Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
2.
J Biol Chem ; 300(3): 105732, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336290

RESUMO

The manganese (Mn) export protein SLC30A10 is essential for Mn excretion via the liver and intestines. Patients with SLC30A10 deficiency develop Mn excess, dystonia, liver disease, and polycythemia. Recent genome-wide association studies revealed a link between the SLC30A10 variant T95I and markers of liver disease. The in vivo relevance of this variant has yet to be investigated. Using in vitro and in vivo models, we explore the impact of the T95I variant on SLC30A10 function. While SLC30A10 I95 expressed at lower levels than T95 in transfected cell lines, both T95 and I95 variants protected cells similarly from Mn-induced toxicity. Adeno-associated virus 8-mediated expression of T95 or I95 SLC30A10 using the liver-specific thyroxine binding globulin promoter normalized liver Mn levels in mice with hepatocyte Slc30a10 deficiency. Furthermore, Adeno-associated virus-mediated expression of T95 or I95 SLC30A10 normalized red blood cell parameters and body weights and attenuated Mn levels and differential gene expression in livers and brains of mice with whole body Slc30a10 deficiency. While our in vivo data do not indicate that the T95I variant significantly compromises SLC30A10 function, it does reinforce the notion that the liver is a key site of SLC30A10 function. It also supports the idea that restoration of hepatic SLC30A10 expression is sufficient to attenuate phenotypes in SLC30A10 deficiency.


Assuntos
Substituição de Aminoácidos , Proteínas de Transporte de Cátions , Dependovirus , Fígado , Manganês , Mutação , Animais , Camundongos , Peso Corporal , Encéfalo/metabolismo , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular , Dependovirus/genética , Eritrócitos , Estudo de Associação Genômica Ampla , Hepatócitos/metabolismo , Fígado/citologia , Fígado/metabolismo , Hepatopatias/genética , Hepatopatias/metabolismo , Manganês/metabolismo , Intoxicação por Manganês/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Globulina de Ligação a Tiroxina/genética
4.
Free Radic Biol Med ; 207: 32-44, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37419216

RESUMO

Mitochondria are vital for energy production and redox homeostasis, yet knowledge of relevant mechanisms remains limited. Here, through a genome-wide CRISPR-Cas9 knockout screening, we have identified DMT1 as a major regulator of mitochondria membrane potential. Our findings demonstrate that DMT1 deficiency increases the activity of mitochondrial complex I and reduces that of complex III. Enhanced complex I activity leads to increased NAD+ production, which activates IDH2 by promoting its deacetylation via SIRT3. This results in higher levels of NADPH and GSH, which improve antioxidant capacity during Erastin-induced ferroptosis. Meanwhile, loss of complex III activity impairs mitochondrial biogenesis and promotes mitophagy, contributing to suppression of ferroptosis. Thus, DMT1 differentially regulates activities of mitochondrial complex I and III to cooperatly suppress Erastin-induced ferroptosis. Furthermore, NMN, an alternative method of increasing mitochondrial NAD+, exhibits similar protective effects against ferroptosis by boosting GSH in a manner similar to DMT1 deficiency, shedding a light on potential therapeutic strategy for ferroptosis-related pathologies.


Assuntos
Proteínas de Transporte de Cátions , Complexo III da Cadeia de Transporte de Elétrons , Ferroptose , Mitocôndrias , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Ferroptose/genética , Glutationa/genética , Glutationa/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , NAD/genética , NAD/metabolismo , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Humanos
5.
Arterioscler Thromb Vasc Biol ; 43(8): 1494-1509, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37381987

RESUMO

BACKGROUND: MAGT1 (magnesium transporter 1) is a subunit of the oligosaccharide protein complex with thiol-disulfide oxidoreductase activity, supporting the process of N-glycosylation. MAGT1 deficiency was detected in human patients with X-linked immunodeficiency with magnesium defect syndrome and congenital disorders of glycosylation, resulting in decreased cation responses in lymphocytes, thereby inhibiting the immune response against viral infections. Curative hematopoietic stem cell transplantation of patients with X-linked immunodeficiency with magnesium defect causes fatal bleeding and thrombotic complications. METHODS: We studied the role of MAGT1 deficiency in platelet function in relation to arterial thrombosis and hemostasis using several in vitro experimental settings and in vivo models of arterial thrombosis and transient middle cerebral artery occlusion model of ischemic stroke. RESULTS: MAGT1-deficient mice (Magt1-/y) displayed accelerated occlusive arterial thrombus formation in vivo, a shortened bleeding time, and profound brain damage upon focal cerebral ischemia. These defects resulted in increased calcium influx and enhanced second wave mediator release, which further reinforced platelet reactivity and aggregation responses. Supplementation of MgCl2 or pharmacological blockade of TRPC6 (transient receptor potential cation channel, subfamily C, member 6) channel, but not inhibition of store-operated calcium entry, normalized the aggregation responses of Magt1-/y platelets to the control level. GP (glycoprotein) VI activation of Magt1-/y platelets resulted in hyperphosphorylation of Syk (spleen tyrosine kinase), LAT (linker for activation of T cells), and PLC (phospholipase C) γ2, whereas the inhibitory loop regulated by PKC (protein kinase C) was impaired. A hyperaggregation response to the GPVI agonist was confirmed in human platelets isolated from a MAGT1-deficient (X-linked immunodeficiency with magnesium defect) patient. Haploinsufficiency of TRPC6 in Magt1-/y mice could normalize GPVI signaling, platelet aggregation, and thrombus formation in vivo. CONCLUSIONS: These results suggest that MAGT1 and TRPC6 are functionally linked. Therefore, deficiency or impaired functionality of MAGT1 could be a potential risk factor for arterial thrombosis and stroke.


Assuntos
Proteínas de Transporte de Cátions , Homeostase , Infarto da Artéria Cerebral Média , AVC Isquêmico , Trombose , Animais , Humanos , Camundongos , Plaquetas/metabolismo , Cálcio/metabolismo , Cátions/metabolismo , AVC Isquêmico/genética , AVC Isquêmico/complicações , AVC Isquêmico/metabolismo , Magnésio/metabolismo , Ativação Plaquetária , Agregação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Trombose/genética , Trombose/metabolismo , Canal de Cátion TRPC6/metabolismo , Proteínas de Transporte de Cátions/deficiência
6.
Proc Natl Acad Sci U S A ; 119(26): e2121400119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737834

RESUMO

Deficiencies of the transmembrane iron-transporting protein ferroportin (FPN1) cause the iron misdistribution that underlies ferroportin disease, anemia of inflammation, and several other human diseases and conditions. A small molecule natural product, hinokitiol, was recently shown to serve as a surrogate transmembrane iron transporter that can restore hemoglobinization in zebrafish deficient in other iron transporting proteins and can increase gut iron absorption in FPN1-deficient flatiron mice. However, whether hinokitiol can restore normal iron physiology in FPN1-deficient animals or primary cells from patients and the mechanisms underlying such targeted activities remain unknown. Here, we show that hinokitiol redistributes iron from the liver to red blood cells in flatiron mice, thereby increasing hemoglobin and hematocrit. Mechanistic studies confirm that hinokitiol functions as a surrogate transmembrane iron transporter to release iron trapped within liver macrophages, that hinokitiol-Fe complexes transfer iron to transferrin, and that the resulting transferrin-Fe complexes drive red blood cell maturation in a transferrin-receptor-dependent manner. We also show in FPN1-deficient primary macrophages derived from patients with ferroportin disease that hinokitiol moves labile iron from inside to outside cells and decreases intracellular ferritin levels. The mobilization of nonlabile iron is accompanied by reductions in intracellular ferritin, consistent with the activation of regulated ferritin proteolysis. These findings collectively provide foundational support for the translation of small molecule iron transporters into therapies for human diseases caused by iron misdistribution.


Assuntos
Ferro , Macrófagos , Monoterpenos , Tropolona/análogos & derivados , Animais , Proteínas de Transporte de Cátions/deficiência , Ferritinas/metabolismo , Humanos , Ferro/metabolismo , Macrófagos/metabolismo , Camundongos , Monoterpenos/metabolismo , Transferrina/metabolismo , Tropolona/metabolismo , Peixe-Zebra/metabolismo
7.
Gut Microbes ; 14(1): 2014739, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34965180

RESUMO

Loss of Paneth cell (PC) function is implicated in intestinal dysbiosis, mucosal inflammation, and numerous intestinal disorders, including necrotizing enterocolitis (NEC). Studies in mouse models show that zinc transporter ZnT2 (SLC30A2) is critical for PC function, playing a role in granule formation, secretion, and antimicrobial activity; however, no studies have investigated whether loss of ZnT2 function is associated with dysbiosis, mucosal inflammation, or intestinal dysfunction in humans. SLC30A2 was sequenced in healthy preterm infants (26-37 wks; n = 75), and structural analysis and functional assays determined the impact of mutations. In human stool samples, 16S rRNA sequencing and RNAseq of bacterial and human transcripts were performed. Three ZnT2 variants were common (>5%) in this population: H346Q, f = 19%; L293R, f = 7%; and a previously identified compound substitution in Exon7, f = 16%). H346Q had no effect on ZnT2 function or beta-diversity. Exon7 impaired zinc transport and was associated with a fractured gut microbiome. Analysis of microbial pathways suggested diverse effects on nutrient metabolism, glycan biosynthesis and metabolism, and drug resistance, which were associated with increased expression of host genes involved in tissue remodeling. L293R caused profound ZnT2 dysfunction and was associated with overt gut dysbiosis. Microbial pathway analysis suggested effects on nucleotide, amino acid and vitamin metabolism, which were associated with the increased expression of host genes involved in inflammation and immune response. In addition, L293R was associated with reduced weight gain in the early postnatal period. This implicates ZnT2 as a novel modulator of mucosal homeostasis in humans and suggests that genetic variants in ZnT2 may affect the risk of mucosal inflammation and intestinal disease.


Assuntos
Proteínas de Transporte de Cátions/genética , Disbiose/genética , Doenças do Recém-Nascido/genética , Recém-Nascido Prematuro/metabolismo , Intestinos/metabolismo , Mutação com Perda de Função , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Transporte de Cátions/deficiência , Disbiose/metabolismo , Disbiose/microbiologia , Éxons , Feminino , Microbioma Gastrointestinal , Humanos , Recém-Nascido , Doenças do Recém-Nascido/metabolismo , Doenças do Recém-Nascido/microbiologia , Intestinos/microbiologia , Masculino , Camundongos Knockout , Mutação , Mutação de Sentido Incorreto , Polissacarídeos/metabolismo
8.
Cell Death Dis ; 13(1): 11, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930890

RESUMO

TMEM165 deficiency leads to skeletal disorder characterized by major skeletal dysplasia and pronounced dwarfism. However, the molecular mechanisms involved have not been fully understood. Here, we uncover that TMEM165 deficiency impairs the synthesis of proteoglycans by producing a blockage in the elongation of chondroitin-and heparan-sulfate glycosaminoglycan chains leading to the synthesis of proteoglycans with shorter glycosaminoglycan chains. We demonstrated that the blockage in elongation of glycosaminoglycan chains is not due to defect in the Golgi elongating enzymes but rather to availability of the co-factor Mn2+. Supplementation of cell with Mn2+ rescue the elongation process, confirming a role of TMEM165 in Mn2+ Golgi homeostasis. Additionally, we showed that TMEM165 deficiency functionally impairs TGFß and BMP signaling pathways in chondrocytes and in fibroblast cells of TMEM165 deficient patients. Finally, we found that loss of TMEM165 impairs chondrogenic differentiation by accelerating the timing of Ihh expression and promoting early chondrocyte maturation and hypertrophy. Collectively, our results indicate that TMEM165 plays an important role in proteoglycan synthesis and underline the critical role of glycosaminoglycan chains structure in the regulation of chondrogenesis. Our data also suggest that Mn2+ supplementation may be a promising therapeutic strategy in the treatment of TMEM165 deficient patients.


Assuntos
Antiporters/deficiência , Antiporters/metabolismo , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/metabolismo , Diferenciação Celular/genética , Condrócitos/metabolismo , Condrócitos/patologia , Sulfatos de Condroitina/biossíntese , Nanismo/metabolismo , Proteoglicanas de Heparan Sulfato/biossíntese , Transdução de Sinais/genética , Animais , Antiporters/genética , Estudos de Casos e Controles , Proteínas de Transporte de Cátions/genética , Linhagem Celular Tumoral , Condrogênese/genética , Nanismo/patologia , Fibroblastos/metabolismo , Técnicas de Inativação de Genes/métodos , Glicosilação , Células HEK293 , Humanos , Hipertrofia/metabolismo , Camundongos , Transfecção
9.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360779

RESUMO

Pro-inflammatory cytokines promote cellular iron-import through enhanced divalent metal transporter-1 (DMT1) expression in pancreatic ß-cells, consequently cell death. Inhibition of ß-cell iron-import by DMT1 silencing protects against apoptosis in animal models of diabetes. However, how alterations of signaling networks contribute to the protective action of DMT1 knock-down is unknown. Here, we performed phosphoproteomics using our sequential enrichment strategy of mRNA, protein, and phosphopeptides, which enabled us to explore the concurrent molecular events in the same set of wildtype and DMT1-silenced ß-cells during IL-1ß exposure. Our findings reveal new phosphosites in the IL-1ß-induced proteins that are clearly reverted by DMT1 silencing towards their steady-state levels. We validated the levels of five novel phosphosites of the potential protective proteins using parallel reaction monitoring. We also confirmed the inactivation of autophagic flux that may be relevant for cell survival induced by DMT1 silencing during IL-1ß exposure. Additionally, the potential protective proteins induced by DMT1 silencing were related to insulin secretion that may lead to improving ß-cell functions upon exposure to IL-1ß. This global profiling has shed light on the signal transduction pathways driving the protection against inflammation-induced cell death in ß-cells after DMT1 silencing.


Assuntos
Apoptose/imunologia , Autofagia/imunologia , Proteínas de Transporte de Cátions/deficiência , Técnicas de Silenciamento de Genes , Células Secretoras de Insulina/imunologia , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Transdução de Sinais/imunologia , Animais , Apoptose/genética , Autofagia/genética , Proteínas de Transporte de Cátions/imunologia , Interleucina-1beta/genética , Interleucina-6/genética , Camundongos , Transdução de Sinais/genética
10.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202493

RESUMO

As a newly identified manganese transport protein, ZIP14 is highly expressed in the small intestine and liver, which are the two principal organs involved in regulating systemic manganese homeostasis. Loss of ZIP14 function leads to manganese overload in both humans and mice. Excess manganese in the body primarily affects the central nervous system, resulting in irreversible neurological disorders. Therefore, to prevent the onset of brain manganese accumulation becomes critical. In this study, we used Zip14-/- mice as a model for ZIP14 deficiency and discovered that these mice were born without manganese loading in the brain, but started to hyper-accumulate manganese within 3 weeks after birth. We demonstrated that decreasing manganese intake in Zip14-/- mice was effective in preventing manganese overload that typically occurs in these animals. Our results provide important insight into future studies that are targeted to reduce the onset of manganese accumulation associated with ZIP14 dysfunction in humans.


Assuntos
Encéfalo/patologia , Proteínas de Transporte de Cátions/deficiência , Dieta , Suscetibilidade a Doenças , Manganês/metabolismo , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Manganês/efeitos adversos , Doenças Metabólicas/patologia , Doenças Metabólicas/prevenção & controle , Camundongos , Especificidade de Órgãos
11.
Am J Physiol Cell Physiol ; 321(3): C519-C534, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34319827

RESUMO

Mitochondria are recognized as signaling organelles, because under stress, mitochondria can trigger various signaling pathways to coordinate the cell's response. The specific pathway(s) engaged by mitochondria in response to mitochondrial energy defects in vivo and in high-energy tissues like the heart are not fully understood. Here, we investigated cardiac pathways activated in response to mitochondrial energy dysfunction by studying mice with cardiomyocyte-specific loss of the mitochondrial phosphate carrier (SLC25A3), an established model that develops cardiomyopathy as a result of defective mitochondrial ATP synthesis. Mitochondrial energy dysfunction induced a striking pattern of acylome remodeling, with significantly increased posttranslational acetylation and malonylation. Mass spectrometry-based proteomics further revealed that energy dysfunction-induced remodeling of the acetylome and malonylome preferentially impacts mitochondrial proteins. Acetylation and malonylation modified a highly interconnected interactome of mitochondrial proteins, and both modifications were present on the enzyme isocitrate dehydrogenase 2 (IDH2). Intriguingly, IDH2 activity was enhanced in SLC25A3-deleted mitochondria, and further study of IDH2 sites targeted by both acetylation and malonylation revealed that these modifications can have site-specific and distinct functional effects. Finally, we uncovered a novel cross talk between the two modifications, whereby mitochondrial energy dysfunction-induced acetylation of sirtuin 5 (SIRT5), inhibited its function. Because SIRT5 is a mitochondrial deacylase with demalonylase activity, this finding suggests that acetylation can modulate the malonylome. Together, our results position acylations as an arm of the mitochondrial response to energy dysfunction and suggest a mechanism by which focal disruption to the energy production machinery can have an expanded impact on global mitochondrial function.


Assuntos
Cardiomiopatias/genética , Proteínas de Transporte de Cátions/genética , Isocitrato Desidrogenase/genética , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/genética , Miócitos Cardíacos/metabolismo , Proteínas de Transporte de Fosfato/genética , Processamento de Proteína Pós-Traducional , Proteínas Carreadoras de Solutos/genética , Acetilação , Animais , Transporte Biológico , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Proteínas de Transporte de Cátions/deficiência , Metabolismo Energético , Feminino , Redes Reguladoras de Genes , Isocitrato Desidrogenase/metabolismo , Masculino , Malonatos/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Proteínas Mitocondriais/deficiência , Modelos Moleculares , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/patologia , Proteínas de Transporte de Fosfato/deficiência , Fosfatos , Conformação Proteica , Mapeamento de Interação de Proteínas , Transdução de Sinais , Sirtuínas/genética , Sirtuínas/metabolismo , Proteínas Carreadoras de Solutos/deficiência
12.
Sci Rep ; 11(1): 13972, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234221

RESUMO

High voltage-activated Cav2.3 R-type Ca2+ channels and low voltage-activated Cav3.2 T-type Ca2+ channels were reported to be involved in numerous physiological and pathophysiological processes. Many of these findings are based on studies in Cav2.3 and Cav3.2 deficient mice. Recently, it has been proposed that inbreeding of Cav2.3 and Cav3.2 deficient mice exhibits significant deviation from Mendelian inheritance and might be an indication for potential prenatal lethality in these lines. In our study, we analyzed 926 offspring from Cav3.2 breedings and 1142 offspring from Cav2.3 breedings. Our results demonstrate that breeding of Cav2.3 deficient mice shows typical Mendelian inheritance and that there is no indication of prenatal lethality. In contrast, Cav3.2 breeding exhibits a complex inheritance pattern. It might be speculated that the differences in inheritance, particularly for Cav2.3 breeding, are related to other factors, such as genetic specificities of the mutant lines, compensatory mechanisms and altered sperm activity.


Assuntos
Canais de Cálcio Tipo R/deficiência , Canais de Cálcio Tipo T/genética , Proteínas de Transporte de Cátions/deficiência , Genótipo , Endogamia , Padrões de Herança , Herança Multifatorial , Mutação , Animais , Feminino , Endogamia/métodos , Masculino , Camundongos , Fenótipo
13.
Blood ; 138(26): 2768-2780, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34086870

RESUMO

XMEN disease, defined as "X-linked MAGT1 deficiency with increased susceptibility to Epstein-Barr virus infection and N-linked glycosylation defect," is a recently described primary immunodeficiency marked by defective T cells and natural killer (NK) cells. Unfortunately, a potentially curative hematopoietic stem cell transplantation is associated with high mortality rates. We sought to develop an ex vivo targeted gene therapy approach for patients with XMEN using a CRISPR/Cas9 adeno-associated vector (AAV) to insert a therapeutic MAGT1 gene at the constitutive locus under the regulation of the endogenous promoter. Clinical translation of CRISPR/Cas9 AAV-targeted gene editing (GE) is hampered by low engraftable gene-edited hematopoietic stem and progenitor cells (HSPCs). Here, we optimized GE conditions by transient enhancement of homology-directed repair while suppressing AAV-associated DNA damage response to achieve highly efficient (>60%) genetic correction in engrafting XMEN HSPCs in transplanted mice. Restored MAGT1 glycosylation function in human NK and CD8+ T cells restored NK group 2 member D (NKG2D) expression and function in XMEN lymphocytes for potential treatment of infections, and it corrected HSPCs for long-term gene therapy, thus offering 2 efficient therapeutic options for XMEN poised for clinical translation.


Assuntos
Proteínas de Transporte de Cátions/genética , Edição de Genes , Células-Tronco Hematopoéticas/metabolismo , Linfócitos/metabolismo , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética , Animais , Sistemas CRISPR-Cas , Proteínas de Transporte de Cátions/deficiência , Células Cultivadas , Feminino , Edição de Genes/métodos , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/patologia , Humanos , Linfócitos/patologia , Masculino , Camundongos Endogâmicos NOD , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/patologia , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/terapia
14.
Nat Commun ; 12(1): 3683, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140503

RESUMO

Blood pressure has a daily pattern, with higher values in the active period. Its elevation at the onset of the active period substantially increases the risk of fatal cardiovascular events. Renin secretion stimulated by renal sympathetic neurons is considered essential to this process; however, its regulatory mechanism remains largely unknown. Here, we show the importance of transient receptor potential melastatin-related 6 (TRPM6), a Mg2+-permeable cation channel, in augmenting renin secretion in the active period. TRPM6 expression is significantly reduced in the distal convoluted tubule of hypotensive Cnnm2-deficient mice. We generate kidney-specific Trpm6-deficient mice and observe a decrease in blood pressure and a disappearance of its circadian variation. Consistently, renin secretion is not augmented in the active period. Furthermore, renin secretion after pharmacological activation of ß-adrenoreceptor, the target of neuronal stimulation, is abrogated, and the receptor expression is decreased in renin-secreting cells. These results indicate crucial roles of TRPM6 in the circadian regulation of blood pressure.


Assuntos
Pressão Sanguínea/fisiologia , Túbulos Renais Distais/metabolismo , Rim/metabolismo , Renina/metabolismo , Canais de Cátion TRPM/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Pressão Sanguínea/genética , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Regulação para Baixo , Feminino , Regulação da Expressão Gênica/genética , Homeostase , Isoproterenol/farmacologia , Rim/patologia , Magnésio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Interferência de RNA , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/genética , Regulação para Cima
15.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946908

RESUMO

Alterations of zinc homeostasis have long been implicated in Parkinson's disease (PD). Zinc plays a complex role as both deficiency and excess of intracellular zinc levels have been incriminated in the pathophysiology of the disease. Besides its role in multiple cellular functions, Zn2+ also acts as a synaptic transmitter in the brain. In the forebrain, subset of glutamatergic neurons, namely cortical neurons projecting to the striatum, use Zn2+ as a messenger alongside glutamate. Overactivation of the cortico-striatal glutamatergic system is a key feature contributing to the development of PD symptoms and dopaminergic neurotoxicity. Here, we will cover recent evidence implicating synaptic Zn2+ in the pathophysiology of PD and discuss its potential mechanisms of actions. Emphasis will be placed on the functional interaction between Zn2+ and glutamatergic NMDA receptors, the most extensively studied synaptic target of Zn2+.


Assuntos
Doença de Parkinson/fisiopatologia , Sinapses/fisiologia , Zinco/fisiologia , Animais , Gânglios da Base/fisiopatologia , Proteínas de Transporte de Cátions/deficiência , Córtex Cerebral/fisiopatologia , Quelantes/farmacologia , Quelantes/uso terapêutico , Corpo Estriado/fisiopatologia , Feminino , Homeostase , Humanos , Líquido Intracelular/metabolismo , Masculino , Camundongos , Camundongos Knockout , Degeneração Neural/fisiopatologia , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia , Transmissão Sináptica/fisiologia
16.
J Biol Chem ; 297(1): 100835, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34051234

RESUMO

Iron is essential for erythropoiesis and other biological processes, but is toxic in excess. Dietary absorption of iron is a highly regulated process and is a major determinant of body iron levels. Iron excretion, however, is considered a passive, unregulated process, and the underlying pathways are unknown. Here we investigated the role of metal transporters SLC39A14 and SLC30A10 in biliary iron excretion. While SLC39A14 imports manganese into the liver and other organs under physiological conditions, it imports iron under conditions of iron excess. SLC30A10 exports manganese from hepatocytes into the bile. We hypothesized that biliary excretion of excess iron would be impaired by SLC39A14 and SLC30A10 deficiency. We therefore analyzed biliary iron excretion in Slc39a14-and Slc30a10-deficient mice raised on iron-sufficient and -rich diets. Bile was collected surgically from the mice, then analyzed with nonheme iron assays, mass spectrometry, ELISAs, and an electrophoretic assay for iron-loaded ferritin. Our results support a model in which biliary excretion of excess iron requires iron import into hepatocytes by SLC39A14, followed by iron export into the bile predominantly as ferritin, with iron export occurring independently of SLC30A10. To our knowledge, this is the first report of a molecular determinant of mammalian iron excretion and can serve as basis for future investigations into mechanisms of iron excretion and relevance to iron homeostasis.


Assuntos
Bile/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Hepatócitos/metabolismo , Ferro/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte de Cátions/deficiência , Dieta , Heme/metabolismo , Hepatócitos/efeitos dos fármacos , Fígado/metabolismo , Manganês/farmacologia , Camundongos Endogâmicos C57BL , Modelos Biológicos
17.
J Pediatr Endocrinol Metab ; 34(3): 277-294, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33675210

RESUMO

Inborn errors of metabolism consist of a heterogeneous group of disorders with various organ systems manifestations, and some metabolic diseases also cause immunological disorders or dysregulation. In this review, metabolic diseases that affect the immunological system and particularly lead to primary immune deficiency will be reviewed. In a patient with frequent infections and immunodeficiency, the presence of symptoms such as growth retardation, abnormal facial appearance, heart, skeletal, lung deformities, skin findings, arthritis, motor developmental retardation, seizure, deafness, hepatomegaly, splenomegaly, impairment of liver function tests, the presence of anemia, thrombocytopenia and eosinophilia in hematological examinations should suggest metabolic diseases for the underlying cause. In some patients, these phenotypic findings may appear before the immunodeficiency picture. Metabolic diseases leading to immunological disorders are likely to be rare but probably underdiagnosed. Therefore, the presence of recurrent infections or autoimmune findings in a patient with a suspected metabolic disease should suggest that immune deficiency may also accompany the picture, and diagnostic examinations in this regard should be deepened.


Assuntos
Síndromes de Imunodeficiência/etiologia , Erros Inatos do Metabolismo/imunologia , Agamaglobulinemia/complicações , Proteínas de Transporte de Cátions/deficiência , Humanos , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/terapia , Erros Inatos do Metabolismo/complicações , Fagócitos/fisiologia , Imunodeficiência Combinada Severa/complicações
18.
Biochem Biophys Res Commun ; 550: 30-36, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33677133

RESUMO

The extracellular matrix (ECM) degradation of nucleus pulposus cells (NPCs) is mainly induced by metalloproteinases (MMPs). Zn2+ is an essential component of MMPs, but the effect of Zn2+ importers in controlling ECM metabolism remains unclear. The purpose of this research was to identify the involvement of Zn2+ importers in ECM degradation induced by inflammatory stimuli and excessive mechanical stressing. In this study, NPCs from Sprague-Dawley (SD) rats were separated and cultured. FluoZin-3 AM staining was applied to detect [Zn2+]i in NPCs treated with Interleukin-1ß (IL-1ß) or cyclic tensile strain (CTS) with a Flexcell Strain Unit. We found that intracellular Zn2+ concentration ([Zn2+]i) elevated dramatically, and ZIP8 is the predominant Zn2+ importer among all importers in senescent NPCs. The [Zn2+]i and MMP expression level both increased in IL-1ß and CTS treated NPCs. Furthermore, the expression of ZIP8 was also markedly increased. However, knockdown of ZIP8 with siRNA alleviated ECM degradation induced by inflammatory stimuli and CTS. Both stimuli activated NF-κB signaling pathway, and knockdown of ZIP8 effectively inhibited NF-κB signaling pathway activation. In conclusion, knockdown of ZIP8 can alleviate NPCs' ECM degradation caused by inflammatory stimuli and excessive mechanical stressing.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Matriz Extracelular/metabolismo , NF-kappa B/metabolismo , Núcleo Pulposo/metabolismo , Transdução de Sinais , Animais , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Colágeno Tipo II/metabolismo , Técnicas de Silenciamento de Genes , Inflamação/metabolismo , Masculino , Núcleo Pulposo/citologia , Ratos , Zinco/metabolismo
19.
Biometals ; 34(3): 573-588, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33713241

RESUMO

Manganese (Mn), an essential metal, can be toxic at elevated levels. In 2012, the first inherited cause of Mn excess was reported in patients with mutations in SLC30A10, a Mn efflux transporter. To explore the function of SLC30A10 in vitro, the current study used CRISPR/Cas9 gene editing to develop a stable SLC30A10 mutant Hep3B hepatoma cell line and collagenase perfusion in live mice to isolate primary hepatocytes deficient in Slc30a10. We also compared phenotypes of primary vs. non-primary cell lines to determine if they both serve as reliable in vitro models for the known physiological roles of SLC30A10. Mutant SLC30A10 Hep3B cells had increased Mn levels and decreased viability when exposed to excess Mn. Transport studies indicated a reduction of 54Mn import and export in mutant cells. While impaired 54Mn export was hypothesized given the essential role for SLC30A10 in cellular Mn export, impaired 54Mn import was unexpected. Whole genome sequencing did not identify any additional mutations in known Mn transporters in the mutant Hep3B mutant cell line. We then evaluated 54Mn transport in primary hepatocytes cultures isolated from genetically altered mice with varying liver Mn levels. Based on results from these experiments, we suggest that the effects of SLC30A10 deficiency on Mn homeostasis can be interrogated in vitro but only in specific types of cell lines.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Modelos Biológicos , Animais , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Hepatócitos/metabolismo , Homeostase , Humanos , Manganês/análise , Manganês/metabolismo , Camundongos , Camundongos Knockout
20.
Medicine (Baltimore) ; 100(13): e25258, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33787609

RESUMO

RATIONALE: Hereditary hemochromatosis (HH) is a hereditary disorder of iron metabolism. It is classified into 4 main types depending on the underlying genetic mutation: human hemochromatosis protein (HFE) (type 1), hemojuvelin (HJV) (type 2A), HAMP (type 2B), transferrin receptor-2 (TFER2) (type 3), and ferroportin (type 4). Type 4 HH is divided into 2 subtypes according to different mutations: type 4A (classical ferroportin disease) and type 4B (non-classical ferroportin disease). Type 4B HH is a rare autosomal dominant disease that results from mutations in the Solute Carrier Family 40 member 1 (SLC40A1) gene, which encodes the iron transport protein ferroportin. PATIENT CONCERNS: Here we report 2 elderly Chinese Han men, who were brothers, presented with liver cirrhosis, diabetes mellitus, skin hyperpigmentation, hyperferritinaemia as well as high transferrin saturation. DIAGNOSIS: Subsequent genetic analyses identified a heterozygous mutation (p. Cys326Tyr) in the SLC40A1 gene in both patients. INTERVENTIONS: We treated the patient with iron chelator and followed up for 3 years. OUTCOMES: Iron chelator helped to reduce the serum ferritin and improve the condition of target organs, including skin, pancreas, liver as well as pituitary. LESSONS: Type 4B HH is rare but usually tends to cause multiple organ dysfunction and even death. For those patients who have difficulty tolerating phlebotomy, iron chelator might be a good alternative.


Assuntos
Proteínas de Transporte de Cátions/deficiência , Hemocromatose/genética , Hemocromatose/terapia , Quelantes de Ferro/uso terapêutico , Mutação/genética , Idoso , Povo Asiático/genética , Proteínas de Transporte de Cátions/genética , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA