, muscular dystrophies, and skeletal dysplasias. Characterizing these variants and their phenotypes is important for understanding the general and specialized roles of TRAPP subunits as well as for patient diagnosis. Patient-derived cells are not always available, which poses a limitation for the study of these diseases. Therefore, other systems, like the yeast Saccharomyces cerevisiae, can be used to dissect the mechanisms at the intracellular level underlying these disorders. The development of CRISPR/Cas9 technology in yeast has enabled a scar-less editing method that creates an efficient humanized yeast model. In this study, core yeast subunits were humanized by replacing them with their human orthologs, and TRAPPC1, TRAPPC2, TRAPPC2L, TRAPPC6A, and TRAPPC6B were found to successfully replace their yeast counterparts. This system was used for studying the first reported individual with an autosomal recessive disorder caused by biallelic TRAPPC1 variants, a girl with a severe neurodevelopmental disorder and myopathy. We show that the maternal variant (TRAPPC1 p.(Val121Alafs*3)) is non-functional while the paternal variant (TRAPPC1 p.(His22_Lys24del)) is conditional-lethal and affects secretion and non-selective autophagy in yeast. This parallels defects seen in fibroblasts derived from this individual which also showed membrane trafficking defects and altered Golgi morphology, all of which were rescued in the human system by wild-type TRAPPC1. This study suggests that humanized yeast can be an efficient means to study TRAPP subunit variants in the absence of human cells and can assign significance to variants of unknown significance (VUS). This study lays the foundation for characterizing further TRAPP variants through this system, rapidly contributing to disease diagnosis.
Assuntos
Mutação , Transtornos do Neurodesenvolvimento , Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transtornos do Neurodesenvolvimento/genética , Mutação/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Feminino , Sistemas CRISPR-Cas/genéticaRESUMO
With emerging genetic association studies, new genes and pathways are revealed as causative factors in the development of Parkinson's disease (PD). However, many of these PD genes are poorly characterized in terms of their function, subcellular localization, and interaction with other components in cellular pathways. This represents a major obstacle towards a better understanding of the molecular causes of PD, with deeper molecular studies often hindered by a lack of high-quality, validated antibodies for detecting the corresponding proteins of interest. In this study, we leveraged the nanoluciferase-derived LgBiT-HiBiT system by generating a cohort of tagged PD genes in both induced pluripotent stem cells (iPSCs) and iPSC-derived neuronal cells. To promote luminescence signals within cells, a master iPSC line was generated, in which LgBiT expression is under the control of a doxycycline-inducible promoter. LgBiT could bind to HiBiT when present either alone or when tagged onto different PD-associated proteins encoded by the genes GBA1, GPNMB, LRRK2, PINK1, PRKN, SNCA, VPS13C, and VPS35. Several HiBiT-tagged proteins could already generate luminescence in iPSCs in response to the doxycycline induction of LgBiT, with the enzyme glucosylceramidase beta 1 (GCase), encoded by GBA1, being one such example. Moreover, the GCase chaperone ambroxol elicited an increase in the luminescence signal in HiBiT-tagged GBA1 cells, correlating with an increase in the levels of GCase in dopaminergic cells. Taken together, we have developed and validated a Doxycycline-inducible luminescence system to serve as a sensitive assay for the quantification, localization, and activity of HiBiT-tagged PD-associated proteins with reliable sensitivity and efficiency.
Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Neurônios/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas QuinasesRESUMO
Several years ago, dozens of cases were described in patients with symptoms very similar to mucopolysaccharidosis (MPS). This new disease entity was described as mucopolysaccharidosis-plus syndrome (MPSPS). The name of the disease indicates that in addition to the typical symptoms of conventional MPS, patients develop other features such as congenital heart defects and kidney and hematopoietic system disorders. The symptoms are highly advanced, and patients usually do not survive past the second year of life. MPSPS is inherited in an autosomal recessive manner and is caused by a homozygous-specific mutation in the gene encoding the VPS33A protein. To date, it has been described in 41 patients. Patients with MPSPS exhibited excessive excretion of glycosaminoglycans (GAGs) in the urine and exceptionally high levels of heparan sulfate in the plasma, but the accumulation of substrates is not caused by a decrease in the activity of any lysosomal enzymes. Here, we discuss the pathomechanisms and symptoms of MPSPS, comparing them to those of MPS. Moreover, we asked the question whether MPSPS should be classified as a type of MPS or a separate disease, as contrary to 'classical' MPS types, despite GAG accumulation, no defects in lysosomal enzymes responsible for degradation of these compounds could be detected in MPSPS. The molecular mechanism of the appearance of GAG accumulation in MPSPS is suggested on the basis of results available in the literature.
Assuntos
Mucopolissacaridoses , Humanos , Mucopolissacaridoses/genética , Mucopolissacaridoses/metabolismo , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/urina , Mutação , Lisossomos/metabolismo , Doenças Metabólicas/metabolismo , Doenças Metabólicas/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , SíndromeRESUMO
OBJECTIVES: To measure the expression level of the vacuolar protein sorting 13 (VPS13) gene and stimulator of interferon genes (STING) in patients with SLE with and without reported neuropsychiatric symptoms to establish their possible role in the pathogenesis of neuropsychiatric SLE (NPSLE). METHODS: This study included 100 subjects: 50 patients diagnosed with SLE and 50 age-matched and sex-matched healthy participants as the control group. The patients with SLE were further subdivided into NPSLE and non-NPSLE groups. All the subjects underwent rheumatological, neurological and psychological evaluation, MRI, VPS13C gene and STING expression assessment via quantitative real-time PCR. RESULTS: Seventy-eight per cent of the SLE group were classified as non-NPSLE, and 22% were classified as NPSLE. Positive MRI results were found in 55% of the patients with NPSLE and 7.7% of the patients without NPSLE.VPS13C expression levels were decreased in the patients with SLE compared with the control (p<0.001), while STING expression levels showed higher levels in the patients in comparison with the control (p<0.001). Both markers showed significant differences between the MRI-positive and MRI-negative groups.At a cut-off value of 0.225 for the VPS13C assessment and a cut-off value of 3.15 for STING expression, both markers were able to distinguish patients with NPSLE from those who were non-NPSLE; however, VPS13C performed better. CONCLUSION: The VPS13C expression levels were decreased in patients with NPSLE compared with patients without NPSLE, while STING expression levels showed higher levels in NPSLE. Both were associated with the MRI findings. To distinguish patients with NPSLE from those without it, the VPS13C assessment performed better.