Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
FEBS J ; 288(18): 5300-5310, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33305524

RESUMO

The translocase of the outer mitochondrial membrane (TOM) complex is the main entry gate for most mitochondrial proteins. The TOM complex is a multisubunit membrane protein complex consisting of a ß-barrel protein Tom40 and six α-helical transmembrane (TM) proteins, receptor subunits Tom20, Tom22, and Tom70, and regulatory subunits Tom5, Tom6, and Tom7. Although nearly 30 years have passed since the main components of the TOM complex were identified and characterized, the structural details of the TOM complex remained poorly understood until recently. Thanks to the rapid development of the cryoelectron microscopy (EM) technology, high-resolution structures of the yeast TOM complex have become available. The identified structures showed a symmetric dimer containing five different subunits including Tom22. Biochemical and mutational analyses based on the TOM complex structure revealed the presence of different translocation paths within the Tom40 import channel for different classes of translocating precursor proteins. Previous studies including our cross-linking analyses indicated that the TOM complex in intact mitochondria is present as a mixture of the trimeric complex containing Tom22. Furthermore, the dimeric complex lacking Tom22, and the trimer and dimer may handle different sets of mitochondrial precursor proteins for translocation across the outer membrane. In this Structural Snapshot, we will discuss possible rearrangement of the subunit interactions upon dynamic conversion of the TOM complex between the different subunit assembly states, the Tom22-containing core dimer and trimer.


Assuntos
Proteínas de Transporte/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Proteínas de Transporte/genética , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/ultraestrutura , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta/genética , Transporte Proteico/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética
2.
Cell Rep ; 33(10): 108486, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33296646

RESUMO

The mitochondrial calcium uniporter is a multi-subunit Ca2+-activated Ca2+ channel, made up of the pore-forming MCU protein, a metazoan-specific EMRE subunit, and MICU1/MICU2, which mediate Ca2+ activation. It has been established that metazoan MCU requires EMRE binding to conduct Ca2+, but how EMRE promotes MCU opening remains unclear. Here, we demonstrate that EMRE controls MCU activity via its transmembrane helix, while using an N-terminal PKP motif to strengthen binding with MCU. Opening of MCU requires hydrophobic interactions mediated by MCU residues near the pore's luminal end. Enhancing these interactions by single mutation allows human MCU to transport Ca2+ without EMRE. We further show that EMRE may facilitate MCU opening by stabilizing the open state in a conserved MCU gating mechanism, present also in non-metazoan MCU homologs. These results provide insights into the evolution of the uniporter machinery and elucidate the mechanism underlying the physiologically crucial EMRE-dependent MCU activation process.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Cálcio/metabolismo , Canais de Cálcio/fisiologia , Canais de Cálcio/ultraestrutura , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/ultraestrutura , Proteínas de Transporte de Cátions/fisiologia , Proteínas de Transporte de Cátions/ultraestrutura , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Membranas Mitocondriais/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165664, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31926265

RESUMO

Neutrophils release neutrophil extracellular traps (NETs) in response to numerous pathogenic microbes as the last suicidal resource (NETosis) in the fight against infection. Apart from the host defense function, NETs play an essential role in the pathogenesis of various autoimmune and inflammatory diseases. Therefore, understanding the molecular mechanisms of NETosis is important for regulating aberrant NET release. The initiation of NETosis after the recognition of pathogens by specific receptors is mediated by an increase in intracellular Ca2+ concentration, therefore, the use of Ca2+ ionophore A23187 can be considered a semi-physiological model of NETosis. Induction of NETosis by various stimuli depends on reactive oxygen species (ROS) produced by NADPH oxidase, however, NETosis induced by Ca2+ ionophores was suggested to be mediated by ROS produced in mitochondria (mtROS). Using the mitochondria-targeted antioxidant SkQ1 and specific inhibitors of NADPH oxidase, we showed that both sources of ROS, mitochondria and NADPH oxidase, are involved in NETosis induced by A23187 in human neutrophils. In support of the critical role of mtROS, SkQ1-sensitive NETosis was demonstrated to be induced by A23187 in neutrophils from patients with chronic granulomatous disease (CGD). We assume that Ca2+-triggered mtROS production contributes to NETosis either directly (CGD neutrophils) or by stimulating NADPH oxidase. The opening of the mitochondrial permeability transition pore (mPTP) in neutrophils treated by A23187 was revealed using the electron transmission microscopy as a swelling of the mitochondrial matrix. Using specific inhibitors, we demonstrated that the mPTP is involved in mtROS production, NETosis, and the oxidative burst induced by A23187.


Assuntos
Armadilhas Extracelulares/metabolismo , Doença Granulomatosa Crônica/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , NADPH Oxidase 2/metabolismo , Neutrófilos/metabolismo , Explosão Respiratória/fisiologia , Adolescente , Calcimicina/farmacologia , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Células Cultivadas , Criança , Transporte de Elétrons , Sequestradores de Radicais Livres/farmacologia , Doença Granulomatosa Crônica/sangue , Voluntários Saudáveis , Humanos , Mutação com Perda de Função , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Poro de Transição de Permeabilidade Mitocondrial , NADPH Oxidase 2/antagonistas & inibidores , NADPH Oxidase 2/genética , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/ultraestrutura , Oxirredução/efeitos dos fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia , Cultura Primária de Células , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/efeitos dos fármacos
4.
Life Sci ; 247: 116942, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31715185

RESUMO

AIMS: The cardioprotective effects of preconditioning against ischemia-reperfusion (I/R) injury depend on the structural integrity of membrane caveolae and signaling through G protein-coupled receptors (GPCRs). However, the mechanisms underlying opioid preconditioning are not fully understood. Here, we examined whether caveolins transmitted opioid-GPCR signals to the mitochondria to mediate cardioprotection. MAIN METHODS: Mice were treated with pertussis toxin (PTX) or saline. Thirty-six hours later, mice from each group were randomly assigned to receive the δ-opioid receptor agonist SNC-121 or saline intraperitoneally 15 min before in vivo I/R. Infarct sizes in each group were compared, and immunoblot analysis was used to detect caveolin expression. The structures of caveolae and mitochondria were determined by electron microscopy (EM). The opening degree of the mitochondrial permeability transition pore (mPTP) was assessed by colorimetry, and mitochondrial respiratory function was assessed by Oxygraph-2k. KEY FINDINGS: Treatment with an opioid receptor agonist reduced the myocardial infarct size after I/R injury, increased caveolin expression, decreased mitochondrial mPTP opening, and improved mitochondrial respiratory function. EM analysis revealed that opioids induced caveolae formation in myocytes and tended to promote translocation to mitochondria. However, these protective effects were blocked by PTX. SIGNIFICANCE: Opioid-induced preconditioning depended on Gi signaling, which promoted caveolin translocation to mitochondria, supported their functional integrity, and enhanced cardiac stress adaption. Verification of this pathway will establish new targets for opioid agents in the field of cardiac protection.


Assuntos
Benzamidas/farmacologia , Cardiotônicos/farmacologia , Caveolinas/metabolismo , Mitocôndrias Cardíacas/metabolismo , Piperazinas/farmacologia , Receptores Opioides delta/agonistas , Receptores Opioides delta/metabolismo , Animais , Cavéolas/metabolismo , Cavéolas/ultraestrutura , Masculino , Camundongos , Mitocôndrias Cardíacas/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Poro de Transição de Permeabilidade Mitocondrial , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Receptores Acoplados a Proteínas G/metabolismo
5.
Nat Struct Mol Biol ; 26(12): 1158-1166, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740857

RESUMO

Nearly all mitochondrial proteins are encoded by the nuclear genome and imported into mitochondria after synthesis on cytosolic ribosomes. These precursor proteins are translocated into mitochondria by the TOM complex, a protein-conducting channel in the mitochondrial outer membrane. We have determined high-resolution cryo-EM structures of the core TOM complex from Saccharomyces cerevisiae in dimeric and tetrameric forms. Dimeric TOM consists of two copies each of five proteins arranged in two-fold symmetry: pore-forming ß-barrel protein Tom40 and four auxiliary α-helical transmembrane proteins. The pore of each Tom40 has an overall negatively charged inner surface attributed to multiple functionally important acidic patches. The tetrameric complex is essentially a dimer of dimeric TOM, which may be capable of forming higher-order oligomers. Our study reveals the detailed molecular organization of the TOM complex and provides new insights about the mechanism of protein translocation into mitochondria.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Proteínas de Transporte/metabolismo , Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
6.
Nature ; 575(7782): 395-401, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31600774

RESUMO

The translocase of the outer mitochondrial membrane (TOM) is the main entry gate for proteins1-4. Here we use cryo-electron microscopy to report the structure of the yeast TOM core complex5-9 at 3.8-Å resolution. The structure reveals the high-resolution architecture of the translocator consisting of two Tom40 ß-barrel channels and α-helical transmembrane subunits, providing insight into critical features that are conserved in all eukaryotes1-3. Each Tom40 ß-barrel is surrounded by small TOM subunits, and tethered by two Tom22 subunits and one phospholipid. The N-terminal extension of Tom40 forms a helix inside the channel; mutational analysis reveals its dual role in early and late steps in the biogenesis of intermembrane-space proteins in cooperation with Tom5. Each Tom40 channel possesses two precursor exit sites. Tom22, Tom40 and Tom7 guide presequence-containing preproteins to the exit in the middle of the dimer, whereas Tom5 and the Tom40 N extension guide preproteins lacking a presequence to the exit at the periphery of the dimer.


Assuntos
Microscopia Crioeletrônica , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Mitocôndrias/química , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Fosfolipídeos/metabolismo , Multimerização Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
7.
Cell ; 176(3): 435-447.e15, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30611538

RESUMO

Mitochondrial ADP/ATP carriers transport ADP into the mitochondrial matrix for ATP synthesis, and ATP out to fuel the cell, by cycling between cytoplasmic-open and matrix-open states. The structure of the cytoplasmic-open state is known, but it has proved difficult to understand the transport mechanism in the absence of a structure in the matrix-open state. Here, we describe the structure of the matrix-open state locked by bongkrekic acid bound in the ADP/ATP-binding site at the bottom of the central cavity. The cytoplasmic side of the carrier is closed by conserved hydrophobic residues, and a salt bridge network, braced by tyrosines. Glycine and small amino acid residues allow close-packing of helices on the matrix side. Uniquely, the carrier switches between states by rotation of its three domains about a fulcrum provided by the substrate-binding site. Because these features are highly conserved, this mechanism is likely to apply to the whole mitochondrial carrier family. VIDEO ABSTRACT.


Assuntos
Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Translocases Mitocondriais de ADP e ATP/ultraestrutura , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Transporte Biológico , Ácido Bongcréquico/metabolismo , Citoplasma/metabolismo , Mitocôndrias/fisiologia , Translocases Mitocondriais de ADP e ATP/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Modelos Moleculares , Conformação Proteica , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Anal Biochem ; 552: 38-44, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28693989

RESUMO

Mitochondrial permeability transition (PT) is a phenomenon of an increase of the inner membrane permeability in response to an excessive matrix calcium accumulation. PTP is caused by the opening of the large weakly selective channel. Molecular composition and regulation of permeability transition pore (PTP) are not well understood. Here we used isolated mitochondria to investigate dependence of PTP activation on the osmotic pressure. We found that in low osmotic strength solution calcium-induced PTP is significantly inhibited. We propose that this effect is linked to the changes in the curvature of the mitochondrial inner membrane. This interpretation is consistent with the idea about the importance of ATP synthase dimerization in modulation of the PTP activity.


Assuntos
Luz , Microscopia Eletrônica/métodos , Microscopia de Fluorescência/métodos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Pressão Osmótica , Espalhamento de Radiação , Dimerização , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Poro de Transição de Permeabilidade Mitocondrial , ATPases Translocadoras de Prótons/metabolismo
9.
Cell ; 170(4): 693-700.e7, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802041

RESUMO

The TOM complex is the main entry gate for protein precursors from the cytosol into mitochondria. We have determined the structure of the TOM core complex by cryoelectron microscopy (cryo-EM). The complex is a 148 kDa symmetrical dimer of ten membrane protein subunits that create a shallow funnel on the cytoplasmic membrane surface. In the core of the dimer, the ß-barrels of the Tom40 pore form two identical preprotein conduits. Each Tom40 pore is surrounded by the transmembrane segments of the α-helical subunits Tom5, Tom6, and Tom7. Tom22, the central preprotein receptor, connects the two Tom40 pores at the dimer interface. Our structure offers detailed insights into the molecular architecture of the mitochondrial preprotein import machinery.


Assuntos
Proteínas de Transporte/química , Proteínas Fúngicas/química , Neurospora crassa/enzimologia , Sistemas de Translocação de Proteínas/química , Sequência de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestrutura , Espectrometria de Massas , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Membranas Mitocondriais/enzimologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Conformação Proteica em Folha beta , Sistemas de Translocação de Proteínas/genética , Sistemas de Translocação de Proteínas/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química
10.
Int J Radiat Biol ; 93(5): 470-476, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28110593

RESUMO

PURPOSE: To investigate alterations of mitochondria in irradiated endothelial cells to further elucidate the mechanism underlying radiation-induced heart disease. MATERIALS AND METHODS: Experiments were performed using human umbilical vein endothelial cells (HUVECs). HUVECs were irradiated with single gamma ray dose of 0, 5, 10 and 20 Gy, respectively. Apoptosis was assessed by flow cytometry at 24, 48 and 72 h post-irradiation, respectively. The intracellular reactive oxygen species (ROS) was measured with 2',7'-dichlorofluorescein-diacetate (DCFH-DA) at 24 h post-irradiation. Mitochondrial membrane potential (ΔΨm) by JC-1 and the opening of mitochondrial permeability transition pore (mPTP) by a calcein-cobalt quenching method were detected at 24 h post-irradiation in order to measure changes of mitochondria induced by gamma ray irradiation. RESULTS: Gamma ray irradiation increased HUVECs apoptosis in a dose-dependent and time-dependent manner. Irradiation also promoted ROS production in HUVECs in a dose-dependent manner. At 24 h post-irradiation, the results showed that irradiation decreases ΔΨm, however, paradoxically, flow cytometry showed green fluorescence instensity higher in irradiated HUVECs than in control HUVECs in an irradiation dose-dependent manner which indicated gamma ray irradiation inhibited mPTP opening in HUVECs. CONCLUSIONS: Gamma ray irradiation induces apoptosis and ROS production of endothelial cells, and decreases ΔΨm meanwhile contradictorily inhibiting the opening of mPTP.


Assuntos
Apoptose/fisiologia , Células Endoteliais/fisiologia , Raios gama , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Apoptose/efeitos da radiação , Células Cultivadas , Relação Dose-Resposta à Radiação , Células Endoteliais/efeitos da radiação , Células Endoteliais/ultraestrutura , Humanos , Potencial da Membrana Mitocondrial/efeitos da radiação , Mitocôndrias/efeitos da radiação , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/efeitos da radiação , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Poro de Transição de Permeabilidade Mitocondrial , Doses de Radiação , Espécies Reativas de Oxigênio/metabolismo
11.
Arch Biochem Biophys ; 579: 1-7, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26014136

RESUMO

Mia40 participates in oxidative protein folding within the mitochondrial intermembrane space (IMS) by mediating the transfer of reducing equivalents from client proteins to FAD-linked oxidoreductases of the Erv1 family (lfALR in mammals). Here we investigate the specificity of the human Mia40/lfALR system towards non-cognate unfolded protein substrates to assess whether the efficient introduction of disulfides requires a particular amino acid sequence context or the presence of an IMS targeting signal. Reduced pancreatic ribonuclease A (rRNase), avian lysozyme, and riboflavin binding protein are all competent substrates of the Mia40/lfALR system, although they lack those sequence features previously thought to direct disulfide bond formation in cognate IMS substrates. The oxidation of rRNase by Mia40 does not limit overall turnover of unfolded substrate by the Mia40/lfALR system. Mia40 is an ineffective protein disulfide isomerase when its ability to restore enzymatic activity from scrambled RNase is compared to that of protein disulfide isomerase. Mia40's ability to bind amphipathic peptides is evident by avid binding to the isolated B-chain during the insulin reductase assay. In aggregate these data suggest that the Mia40/lfALR system has a broad sequence specificity and that potential substrates may be protected from adventitious oxidation by kinetic sequestration within the mitochondrial IMS.


Assuntos
Redutases do Citocromo/química , Redutases do Citocromo/ultraestrutura , Isomerases/química , Isomerases/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Ativação Enzimática , Humanos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Oxidantes/química , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade
12.
J Membr Biol ; 248(4): 727-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25758230

RESUMO

Quantum dots (QDs) are increasingly applied in sensing, drug delivery, biomedical imaging, electronics industries, etc. Consequently, it is urgently required to examine their potential threat to humans and the environment. In the present work, the toxicity of CdTe QDs with nearly identical maximum emission wavelength but modified with two different ligands (MPA and BSA) to mitochondria was investigated using flow cytometry, spectroscopic, and microscopic methods. The results showed that QDs induced mitochondrial permeability transition (MPT), which resulted in mitochondrial swelling, collapse of the membrane potential, inner membrane permeability to H(+) and K(+), the increase of membrane fluidity, depression of respiration, alterations of ultrastructure, and the release of cytochrome c. Furthermore, the protective effects of CsA and EDTA confirmed QDs might be able to induce MPT via a Ca(2+)-dependent domain. However, the difference between the influence of CdTe QDs and that of Cd(2+) on mitochondrial membrane fluidity indicated the release of Cd(2+) was not the sole reason that QDs induced mitochondrial dysfunction, which might be related to the nanoscale effect of QDs. Compared with MPA-CdTe QDs, BSA-CdTe QDs had a greater effect on the mitochondrial swelling, membrane fluidity, and permeabilization to H(+) and K(+) by mitochondrial inner membrane, which was caused the fact that BSA was more lipophilic than MPA. This study provides an important basis for understanding the mechanism of the toxicity of CdTe QDs to mitochondria, and valuable information for safe use of QDs in the future.


Assuntos
Compostos de Cádmio/química , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/metabolismo , Pontos Quânticos/química , Telúrio/química , Animais , Mitocôndrias Hepáticas/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Membranas Mitocondriais/ultraestrutura , Poro de Transição de Permeabilidade Mitocondrial , Fenilacetatos/química , Ratos , Ratos Wistar , Soroalbumina Bovina/química
13.
Methods Mol Biol ; 1254: 87-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25431059

RESUMO

Maintenance of mitochondrial membrane integrity is essential for mitochondrial function and neuronal viability. Apoptotic stimulus or calcium overload leads to mitochondrial permeability transition pore (mPTP ) opening and induces mitochondrial swelling, a common feature of mitochondrial membrane permeabilization. The first phenomenon can be evaluated in cells loaded with the dye calcein -AM quenched by cobalt, and mitochondrial swelling can be detected by electron microscopy through the analysis of mitochondrial membrane integrity. Here, we describe a live cell imaging assay to detect mitochondrial permeability transition and the development of a detailed analysis of morphological and ultrastructural changes that mitochondria undergo during this process.


Assuntos
Microscopia Eletrônica , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Membranas Mitocondriais/ultraestrutura , Neurônios/ultraestrutura , Cálcio/metabolismo , Mitocôndrias/ultraestrutura , Poro de Transição de Permeabilidade Mitocondrial , Dilatação Mitocondrial , Biologia Molecular/métodos , Neurônios/metabolismo , Permeabilidade
14.
J Immunol ; 193(3): 1080-9, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24965775

RESUMO

Ammonia levels are often elevated in patients with cirrhosis or tumors. Patients with these diseases are immunocompromised. In this study, we investigated the effects of ammonia on a member of the immune cell family, the dendritic cells (DCs). Our results demonstrated that ammonia diminished cell count, phagocytosis, and lymphocyte stimulation of DCs. Ammonia also induced DC swelling, excessive reactive oxygen species production, and mitochondrial damage, which may constitute the underlying mechanism of ammonia-induced DC dysfunction. In ammonium chloride (NH4Cl)-loaded mice, DCs exhibited lowered phagocytosis and a weakened immune response to the chicken OVA vaccine. DCs from patients with cirrhosis or ammonia-treated healthy human blood both exhibited diminished phagocytosis. Moreover, tumor cell conditioned medium drove DCs into dysfunction, which could be reversed by ammonia elimination. In a murine colon carcinoma model, we found that ammonia could regulate tumor growth involving DCs and their related immune response. These findings reveal that ammonia could drive DCs into dysfunction, which contributes to the immunocompromised state of patients with cirrhosis or tumors.


Assuntos
Cloreto de Amônio/toxicidade , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/patologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/patologia , Células da Medula Óssea/ultraestrutura , Contagem de Células , Linhagem Celular Tumoral , Técnicas de Cocultura , Células Dendríticas/ultraestrutura , Humanos , Cirrose Hepática/imunologia , Cirrose Hepática/patologia , Teste de Cultura Mista de Linfócitos/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Poro de Transição de Permeabilidade Mitocondrial , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Cultura Primária de Células
15.
Mol Biol Cell ; 23(20): 3936-47, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22933571

RESUMO

The TOM40 complex is a protein translocator in the mitochondrial outer membrane and consists of several different subunits. Among them, Tom40 is a central subunit that constitutes a protein-conducting channel by forming a ß-barrel structure. To probe the nature of the assembly process of Tom40 in the outer membrane, we attached various mitochondrial presequences to Tom40 that possess sorting information for the intermembrane space (IMS), inner membrane, and matrix and would compete with the inherent Tom40 assembly process. We analyzed the mitochondrial import of those fusion proteins in vitro. Tom40 crossed the outer membrane and/or inner membrane even in the presence of various sorting signals. N-terminal anchorage of the attached presequence to the inner membrane did not prevent Tom40 from associating with the TOB/SAM complex, although it impaired its efficient release from the TOB complex in vitro but not in vivo. The IMS or matrix-targeting presequence attached to Tom40 was effective in substituting for the requirement for small Tim proteins in the IMS for the translocation of Tom40 across the outer membrane. These results provide insight into the mechanism responsible for the precise delivery of ß-barrel proteins to the outer mitochondrial membrane.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Sinais Direcionadores de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Modelos Biológicos , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura
16.
Acta Cardiol ; 63(3): 377-87, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18664030

RESUMO

OBJECTIVE: The effect of inhibiting mitochondrial permeability transition (MPT) on cardioprotection induced by ischaemic postconditioning remains debatable. The aim of the present study was to investigate whether ischaemic postconditioning attenuates cardiomyocyte ultrastructure injury and apoptosis by blocking MPT. METHODS AND RESULTS: Sprague-Dawley rats were randomly allocated to eight groups (n = 12) including sham without ischaemia (I), control given 30 min 1 and 5 min or 120 min reperfusion (R), postconditioning (Post) treated the same as control and 3 cycles of 10 s R and 10 s I before R, preconditioning (Pre) treated the same as control and 3 cycles of 5 min 1 and 5 min R before 30 min 1, and other groups treated the same as control or Post and given cyclosporin A (CsA) or atractyloside (Atr). Infarct size was evaluated by TTC, ultrastructure by electron microscope, MPT by spectrophotometry, and apoptosis by TUNEL. Compared with the control treatment, the Post, CsA and Pre treatments had smaller infarct size, less reduction in optical density at 540 nm (OD540) for MPT (20.2% +/- 2.3% versus 12.1% +/- 1.8%, 11.2% +/- 3.3% and 12.1% +/- 5.6%, P < 0.01, respectively), lower mitochondrial score (2.09 +/- 0.27 versus 1.27 +/- 0.27, 0.97 +/- 0.26 and 1.28 +/- 0.32, P < 0.01, respectively) and percentage of apoptosis (34.9% +/- 2.6% versus 17.5% +/- 1.7%, 17.6% +/- 2.1% and 17.2% +/- 2.1%, P < 0.01, respectively). Post-induced cardioprotection was abrogated by Atr and failed to be enhanced by CsA. CONCLUSIONS: Blockage of MPT may be involved in attenuation of ultrastructure injury and apoptosis by ischaemic postconditioning.


Assuntos
Apoptose , Precondicionamento Isquêmico Miocárdico/métodos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/ultraestrutura , Animais , Modelos Animais de Doenças , Marcação In Situ das Extremidades Cortadas , Masculino , Microscopia Eletrônica , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Poro de Transição de Permeabilidade Mitocondrial , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/terapia , Miócitos Cardíacos/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA