Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Oxid Med Cell Longev ; 2021: 7037786, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804370

RESUMO

Pathological angiogenesis, as exhibited by aberrant vascular structure and function, has been well deemed to be a hallmark of cancer and various ischemic diseases. Therefore, strategies to normalize vasculature are of potential therapeutic interest in these diseases. Recently, identifying bioactive compounds from medicinal plant extracts to reverse abnormal vasculature has been gaining increasing attention. Tanshinone IIA (Tan IIA), an active component of Salvia miltiorrhiza, has been shown to play significant roles in improving blood circulation and delaying tumor progression. However, the underlying mechanisms responsible for the therapeutic effects of Tan IIA are not fully understood. Herein, we established animal models of HT-29 human colon cancer xenograft and hind limb ischemia to investigate the role of Tan IIA in regulating abnormal vasculature. Interestingly, our results demonstrated that Tan IIA could significantly promote the blood flow, alleviate the hypoxia, improve the muscle quality, and ameliorate the pathological damage after ischemic insult. Meanwhile, we also revealed that Tan IIA promoted the integrity of vascular structure, reduced vascular leakage, and attenuated the hypoxia in HT-29 tumors. Moreover, the circulating angiopoietin 2 (Ang2), which is extremely high in these two pathological states, was substantially depleted in the presence of Tan IIA. Also, the activation of Tie2 was potentiated by Tan IIA, resulting in decreased vascular permeability and elevated vascular integrity. Mechanistically, we uncovered that Tan IIA maintained vascular stability by targeting the Ang2-Tie2-AKT-MLCK cascade. Collectively, our data suggest that Tan IIA normalizes vessels in tumors and ischemic injury via regulating the Ang2/Tie2 signaling pathway.


Assuntos
Abietanos/farmacologia , Neoplasias do Colo/irrigação sanguínea , Regulação da Expressão Gênica/efeitos dos fármacos , Isquemia/tratamento farmacológico , Neovascularização Patológica/prevenção & controle , Receptor TIE-2/antagonistas & inibidores , Proteínas de Transporte Vesicular/antagonistas & inibidores , Inibidores da Angiogênese/farmacologia , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Humanos , Isquemia/metabolismo , Isquemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Eur J Pharmacol ; 906: 174199, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34058203

RESUMO

4-Amino-2-Trifluoromethyl-Phenyl Retinate (ATPR), a novel all-trans retinoic acid (ATRA) derivative, has been demonstrated that it had a variety of anti-tumor effects by exerting regulation on cellular proliferation, apoptosis and differentiation. Here, we found that ATPR is critical for alleviating myelodysplastic syndrome (MDS) and acute myelogenous leukemia. USO1, vesicle transport factor, belongs to tether protein family and involved in endoplasmic reticulum to Golgi trafficking of protein which is important to tumorigenesis. How USO1 contribute to MDS remain elusive. USO1 is aberrantly activated in MDS and AML in vivo and vitro, aberration of which might be a dominant mechanism for MDS cell survival. During the ATPR-induced remission of MDS, in vitro, USO1 presents a time and concentration-dependent decrease. Silencing of USO1 promotes myeloid differentiation of MDS cells and inhibits MDS cellular proliferation while USO1 over-expression has the opposite effect, suggesting that reduction of USO1 enhances the sensitivity of SKM-1 cells to ATPR treatment. Mechanistically, USO1 exerts its oncogenic role by inactivating Raf/ERK signaling, while ATPR is access to revise it. Notably, the activity of Raf/ERK pathway is required for the development and maintenance of MDS cell proliferation. Collectively, our results demonstrate the USO1- Raf/ERK signaling axis in MDS and highlight the negative role of USO1 in ATPR-regulated remission of MDS.


Assuntos
Proteínas da Matriz do Complexo de Golgi/antagonistas & inibidores , Síndromes Mielodisplásicas/tratamento farmacológico , Retinoides/farmacologia , Proteínas de Transporte Vesicular/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas da Matriz do Complexo de Golgi/genética , Proteínas da Matriz do Complexo de Golgi/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Síndromes Mielodisplásicas/patologia , Retinoides/uso terapêutico , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
4.
FASEB J ; 35(6): e21641, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34041791

RESUMO

The bloodstream stage of Trypanosoma brucei, the causative agent of African trypanosomiasis, is characterized by its high rate of endocytosis, which is involved in remodeling of its surface coat. Here we present evidence that RNAi-mediated expression down-regulation of vacuolar protein sorting 41 (Vps41), a component of the homotypic fusion and vacuole protein sorting (HOPS) complex, leads to a strong inhibition of endocytosis, vesicle accumulation, enlargement of the flagellar pocket ("big eye" phenotype), and dramatic effect on cell growth. Unexpectedly, other functions described for Vps41 in mammalian cells and yeasts, such as delivery of proteins to lysosomes, and lysosome-related organelles (acidocalcisomes) were unaffected, indicating that in trypanosomes post-Golgi trafficking is distinct from that of mammalian cells and yeasts. The essentiality of TbVps41 suggests that it is a potential drug target.


Assuntos
Endocitose , Lisossomos/metabolismo , Organelas/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/fisiologia , Tripanossomíase/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Transporte Proteico , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Interferência de RNA , Tripanossomíase/parasitologia , Proteínas de Transporte Vesicular/antagonistas & inibidores , Proteínas de Transporte Vesicular/genética
5.
Biochem Biophys Res Commun ; 561: 151-157, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34023780

RESUMO

Rab small GTPases regulate intracellular membrane trafficking by interacting with specific binding proteins called Rab effectors. Although Rab6 is implicated in basement membrane formation and secretory cargo trafficking, its precise regulatory mechanisms have remained largely unknown. In the present study we established five knockout cell lines for candidate Rab6 effectors and discovered that knockout of VPS52, a subunit of the GARP complex, resulted in attenuated secretion and lysosomal accumulation of secretory cargos, the same as Rab6-knockout does. We also evaluated the functional importance of the previously uncharacterized C-terminal region of VPS52 for restoring these phenotypes, as well as for the sorting of lysosomal proteins. Our findings suggest that VPS52 is an effector protein that is responsible for the Rab6-dependent secretory cargo trafficking.


Assuntos
Técnicas de Silenciamento de Genes/métodos , Lisossomos/metabolismo , Via Secretória/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Sistemas CRISPR-Cas , Células Cultivadas , Cães , Complexo de Golgi , Humanos , Membranas Intracelulares , Transporte Proteico , Proteínas de Transporte Vesicular/antagonistas & inibidores , Proteínas de Transporte Vesicular/genética
6.
Cancer Sci ; 112(6): 2467-2480, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33756060

RESUMO

The antibody-drug conjugate (ADC) MORAb-202, consisting of farletuzumab paired with a cathepsin B-cleavable linker and eribulin, targets folate receptor alpha (FRA), which is frequently overexpressed in various tumor types. MORAb-202 was highly cytotoxic to FRA-positive cells in vitro, with limited off-target killing of FRA-negative cells. Furthermore, MORAb-202 showed a clear in vitro bystander cytotoxic effect in coculture with FRA-positive/negative cells. In vivo antitumor efficacy studies of MORAb-202 were conducted with a single administration of MORAb-202 in triple-negative breast cancer (TNBC) patient-derived xenograft (PDx) models expressing low and high levels of FRA. MORAb-202 exhibited durable efficacy proportional to tumor FRA expression. Toxicology studies (Q3Wx2) in nonhuman primates suggested that the major observed toxicity of MORAb-202 is hematologic toxicity. Overall, these findings support the concept that MORAb-202 represents a promising investigational ADC for the treatment of TNBC patients.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Furanos/química , Imunoconjugados/administração & dosagem , Cetonas/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas de Transporte Vesicular/metabolismo , Animais , Anticorpos Monoclonais Humanizados/química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Furanos/farmacologia , Humanos , Imunoconjugados/efeitos adversos , Imunoconjugados/química , Cetonas/farmacologia , Camundongos , Modelagem Computacional Específica para o Paciente , Primatas , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas de Transporte Vesicular/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Cell Mol Med ; 25(8): 3829-3839, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33611856

RESUMO

Numerous microRNAs participate in regulating the pathological process of atherosclerosis. We have found miR-130a is one of the most significantly down-regulated microRNAs in arteriosclerosis obliterans. Our research explored the function of miR-130a in regulating proliferation by controlling autophagy in arteriosclerosis obliterans development. A Gene Ontology (GO) enrichment analysis of miR-130a target genes indicated a correlation between miR-130a and cell proliferation. Thus, cell cycle, CCK-8 assays and Western blot analysis were performed, and the results indicated that miR-130a overexpression in vascular smooth muscle cells (VSMCs) significantly attenuated cell proliferation, which was validated by an in vivo assay in a rat model. Moreover, autophagy is thought to be involved in the regulation of proliferation. As our results indicated, miR-130a could inhibit autophagy, and ATG2B was predicted to be a target of miR-130a. The autophagy inhibition effect of miR-130a overexpression was consistent with the effect of ATG2B knockdown. The results that ATG2B plasmids and miR-130a mimics were cotransfected in VSMCs further confirmed our conclusion. In addition, by using immunohistochemistry, the positive results of LC3 II/I and ATG2B in the rat model and artery vascular tissues from the patient were in accordance with in vitro data. In conclusion, our data demonstrate that miR-130a inhibits VSMCs proliferation via ATG2B, which indicates that miR-130a could be a potential therapeutic target that regulates autophagy in atherosclerosis obliterans.


Assuntos
Apoptose , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Autofagia , Regulação da Expressão Gênica , MicroRNAs/genética , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Proteínas de Transporte Vesicular/antagonistas & inibidores , Adolescente , Adulto , Animais , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proliferação de Células , Células Cultivadas , Humanos , Masculino , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Ratos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Adulto Jovem
8.
Clin Exp Metastasis ; 37(6): 637-648, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32918638

RESUMO

Brain metastases (BM) are an ever-increasing challenge in oncology, threatening quality of life and survival of many cancer patients. The majority of BM originate from lung adenocarcinoma, and stage III patients have a risk of 40-50% to develop BM in the first years of disease onset. As therapeutic options are limited, prevention of their occurrence is an attractive concept. Here we investigated whether Nintedanib (BIBF 1120), a tyrosine kinase inhibitor (TKI) targeting the VEGF pathway approved for lung adenocarcinoma, and the dual anti-VEGF-A/Ang2 nanobody BI836880 have the potential to prevent BM formation. A mouse model of brain metastasis from lung adenocarcinoma was used in which tumor cells were injected intracardially. Metastases formation occurred inside and outside of the brain and was followed by MRI, IVIS, and immunohistochemistry. BM were reduced in volume and number by both Nintedanib and the dual anti-VEGF-A/Ang2 nanobody, which translated into improved survival. Both compounds were able to normalize cerebral blood vessels at the site of brain metastatic lesions. Extracranial metastases, however, were not reduced, and meningeal metastases only partially. Interestingly, unspecific control IgG also lead to brain vessel normalization and reduction of brain and meningeal metastases. This data indicates a brain-specific group effect of antiangiogenic compounds with respect to metastasis prevention, most likely by preventing an early angiogenic switch. Thus, Nintedanib and BI836880 are promising candidates for future BM preventive study concepts in lung adenocarcinoma patients.


Assuntos
Adenocarcinoma de Pulmão/terapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/terapia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Proteínas de Transporte Vesicular/antagonistas & inibidores , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Inibidores da Angiogênese/administração & dosagem , Animais , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/prevenção & controle , Linhagem Celular Tumoral , Humanos , Imunoglobulina G/administração & dosagem , Indóis/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Anticorpos de Domínio Único/administração & dosagem , Anticorpos de Domínio Único/imunologia , Fator A de Crescimento do Endotélio Vascular/imunologia , Proteínas de Transporte Vesicular/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
ACS Appl Mater Interfaces ; 12(41): 45714-45727, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32927941

RESUMO

Despite the effective targeting of the epidermal growth factor receptor (EGFR), the use of gefitinib (GFT) for nonsmall cell lung cancer (NSCLC) treatment meets a failure because of the insufficient drug accumulation in the tumor region. Therefore, developing chemosensitizers of GFT with synergistic therapeutic effects is urgently needed for advanced cancer therapy. Herein, a natural chemosensitizer, natural borneol (NB), is reformulated as an oil-in-water nanoemulsion to enhance its solubility, distribution, and to ultimately increase the therapeutic index with GFT. The nanolization of NB (NBNPs) displays stronger targeted delivery and cytotoxicity than NB by selectively identifying eight specific protein targets in A549 NSCLC cells as revealed by the proteomic studies. Consistently, NBNPs realize stronger chemosensitization effects than NB with GFT by effectively regulating EGFR/EHD1-mediated apoptosis in A549 NSCLC cells. Owing to the satisfying synergistic effect between NBNPs and GFT, the combined therapy not only enhances the anticancer ability of GFT against NSCLC proliferation but also avoids heavy double toxicity in vivo. This finding demonstrates the effective synergism between NBNPs and GFT with clear mechanistic investigation and is expected to extend the application of NBNPs as a novel chemosensitizer for advanced cancer chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Canfanos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Gefitinibe/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química , Proteínas de Transporte Vesicular/antagonistas & inibidores , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Canfanos/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Emulsões/química , Feminino , Gefitinibe/química , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Tamanho da Partícula , Propriedades de Superfície , Proteínas de Transporte Vesicular/metabolismo
10.
Sci Rep ; 10(1): 4945, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188865

RESUMO

The cardinal virulence factor of human-pathogenic enterohaemorrhagic Escherichia coli (EHEC) is Shiga toxin (Stx), which causes severe extraintestinal complications including kidney failure by damaging renal endothelial cells. In EHEC pathogenesis, the disturbance of the kidney epithelium by Stx becomes increasingly recognised, but how this exactly occurs is unknown. To explore this molecularly, we investigated the Stx receptor content and transcriptomic profile of two human renal epithelial cell lines: highly Stx-sensitive ACHN cells and largely Stx-insensitive Caki-2 cells. Though both lines exhibited the Stx receptor globotriaosylceramide, RNAseq revealed strikingly different transcriptomic responses to an Stx challenge. Using RNAi to silence factors involved in ACHN cells' Stx response, the greatest protection occurred when silencing RAB5A and TRAPPC6B, two host factors that we newly link to Stx trafficking. Silencing these factors alongside YKT6 fully prevented the cytotoxic Stx effect. Overall, our approach reveals novel subcellular targets for potential therapies against Stx-mediated kidney failure.


Assuntos
Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/efeitos dos fármacos , Toxina Shiga II/farmacologia , Proteínas de Transporte Vesicular/antagonistas & inibidores , Proteínas rab5 de Ligação ao GTP/antagonistas & inibidores , Células Cultivadas , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Humanos , Rim/metabolismo
11.
Semin Cancer Biol ; 60: 96-106, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31454669

RESUMO

The majority of cancer-associated deaths are related to secondary tumor formation. This multistep process involves the migration of cancer cells to anatomically distant organs. Metastasis formation relies on cancer cell dissemination and survival in the circulatory system, as well as adaptation to the new tissue notably through genetic and/or epigenetic alterations. A large number of proteins are clearly identified to play a role in the metastatic process but the structures and modes of action of these proteins are essentially unknown or poorly described. In this review, we detail the involvement of members of the transmembrane (TMEM) protein family in the formation of metastases or in the mechanisms leading to cancer cell dissemination such as migration and extra-cellular matrix remodelling. While the phenotype associated with TMEM over or down-expression is clear, the mechanisms by which these proteins allow cancer cell spreading remain, for most of them, unclear. In parallel, the 3D structures of these proteins are presented. Moreover, we proposed that TMEM proteins could be used as prognostic markers in different types of cancers and could represent potential targets for cancer treatment. A better understanding of this heterogeneous family of poorly characterized proteins thus opens perspectives for better cancer patient care.


Assuntos
Família Multigênica , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Animais , Biomarcadores , Progressão da Doença , Suscetibilidade a Doenças , Humanos , Imunomodulação , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Terapia de Alvo Molecular , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Prognóstico , Transdução de Sinais , Proteínas de Transporte Vesicular/antagonistas & inibidores , Proteínas de Transporte Vesicular/química
12.
Reproduction ; 159(1): 59-71, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31705793

RESUMO

The invasion of maternal decidua by extravillous trophoblast (EVT) is essential for the establishment and maintenance of pregnancy, and abnormal trophoblast invasion could lead to placenta-associated pathologies including early pregnancy loss and preeclampsia. SEC5, a component of the exocyst complex, plays important roles in cell survival and migration, but its role in early pregnancy has not been reported. Thus, the present study was performed to explore the functions of SEC5 in trophoblast cells. The results showed that SEC5 expression in human placental villi at first trimester was significantly higher than it was at the third trimester, and it was abundantly localized in the cytotrophoblast (CTB) and the trophoblastic column. SEC5 knockdown was accompanied by reduced migration and invasion in HTR-8/SVneo cells. In addition, the expression and plasma membrane distribution of integrin ß1 was also decreased. Furthermore, shRNA-mediated knockdown of SEC5 inhibited the outgrowth of first trimester placental explants. SEC5 and InsP3R were colocalized in the cytoplasm of HTR-8/SVneo cells, and the cell-permeant calcium chelator BAPTA-AM could significantly inhibit HTR-8/SVneo cell invasion. The Ca2+ imaging results showed that the 10% fetal bovine serum-stimulated cytosolic calcium concentration ([Ca2+]c) was not only reduced by downregulated SEC5 but also was blocked by the InsP3R inhibitor. Furthermore, either the [Ca2+]c was buffered by BAPTA-AM or the knockdown of SEC5 disrupted HTR-8/SVneo cell F-actin stress fibers and caused cytoskeleton derangement. Taken together, our results suggest that SEC5 might be involved in regulating trophoblast cell migration and invasion through the integrin/Ca2+ signal pathway to induce cytoskeletal rearrangement.


Assuntos
Cálcio/metabolismo , Integrinas/metabolismo , Placenta/patologia , Trofoblastos/patologia , Proteínas de Transporte Vesicular/antagonistas & inibidores , Animais , Movimento Celular , Sobrevivência Celular , Células Cultivadas , Feminino , Humanos , Integrinas/genética , Masculino , Camundongos Endogâmicos ICR , Placenta/metabolismo , Gravidez , Primeiro Trimestre da Gravidez , Transdução de Sinais , Trofoblastos/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
13.
Biochem Biophys Res Commun ; 523(2): 307-314, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31864704

RESUMO

Knockdown of THG-1 in TE13 esophageal squamous cell carcinoma (ESCC) cells is known to suppress tumorsphere growth. THG-1 was identified as an NRBP1 binding protein, and NRBP1 was reported to downregulate an stemness-related transcriptional factor SALL4, so we decided to examine the possibility that tumorigenic function of THG-1 is achieved by the competition to the tumor-suppressive function of NRBP1. SALL4 was decreased in THG-1 deficient TE13 cells with reduced tumorsphere formation, while exogenous SALL4 expression in THG-1 deficient TE13 cells recovered expression of stemness genes (NANOG and OCT4) and partially, but significantly, recovered tumorsphere formation ability. Additionally, we found that NRBP1 induced ubiquitination of SALL4, and THG-1 interrupted the ubiquitination of SALL4 by antagonizing NRBP1 binding to SALL4. These results suggest that THG-1 promotes tumorsphere growth of ESCC cells by the stabilization of SALL4 protein and induction of the target stemness genes through competitive binding to NRBP1.


Assuntos
Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Proteínas de Transporte Vesicular/antagonistas & inibidores , Linhagem Celular Tumoral , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteólise , Receptores Citoplasmáticos e Nucleares/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Ensaio Tumoral de Célula-Tronco , Ubiquitinação , Proteínas de Transporte Vesicular/metabolismo
14.
J Cell Biol ; 218(6): 1787-1798, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30952800

RESUMO

During macroautophagic stress, autophagosomes can be produced continuously and in high numbers. Many different organelles have been reported as potential donor membranes for this sustained autophagosome growth, but specific machinery to support the delivery of lipid to the growing autophagosome membrane has remained unknown. Here we show that the autophagy protein, ATG2, without a clear function since its discovery over 20 yr ago, is in fact a lipid-transfer protein likely operating at the ER-autophagosome interface. ATG2A can bind tens of glycerophospholipids at once and transfers lipids robustly in vitro. An N-terminal fragment of ATG2A that supports lipid transfer in vitro is both necessary and fully sufficient to rescue blocked autophagosome biogenesis in ATG2A/ATG2B KO cells, implying that regulation of lipid homeostasis is the major autophagy-dependent activity of this protein and, by extension, that protein-mediated lipid transfer across contact sites is a principal contributor to autophagosome formation.


Assuntos
Autofagossomos/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Retículo Endoplasmático/metabolismo , Lipídeos/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Proteínas Relacionadas à Autofagia/genética , Transporte Biológico , Sistemas CRISPR-Cas , Células HEK293 , Humanos , Proteínas de Transporte Vesicular/antagonistas & inibidores , Proteínas de Transporte Vesicular/genética
15.
Emerg Microbes Infect ; 8(1): 448-460, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30898038

RESUMO

Rapid diagnosis of pulmonary tuberculosis is an effective measure to prevent the spread of tuberculosis. However, the grim fact is that the new, rapid, and safe methods for clinical diagnosis are lacking. Moreover, although auto-lysosome is critical in clearing Mycobacterium tuberculosis, the pathological significance of microRNAs, as biomarkers of tuberculosis, in autophagosome maturation is unclear. Here, these microRNAs were investigated by Solexa sequencing and qPCR validation, and a potential diagnostic model was established by logistic regression. Besides that, the mechanism of one of the microRNAs involved in the occurrence of tuberculosis was studied. The results showed that the expression of miR-423-5p, miR-17-5p, and miR-20b-5p were significantly increased in the serum of patients with tuberculosis. The combination of these three microRNAs established a model to diagnose tuberculosis with an accuracy of 78.18%, and an area under the curve value of 0.908. Bioinformatics analysis unveiled miR-423-5p as the most likely candidate in regulating autophagosome maturation. The up-regulation of miR-423-5p could inhibit autophagosome maturation through suppressing autophagosome-lysosome fusion in macrophages. Further investigations showed that VPS33A was the direct target of miR-423-5p, and the two CUGCCCCUC domains in VPS33A 3'-UTR were the direct regulatory sites for miR-423-5p. In addition, an inverse correlation between VPS33A and miR-423-5p was found in peripheral blood mononuclear cells of patients with tuberculosis. Since the inhibition of autolysosome formation plays a critical role in tuberculosis occurrence, our findings suggests that miR-423-5p could suppress autophagosome-lysosome fusion by post-transcriptional regulation of VPS33A, which might be important for the occurrence of active tuberculosis.


Assuntos
Autofagossomos/metabolismo , Biomarcadores/metabolismo , Lisossomos/metabolismo , MicroRNAs/metabolismo , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/patologia , Proteínas de Transporte Vesicular/antagonistas & inibidores , Adulto , Idoso , Biomarcadores/sangue , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Tuberculose Pulmonar/diagnóstico , Adulto Jovem
16.
Sci Rep ; 9(1): 4868, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890736

RESUMO

Transcription and DNA damage repair act in a coordinated manner. Recent studies have shown that double-strand DNA breaks (DSBs) are repaired in a transcription-coupled manner. Active transcription results in a faster recruitment of DSB repair factors and expedites DNA repair. On the other hand, transcription is repressed by DNA damage through multiple mechanisms. We previously reported that TLP, a TATA box-binding protein (TBP) family member that functions as a transcriptional regulator, is also involved in DNA damage-induced apoptosis. However, the mechanism by which TLP affects DNA damage response was largely unknown. Here we show that TLP-mediated global transcriptional repression after DSBs is crucial for apoptosis induction by DNA-damaging agents such as etoposide and doxorubicin. Compared to control cells, TLP-knockdown cells were resistant to etoposide-induced apoptosis and exhibited an elevated level of global transcription after etoposide exposure. DSBs were efficiently removed in transcriptionally hyperactive TLP-knockdown cells. However, forced transcriptional shutdown using transcriptional inhibitors α-amanitin and 5,6-dichloro-1-ß-D-ribofuranosylbenzimidazole (DRB) slowed down DSB repair and resensitized TLP-knockdown cells to etoposide. Taken together, these results indicate that TLP is a critical determinant as to how cells respond to DSBs and triggers apoptosis to cells that have sustained DNA damage.


Assuntos
Apoptose/genética , Proteínas Relacionadas à Autofagia/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Proteínas de Transporte Vesicular/genética , Alfa-Amanitina/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Reparo do DNA/efeitos dos fármacos , Diclororribofuranosilbenzimidazol/farmacologia , Doxorrubicina/farmacologia , Etoposídeo/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Transcrição Gênica/genética , Proteínas de Transporte Vesicular/antagonistas & inibidores
17.
Antiviral Res ; 161: 53-62, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30465784

RESUMO

Acute watery diarrhea due to Rotavirus (RV) infection is associated with high infantile morbidity and mortality in countries with compromised socio-economic backgrounds. Although showing promising trends in developed countries, the efficacy of currently licensed RV vaccines is sub-optimal in socio-economically poor settings with high disease burden. Currently, there are no approved anti-rotaviral drugs adjunct to classical vaccination program. Interestingly, dissecting host-rotavirus interaction has yielded novel, non-mutable host determinants which can be subjected to interventions by selective small molecules. The present study was undertaken to evaluate the anti-RV potential of RA-839, a recently discovered small molecule with potent and highly selective agonistic activity towards cellular redox stress-sensitive Nuclear factor erytheroid-derived-2-like 2 (Nrf2)/Antioxidant Response Element (ARE) pathway. In vitro studies revealed that RA-839 inhibits RV RNA and protein expression, viroplasm formation, yield of virion progeny and virus-induced cytopathy independent of RV strains, RV-permissive cell lines and without bystander cytotoxicity. Anti-RV potency of RA-839 was subsequently identified to be independent of stochastic Interferon (IFN) stimulation but to be dependent on RA-839's ability to stimulate Nrf2/ARE signaling. Interestingly, anti-rotaviral effects of RA-839 were also mimicked by 2-Cyano-3, 12-dioxo-oleana-1, 9(11)-dien-28-oic acid methyl ester (CDDO-Me) and Hemin, two classical pharmacological activators of Nrf2/ARE pathway. Overall, this study highlights that RA-839 is a potent antagonist of RV propagation in vitro and can be developed as anti-rotaviral therapeutics.


Assuntos
Antivirais/farmacologia , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Rotavirus/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas de Transporte Vesicular/antagonistas & inibidores , Animais , Linhagem Celular , Hemina/farmacologia , Humanos , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia
18.
Cell Physiol Biochem ; 48(6): 2429-2440, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30121667

RESUMO

BACKGROUND/AIMS: The chondroitin sulfate proteoglycan serglycin (SRGN), a hematopoietic cell granule proteoglycan, has been implicated in promoting tumor metastasis; however, the underlying mechanisms remain to be elucidated. The present study aimed to investigate the SRGN gene expression and its regulation as downstream signaling of hypoxia-inducible transcription factor 1 alpha (HIF-1α) in colorectal cancer (CRC) cells and tissues. METHODS: The expression of SRGN was analyzed in CRC specimens for its correlation with progression and metastasis. Using chromatin-immunoprecipitation (ChIP), quantitative real-time PCR, Western blot, and transwell assay, the functional role and underlying mechanism of SRGN in CRC metastasis were elucidated. Thus, this study provides evidence of a critical role of SRGN in metastatic progression of CRC. RESULTS: Our results indicated that SRGN overexpression was significantly associated with poor prognosis in CRC specimens. SRGN overexpression promoted CRC cell migration and invasion in vitro; however, SRGN depletion exhibited contrasting effects. Mechanistic investigations revealed that HIF-1α regulated SRGN transcription via physically binding to a hypoxia response element in its promoter region. CONCLUSIONS: In conclusion, we demonstrated that dysregulated HIF-1α/SRGN signaling promotes CRC progression and metastasis. SRGN may serve as a potential candidate therapeutic target for metastatic CRC.


Assuntos
Neoplasias Colorretais/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteoglicanas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Idoso , Hipóxia Celular , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Pessoa de Meia-Idade , Prognóstico , Regiões Promotoras Genéticas , Ligação Proteica , Proteoglicanas/antagonistas & inibidores , Proteoglicanas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Taxa de Sobrevida , Proteínas de Transporte Vesicular/antagonistas & inibidores , Proteínas de Transporte Vesicular/genética
19.
Cell Signal ; 49: 1-16, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29729335

RESUMO

The signaling axis of p38 mitogen-activated protein kinase (p38 MAPK) and MAPK-activated protein kinase 2 (MK2) is the dominant pathway that leads to heat shock protein 27 (HSP27) phosphorylation. After activation of MK2 by p38 MAPK, HSP27 is phosphorylated and depolymerized by MK2, thereby increasing the cell migration and directly interfering with the apoptotic signaling cascades. Sec6 is one of the components of the exocyst complex that is an evolutionarily conserved 8-protein complex. Even though several studies have demonstrated that Sec6 is involved in various cellular physiological functions, the relationship between Sec6 and HSP27 or p38 MAPK during cell migration and apoptosis remains unclear. In the present study, we observed that Sec6 increased the phosphorylation of p38 MAPK through the activation of MAPK kinase 3/6 (MKK3/6). Moreover, Sec6 knockdown suppressed the phosphorylation of HSP27 at Ser78 and Ser82 sites via suppression of activated MK2. Furthermore, the reduction of phosphorylated HSP27 or p38 MAPK by Sec6 knockdown suppressed cell migration and promoted apoptosis after treatment with tumor necrosis factor-α and cycloheximide. The present study suggested that Sec6 is involved in the enhancement of cell migration and suppression of apoptosis through the activation of HSP27 or p38 MAPK phosphorylation.


Assuntos
Apoptose , Proteínas de Choque Térmico HSP27/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Humanos , MAP Quinase Quinase 3/metabolismo , Fosforilação , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Transporte Vesicular/antagonistas & inibidores , Proteínas de Transporte Vesicular/genética
20.
Cell Death Dis ; 9(4): 418, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29549343

RESUMO

Acquired resistance to epidermal growth factor receptor-tyrosine-kinase inhibitors (EGFR-TKIs), such as gefitinib and erlotinib, is a critical obstacle in the treatment of EGFR mutant-positive non-small cell lung cancer (NSCLC). EHD1, a protein of the C-terminal Eps15 homology domain-containing (EHD) family, plays a role in regulating endocytic recycling, but the mechanistic details involved in EGFR-TKI resistance and cancer stemness remain largely unclear. Here, we found that a lower EHD1 expression improved both EGFR-TKIs sensitivity, which is consistent with a lower CD133 expression, and progression-free survival in NSCLC patients. The overexpression of EHD1 markedly increased erlotinib resistance and lung cancer cell stemness in vitro and in vivo. Moreover, we demonstrated that miR-590 targeted the 3'-UTR of EHD1 and was regulated by NK-κB, resulting in downregulated EHD1 expression, increased erlotinib sensitivity and repressed NSCLC cancer stem-like properties in vitro and in vivo. We found that EHD1 was an important factor in EGFR-TKI resistance and the cancer stem-like cell phenotype of lung cancer, and these results suggest that targeting the NF-κB/miR-590/EHD1 pathway has potential therapeutic promise in EGFR-mutant NSCLC patients with acquired EGFR-TKI resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Cloridrato de Erlotinib/farmacologia , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Transporte Vesicular/metabolismo , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , MicroRNAs/metabolismo , Intervalo Livre de Progressão , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Transporte Vesicular/antagonistas & inibidores , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA