Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
PLoS One ; 17(8): e0268269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36026508

RESUMO

Antimalarial drug resistance has thrown a spanner in the works of malaria elimination. New drugs are required for ancillary support of existing malaria control efforts. Plasmodium falciparum requires host glucose for survival and proliferation. On this basis, P. falciparum hexose transporter 1 (PfHT1) protein involved in hexose permeation is considered a potential drug target. In this study, we tested the antimalarial activity of some compounds against PfHT1 using computational techniques. We performed high throughput virtual screening of 21,352 small-molecule compounds against PfHT1. The stability of the lead compound complexes was evaluated via molecular dynamics (MD) simulation for 100 nanoseconds. We also investigated the pharmacodynamic, pharmacokinetic and physiological characteristics of the compounds in accordance with Lipinksi rules for drug-likeness to bind and inhibit PfHT1. Molecular docking and free binding energy analyses were carried out using Molecular Mechanics with Generalized Born and Surface Area (MMGBSA) solvation to determine the selectivity of the hit compounds for PfHT1 over the human glucose transporter (hGLUT1) orthologue. Five important PfHT1 inhibitors were identified: Hyperoside (CID5281643); avicularin (CID5490064); sylibin (CID5213); harpagoside (CID5481542) and quercetagetin (CID5281680). The compounds formed intermolecular interaction with the binding pocket of the PfHT1 target via conserved amino acid residues (Val314, Gly183, Thr49, Asn52, Gly183, Ser315, Ser317, and Asn48). The MMGBSA analysis of the complexes yielded high free binding energies. Four (CID5281643, CID5490064, CID5213, and CID5481542) of the identified compounds were found to be stable within the PfHT1 binding pocket throughout the 100 nanoseconds simulation run time. The four compounds demonstrated higher affinity for PfHT1 than the human major glucose transporter (hGLUT1). This investigation demonstrates the inhibition potential of sylibin, hyperoside, harpagoside, and avicularin against PfHT1 receptor. Robust preclinical investigations are required to validate the chemotherapeutic properties of the identified compounds.


Assuntos
Antimaláricos , Malária Falciparum , Proteínas de Transporte de Monossacarídeos , Plasmodium falciparum , Proteínas de Protozoários , Antimaláricos/farmacologia , Proteínas Facilitadoras de Transporte de Glucose , Humanos , Malária Falciparum/tratamento farmacológico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Ligação Proteica , Proteínas de Protozoários/antagonistas & inibidores
2.
PLoS One ; 16(9): e0255470, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34499670

RESUMO

TBR225 is one of the most popular commercial rice varieties in Northern Vietnam. However, this variety is highly susceptible to bacterial leaf blight (BLB), a disease caused by Xanthomonas oryzae pv. oryzae (Xoo) which can lead to important yield losses. OsSWEET14 belongs to the SWEET gene family that encodes sugar transporters. Together with other Clade III members, it behaves as a susceptibility (S) gene whose induction by Asian Xoo Transcription-Activator-Like Effectors (TALEs) is absolutely necessary for disease. In this study, we sought to introduce BLB resistance in the TBR225 elite variety. First, two Vietnamese Xoo strains were shown to up-regulate OsSWEET14 upon TBR225 infection. To investigate if this induction is connected with disease susceptibility, nine TBR225 mutant lines with mutations in the AvrXa7, PthXo3 or TalF TALEs DNA target sequences of the OsSWEET14 promoter were obtained using the CRISPR/Cas9 editing system. Genotyping analysis of T0 and T1 individuals showed that mutations were stably inherited. None of the examined agronomic traits of three transgene-free T2 edited lines were significantly different from those of wild-type TBR225. Importantly, one of these T2 lines, harboring the largest homozygous 6-bp deletion, displayed decreased OsSWEET14 expression as well as a significantly reduced susceptibility to a Vietnamese Xoo strains and complete resistance to another one. Our findings indicate that CRISPR/Cas9 editing conferred an improved BLB resistance to a Vietnamese commercial elite rice variety.


Assuntos
Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Oryza/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Xanthomonas/fisiologia , Sistemas CRISPR-Cas , Resistência à Doença/genética , Suscetibilidade a Doenças , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutação , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética
3.
J Med Chem ; 64(7): 3885-3896, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33775096

RESUMO

Quinacrine (QC) and chloroquine (CQ) have antimicrobial and antiviral activities as well as antimalarial activity, although the mechanisms remain unknown. QC increased the antimicrobial activity against yeast exponentially with a pH-dependent increase in the cationic amphiphilic drug (CAD) structure. CAD-QC localized in the yeast membranes and induced glucose starvation by noncompetitively inhibiting glucose uptake as antipsychotic chlorpromazine (CPZ) did. An exponential increase in antimicrobial activity with pH-dependent CAD formation was also observed for CQ, indicating that the CAD structure is crucial for its pharmacological activity. A decrease in CAD structure with a slight decrease in pH from 7.4 greatly reduced their effects; namely, these drugs would inefficiently act on falciparum malaria and COVID-19 pneumonia patients with acidosis, resulting in resistance. The decrease in CAD structure at physiological pH was not observed for quinine, primaquine, or mefloquine. Therefore, restoring the normal blood pH or using pH-insensitive quinoline drugs might be effective for these infectious diseases with acidosis.


Assuntos
Antifúngicos/farmacologia , Cloroquina/farmacologia , Quinacrina/farmacologia , Tensoativos/farmacologia , Antifúngicos/química , Antifúngicos/metabolismo , Membrana Celular/metabolismo , Cloroquina/química , Cloroquina/metabolismo , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Prótons , Quinacrina/química , Quinacrina/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Tensoativos/química , Tensoativos/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33402433

RESUMO

Artemisinin-resistant malaria parasites have emerged and have been spreading, posing a significant public health challenge. Antimalarial drugs with novel mechanisms of action are therefore urgently needed. In this report, we exploit a "selective starvation" strategy by inhibiting Plasmodium falciparum hexose transporter 1 (PfHT1), the sole hexose transporter in P. falciparum, over human glucose transporter 1 (hGLUT1), providing an alternative approach to fight against multidrug-resistant malaria parasites. The crystal structure of hGLUT3, which shares 80% sequence similarity with hGLUT1, was resolved in complex with C3361, a moderate PfHT1-specific inhibitor, at 2.3-Å resolution. Structural comparison between the present hGLUT3-C3361 and our previously reported PfHT1-C3361 confirmed the unique inhibitor binding-induced pocket in PfHT1. We then designed small molecules to simultaneously block the orthosteric and allosteric pockets of PfHT1. Through extensive structure-activity relationship studies, the TH-PF series was identified to selectively inhibit PfHT1 over hGLUT1 and potent against multiple strains of the blood-stage P. falciparum Our findings shed light on the next-generation chemotherapeutics with a paradigm-shifting structure-based design strategy to simultaneously target the orthosteric and allosteric sites of a transporter.


Assuntos
Antimaláricos/química , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 3/ultraestrutura , Malária Falciparum/tratamento farmacológico , Proteínas de Transporte de Monossacarídeos/ultraestrutura , Proteínas de Protozoários/ultraestrutura , Sítio Alostérico , Sequência de Aminoácidos/genética , Animais , Cristalografia por Raios X , Glucose/metabolismo , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/química , Transportador de Glucose Tipo 3/química , Malária Falciparum/genética , Malária Falciparum/parasitologia , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/genética , Plasmodium falciparum/química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Conformação Proteica/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Relação Estrutura-Atividade
5.
Biol Pharm Bull ; 43(11): 1653-1659, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32863294

RESUMO

Hyperuricemia is mainly the result of relative underexcretion of urate. Urate is mainly eliminated by kidney and several important transporters expressed on the membrane of renal tubular cells involved in urate excretion. Olsalazine sodium was screened from 3167 authorized small compounds/drugs, targeting xanthine oxidoreductase. In previous study, we reported that olsalazine sodium significantly reduced the serum urate levels, and the anti-hyperuricemic activity linked with inhibiting urate formation by reducing the activity of xanthine oxidoreductase. The current research aimed to assess olsalazine sodium renal urate excretion and likely molecular mechanism. The results showed that administration of olsalazine sodium 5.0 mg/kg decreased the levels of serum urate in hyperuricemic rats, and noticeably improved the fractional excretion of urate and urate clearance, exhibiting an uricosuric action. Moreover, olsalazine sodium (2.5, 5.0, 10.0 mg/kg) reduced the level of blood urea nitrogen in rats. Further study showed that olsalazine sodium reduced the mRNA expression of urate reabsorptive transporter glucose transporter 9 (GLUT9), increased the mRNA expression of urate secretory transporters, organic anion transporter 1 (OAT1), OAT3 and type 1 sodium-dependent phosphate transporter (NPT1) as well as the protein expression of OAT3 in the kidney in hyperuricemic mice. In conclusion, olsalazine sodium exhibited a promotion of urate excretion in kidney by increasing the expression of OAT3.


Assuntos
Ácidos Aminossalicílicos/farmacologia , Hiperuricemia/tratamento farmacológico , Transportadores de Ânions Orgânicos Sódio-Independentes/agonistas , Eliminação Renal/efeitos dos fármacos , Ácido Úrico/metabolismo , Ácidos Aminossalicílicos/uso terapêutico , Animais , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Creatinina/urina , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Hiperuricemia/sangue , Hiperuricemia/fisiopatologia , Hiperuricemia/urina , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/fisiopatologia , Masculino , Camundongos , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/agonistas , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Ratos , Ratos Sprague-Dawley , Eliminação Renal/fisiologia , Reabsorção Renal/efeitos dos fármacos , Reabsorção Renal/fisiologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo I/agonistas , Proteínas Cotransportadoras de Sódio-Fosfato Tipo I/metabolismo , Ácido Úrico/sangue , Ácido Úrico/urina
6.
Eur J Pharmacol ; 888: 173490, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32827538

RESUMO

Increasing evidence shows that the intestinal tract plays an important role in maintaining urate homeostasis and might be a potential therapeutic target for hyperuricaemia. However, uric acid-lowering drugs available in the clinic do not target intestinal excretion as a therapeutic strategy. We previously reported that mangiferin had potent hypouricaemic effects in hyperuricaemic animals. However, the underlying mechanisms are not completely clear. Here, we investigated the effects of mangiferin on the intestinal excretion of urate and its underlying mechanisms. The data revealed that mangiferin concentration-dependently promoted the intestinal secretion of endogenous urate in in situ intestinal closed loops in normal and hyperuricaemic mice, as well as inhibited the absorption of exogenous uric acid perfused into the intestinal loops in rats. Administration of mangiferin not only decreased the serum urate levels in the hyperuricaemic mice but also increased the protein expression of ATP-binding cassette transporter, subfamily G, member 2 (ABCG2) and inhibited the protein expression of glucose transporter 9 (GLUT 9) in the intestine. These findings suggested that intestinal ABCG2 and GLUT9 might be pivotal and possible action sites for the observed hypouricaemic effects. Moreover, no significant changes in intestinal xanthine oxidoreductase activities were observed, suggesting that mangiferin did not affect intestinal uric acid generation in the hyperuricaemic mice. Overall, promoting intestinal elimination of urate by upregulating ABCG2 expression and downregulating GLUT9 expression might be an important mechanism underlying mangiferin lowering serum uric acid levels. Mangiferin supplementation might be beneficial for the prevention and treatment of hyperuricaemia.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/biossíntese , Eliminação Intestinal/efeitos dos fármacos , Proteínas de Transporte de Monossacarídeos/biossíntese , Ácido Úrico/metabolismo , Xantonas/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/agonistas , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Eliminação Intestinal/fisiologia , Masculino , Camundongos , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Xantonas/uso terapêutico
7.
Lett Appl Microbiol ; 69(3): 161-167, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31267555

RESUMO

Efflux-mediated multidrug resistance is a well-known phenomenon facilitated by multidrug resistant (MDR) transporters. One of the approaches to counteract efflux-mediated resistance is the use of MDR pump inhibitors, and thus be used in combination with the conventional antibiotics to treat deadly diseases like typhoid fever. We have previously reported that STY4874, an efflux transporter of Salmonella serotype Typhi, exhibited promising characteristics as MDR pump. In this study, we aimed to get an insight into possible STY4874 inhibitors of plant origin. STY4874 was overexpressed in Escherichia coli and extracts from pomegranate peel, milk thistle seeds and reserpine, a synthetic plant alkaloid, were screened for inhibition of ciprofloxacin efflux. The extracts of milk thistle seeds and reserpine when incubated with ciprofloxacin showed statistically significant STY4874-mediated inhibitory activity, rendering the efflux pump inactive and hence early growth inhibition of host cells compared with cells expressing efflux pump and incubated only with ciprofloxacin. This efflux pump inhibitory activity was further confirmed by time-kill experiments. This study is the first to report on efflux pump inhibition of S. Typhi STY4874 and results can be extended towards its close homologues such as MdfA and MdtM from E. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: Understanding and combating resistance governed by multidrug efflux transporters is an ongoing research intensive area, affecting treatment of various nosocomial and endemic/epidemic infections. Confronting drug resistance requires that inhibitors debilitating the underlying mechanisms should be included in combination therapy. One such example is the prescription of clavulanic acid as combination therapy with amoxicillin, collectively called as co-amoxiclav to combat ß-lactamase-mediated resistance. However, research related to finding the inhibitors of efflux transporters, the resistance mechanism distinct from ß-lactamase mediated resistance is at an early stage. The current study finds that plant-derived inhibitors can be an option towards restraining efflux-mediated resistance.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Extratos Vegetais/farmacologia , Reserpina/farmacologia , Salmonella typhi/efeitos dos fármacos , Silybum marianum/química , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli , Testes de Sensibilidade Microbiana
8.
PLoS One ; 14(5): e0216457, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31071153

RESUMO

Although the Plasmodium falciparum hexose transporter PfHT has emerged as a promising target for anti-malarial therapy, previously identified small-molecule inhibitors have lacked promising drug-like structural features necessary for development as clinical therapeutics. Taking advantage of emerging insight into structure/function relationships in homologous facilitative hexose transporters and our novel high throughput screening platform, we investigated the ability of compounds satisfying Lipinksi rules for drug likeness to directly interact and inhibit PfHT. The Maybridge HitFinder chemical library was interrogated by searching for compounds that reduce intracellular glucose by >40% at 10 µM. Testing of initial hits via measurement of 2-deoxyglucose (2-DG) uptake in PfHT over-expressing cell lines identified 6 structurally unique glucose transport inhibitors. WU-1 (3-(2,6-dichlorophenyl)-5-methyl-N-[2-(4-methylbenzenesulfonyl)ethyl]-1,2-oxazole-4-carboxamide) blocked 2-DG uptake (IC50 = 5.8 ± 0.6 µM) with minimal effect on the human orthologue class I (GLUTs 1-4), class II (GLUT8) and class III (GLUT5) facilitative glucose transporters. WU-1 showed comparable potency in blocking 2-DG uptake in freed parasites and inhibiting parasite growth, with an IC50 of 6.1 ± 0.8 µM and EC50 of 5.5 ± 0.6 µM, respectively. WU-1 also directly competed for N-[2-[2-[2-[(N-biotinylcaproylamino)ethoxy)ethoxyl]-4-[2-(trifluoromethyl)-3H-diazirin-3-yl]benzoyl]-1,3-bis(mannopyranosyl-4-yloxy)-2-propylamine (ATB-BMPA) binding and inhibited the transport of D-glucose with an IC50 of 5.9 ± 0.8 µM in liposomes containing purified PfHT. Kinetic analysis revealed that WU-1 acts as a non-competitive inhibitor of zero-trans D-fructose uptake. Decreased potency for WU-1 and the known endofacial ligand cytochalasin B was observed when PfHT was engineered to contain an N-terminal FLAG tag. This modification resulted in a concomitant increase in affinity for 4,6-O-ethylidene-α-D-glucose, an exofacially directed transport antagonist, but did not alter the Km for 2-DG. Taken together, these data are consistent with a model in which WU-1 binds preferentially to the transporter in an inward open conformation and support the feasibility of developing potent and selective PfHT antagonists as a novel class of anti-malarial drugs.


Assuntos
Antimaláricos , Proteínas de Transporte de Monossacarídeos , Plasmodium falciparum/metabolismo , Proteínas de Protozoários , Antimaláricos/química , Antimaláricos/farmacologia , Transporte Biológico Ativo/efeitos dos fármacos , Glucose/metabolismo , Células HEK293 , Humanos , Ligantes , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Engenharia de Proteínas , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Bibliotecas de Moléculas Pequenas
9.
Mol Nutr Food Res ; 63(12): e1801402, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30913372

RESUMO

SCOPE: Conjugated linoleic acid (CLA), a bioactive substance predominantly found in ruminant products, improves insulin resistance and exhibits anti-inflammatory activity. The chief objective of the study is to investigate the effects and potential mechanisms of CLA on high fructose-induced hyperuricemia and renal inflammation. METHODS AND RESULTS: Hyperuricemia and renal inflammation are induced in rats by 10% fructose. Hyperuricemia, insulin resistance, and renal inflammation are evaluated. CLA potently ameliorates fructose-induced hyperuricemia with insulin resistance and significantly reduces the levels of inflammation factors in serum and kidney. It reverses fructose-induced upregulation of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1) in the kidney. Moreover, CLA dramatically inhibits the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. Additionally, CLA suppresses toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling activation to inhibit nuclear factor-kB (NF-kB) signaling in the kidney of fructose-fed rats. CONCLUSION: CLA ameliorates hyperuricemia along with insulin resistance and renal inflammatory, which may be associated with the suppression of renal GLUT9 and URAT1 in fructose-fed rats. Its molecular mechanism may be related to the inhibition of NLRP3 inflammasome and TLR4/MyD88 signaling pathway. Therefore, CLA may be a promising candidate for preventing fructose-induced hyperuricemia and renal inflammation.


Assuntos
Frutose/administração & dosagem , Hiperuricemia/tratamento farmacológico , Inflamassomos/fisiologia , Inflamação/tratamento farmacológico , Rim/efeitos dos fármacos , Ácidos Linoleicos Conjugados/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Receptor 4 Toll-Like/fisiologia , Animais , Proteínas de Transporte de Ânions/antagonistas & inibidores , Ácidos Linoleicos Conjugados/uso terapêutico , Masculino , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
10.
Glycobiology ; 29(6): 490-503, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30834435

RESUMO

SLC35A2 transports UDP-galactose from the cytosol to the lumen of the Golgi apparatus and endoplasmic reticulum for glycosylation. Mutations in SLC35A2 induce a congenital disorder of glycosylation. Despite the biomedical relevance, mechanisms of transport via SLC35A2 and the impact of disease-associated mutations on activity are unclear. To address these issues, we generated a predicted structure of SLC35A2 and assayed for the effects of a set of structural and disease-associated mutations. Activity assays were performed using a rescue approach in ΔSLC35A2 cells and took advantage of the fact that SLC35A2 is required for expression of the glycosphingolipid globotriaosylceramide (Gb3), the cell surface receptor for Shiga toxin 1 (STx1) and 2 (STx2). The N- and C-terminal cytoplasmic loops of SLC35A2 were dispensable for activity, but two critical glycine (Gly-202 and Gly-214) and lysine (Lys-78 and Lys-297) residues in transmembrane segments were required. Residues corresponding to Gly-202 and Gly-214 in the related transporter SLC35A1 form a substrate-translocating channel, suggesting that a similar mechanism may be involved in SLC35A2. Among the eight disease-associated mutations tested, SLC35A2 function was completely inhibited by two (S213F and G282R) and partially inhibited by three (R55L, G266V, and S304P), providing a straight-forward mechanism of disease. Interestingly, the remaining three (V331I, V258M, and Y267C) did not impact SLC35A2 function, suggesting that complexities beyond loss of transporter activity may underlie disease due to these mutations. Overall, our results provide new insights into the mechanisms of transport of SLC35A2 and improve understanding of the relationship between SLC35A2 mutations and disease.


Assuntos
Bioensaio , Proteínas de Transporte de Monossacarídeos/metabolismo , Toxina Shiga I/metabolismo , Toxina Shiga II/metabolismo , Bactérias/química , Sítios de Ligação , Humanos , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Toxina Shiga I/genética , Toxina Shiga II/genética
11.
Molecules ; 23(10)2018 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-30301205

RESUMO

The intestinal absorption of fatty acids, glucose and fructose is part of the basic requirements for the provision of energy in the body. High access of saturated longchain fatty acids (LCFA), glucose and fructose can facilitate the development of metabolic diseases, particularly the metabolic syndrome and type-2 diabetes mellitus (T2DM). Research has been done to find substances which decelerate or inhibit intestinal resorption of these specific food components. Promising targets are the inhibition of intestinal long-chain fatty acid (FATP2, FATP4), glucose (SGLT1, GLUT2) and fructose (GLUT2, GLUT5) transporters by plant extracts and by pure substances. The largest part of active components in plant extracts belongs to the group of polyphenols. This review summarizes the knowledge about binding sites of named transporters and lists the plant extracts which were tested in Caco-2 cells regarding uptake inhibition.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácidos Graxos/farmacologia , Intestinos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Células CACO-2 , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Ácidos Graxos/metabolismo , Frutose/metabolismo , Glucose/metabolismo , Humanos , Absorção Intestinal/efeitos dos fármacos , Intestinos/patologia , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/genética , Polifenóis/química , Polifenóis/farmacologia
12.
Methods Mol Biol ; 1713: 123-135, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29218522

RESUMO

As the simplest eukaryotic model system, the unicellular yeast Saccharomyces cerevisiae is ideally suited for quick and simple functional studies as well as for high-throughput screening. We generated a strain deficient for all endogenous hexose transporters, which has been successfully used to clone, characterize, and engineer carbohydrate transporters from different source organisms. Here we present basic protocols for handling this strain and characterizing sugar transporters heterologously expressed in it.


Assuntos
Bioensaio , Proteínas de Transporte de Monossacarídeos/metabolismo , Açúcares/metabolismo , Transporte Biológico/efeitos dos fármacos , Clonagem Molecular , Descoberta de Drogas/métodos , Expressão Gênica , Teste de Complementação Genética , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
13.
Diabetes ; 67(2): 265-277, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29180353

RESUMO

Mitophagy is a cellular quality-control pathway, which is essential for elimination of unhealthy mitochondria. While mitophagy is critical to pancreatic ß-cell function, the posttranslational signals governing ß-cell mitochondrial turnover are unknown. Here, we report that ubiquitination is essential for the assembly of a mitophagy regulatory complex, comprised of the E3 ligase Nrdp1, the deubiquitinase enzyme USP8, and Clec16a, a mediator of ß-cell mitophagy with unclear function. We discover that the diabetes gene Clec16a encodes an E3 ligase, which promotes nondegradative ubiquitin conjugates to direct its mitophagy effectors and stabilize the Clec16a-Nrdp1-USP8 complex. Inhibition of the Clec16a pathway by the chemotherapeutic lenalidomide, a selective ubiquitin ligase inhibitor associated with new-onset diabetes, impairs ß-cell mitophagy, oxygen consumption, and insulin secretion. Indeed, patients treated with lenalidomide develop compromised ß-cell function. Moreover, the ß-cell Clec16a-Nrdp1-USP8 mitophagy complex is destabilized and dysfunctional after lenalidomide treatment as well as after glucolipotoxic stress. Thus, the Clec16a-Nrdp1-USP8 complex relies on ubiquitin signals to promote mitophagy and maintain mitochondrial quality control necessary for optimal ß-cell function.


Assuntos
Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células Secretoras de Insulina/metabolismo , Lectinas Tipo C/metabolismo , Mitofagia , Proteínas de Transporte de Monossacarídeos/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Cruzamentos Genéticos , Endopeptidases/química , Endopeptidases/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/antagonistas & inibidores , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Inibidores Enzimáticos/farmacologia , Glucose/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/química , Lectinas Tipo C/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitofagia/efeitos dos fármacos , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Multimerização Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Bancos de Tecidos , Técnicas de Cultura de Tecidos , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/genética , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/efeitos dos fármacos
14.
Glycoconj J ; 34(3): 411-420, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27744520

RESUMO

Proteoglycans and glycosaminoglycans modulate numerous cellular processes relevant to tumour progression, including cell proliferation, cell-matrix interactions, cell motility and invasive growth. Among the glycosaminoglycans with a well-documented role in tumour progression are heparan sulphate, chondroitin/dermatan sulphate and hyaluronic acid/hyaluronan. While the mode of biosynthesis differs for sulphated glycosaminoglycans, which are synthesised in the ER and Golgi compartments, and hyaluronan, which is synthesized at the plasma membrane, these polysaccharides partially compete for common substrates. In this study, we employed a siRNA knockdown approach for heparan sulphate (EXT1) and heparan/chondroitin/dermatan sulphate-biosynthetic enzymes (ß4GalT7) in the aggressive human breast cancer cell line MDA-MB-231 to study the impact on cell behaviour and hyaluronan biosynthesis. Knockdown of ß4GalT7 expression resulted in a decrease in cell viability, motility and adhesion to fibronectin, while these parameters were unchanged in EXT1-silenced cells. Importantly, these changes were associated with a decreased expression of syndecan-1, decreased signalling response to HGF and an increase in the synthesis of hyaluronan, due to an upregulation of the hyaluronan synthases HAS2 and HAS3. Interestingly, EXT1-depleted cells showed a downregulation of the UDP-sugar transporter SLC35D1, whereas SLC35D2 was downregulated in ß4GalT7-depleted cells, indicating an intricate regulatory network that connects all glycosaminoglycans synthesis. The results of our in vitro study suggest that a modulation of breast cancer cell behaviour via interference with heparan sulphate biosynthesis may result in a compensatory upregulation of hyaluronan biosynthesis. These findings have important implications for the development of glycosaminoglycan-targeted therapeutic approaches for malignant diseases.


Assuntos
Sulfatos de Condroitina/biossíntese , Dermatan Sulfato/análogos & derivados , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Heparitina Sulfato/biossíntese , Ácido Hialurônico/biossíntese , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Sulfatos de Condroitina/antagonistas & inibidores , Sulfatos de Condroitina/genética , Dermatan Sulfato/antagonistas & inibidores , Dermatan Sulfato/biossíntese , Dermatan Sulfato/genética , Células Epiteliais/patologia , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Heparitina Sulfato/antagonistas & inibidores , Heparitina Sulfato/genética , Humanos , Hialuronan Sintases/antagonistas & inibidores , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Ácido Hialurônico/antagonistas & inibidores , Ácido Hialurônico/genética , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , N-Acetil-Lactosamina Sintase/antagonistas & inibidores , N-Acetil-Lactosamina Sintase/genética , N-Acetil-Lactosamina Sintase/metabolismo , Proteínas de Transporte de Nucleotídeos/antagonistas & inibidores , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
15.
Antimicrob Agents Chemother ; 60(12): 7407-7414, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27736766

RESUMO

The glucose transporter PfHT is essential to the survival of the malaria parasite Plasmodium falciparum and has been shown to be a druggable target with high potential for pharmacological intervention. Identification of compounds against novel drug targets is crucial to combating resistance against current therapeutics. Here, we describe the development of a cell-based assay system readily adaptable to high-throughput screening that directly measures compound effects on PfHT-mediated glucose transport. Intracellular glucose concentrations are detected using a genetically encoded fluorescence resonance energy transfer (FRET)-based glucose sensor. This allows assessment of the ability of small molecules to inhibit glucose uptake with high accuracy (Z' factor of >0.8), thereby eliminating the need for radiolabeled substrates. Furthermore, we have adapted this assay to counterscreen PfHT hits against the human orthologues GLUT1, -2, -3, and -4. We report the identification of several hits after screening the Medicines for Malaria Venture (MMV) Malaria Box, a library of 400 compounds known to inhibit erythrocytic development of P. falciparum Hit compounds were characterized by determining the half-maximal inhibitory concentration (IC50) for the uptake of radiolabeled glucose into isolated P. falciparum parasites. One of our hits, compound MMV009085, shows high potency and orthologue selectivity, thereby successfully validating our assay for antimalarial screening.


Assuntos
Antimaláricos/farmacologia , Transferência Ressonante de Energia de Fluorescência/métodos , Glucose/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Antimaláricos/química , Células Cultivadas , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Expressão Gênica , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Células HEK293 , Humanos , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Bibliotecas de Moléculas Pequenas/química , Especificidade da Espécie , Relação Estrutura-Atividade , Trítio
16.
J Mol Graph Model ; 66: 174-86, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27131282

RESUMO

Malaria is the most prevalent parasitic disease in the world. Currently, an effective vaccine for malaria does not exist, and chemotherapy must be used to treat the disease. Because of increasing resistance to current antimalarial drugs, new treatments must be developed. Among the many potential molecular targets, the hexose transporter of Plasmodium falciparum (PfHT) is particularly promising because it plays a vital role in glucose transport for the parasite. Thus, this study aims to determine the three-dimensional structure of PfHT and to describe the intermolecular interactions between active glycoside derivatives and PfHT. Such information should aid in the development of new antimalarial drugs. The receptor PfHT was constructed from primary sequences deposited in the SWISS MODEL database. Next, molecular docking simulations between O-(undec-10-en)-l-D-glucose and the constructed active site models were performed using Autodock Vina. The glycoside derivative-PfHT complexes were then refined using the hybrid QM/MM (PM3/ff03) method within the AMBER package. The models were then evaluated using Ramachandran plots, which indicated that 93.2% of the residues in the refined PfHT models (P5) were present in favorable regions. Furthermore, graphical plots using ANOLEA showed that the potential energies of interaction for atoms unbonded to P5 were negative. Finally, the O-(undec-10-en)-l-D-glucose-PfHT complex was evaluated using 20-ns Molecular Dynamics simulations with an ff03 force field. Docking and QM/MM studies revealed the amino acids essential for molecular recognition of and activity on glycosides. Inhibition of glucose transporters may prevent the development and metabolism of P. falciparum, so a description of the receptor's structure is a critical step towards rational drug design.


Assuntos
Antimaláricos/química , Desenho de Fármacos , Proteínas de Transporte de Monossacarídeos/química , Plasmodium falciparum/enzimologia , Antimaláricos/uso terapêutico , Glucose/metabolismo , Humanos , Malária/tratamento farmacológico , Malária/parasitologia , Vacinas Antimaláricas/química , Vacinas Antimaláricas/uso terapêutico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Conformação Proteica
17.
Virology ; 492: 66-72, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26901486

RESUMO

BK polyomavirus (BKPyV) is a human pathogen that causes polyomavirus-associated nephropathy and hemorrhagic cystitis in transplant patients. Gangliosides and caveolin proteins have previously been reported to be required for BKPyV infection in animal cell models. Recent studies from our lab and others, however, have indicated that the identity of the cells used for infection studies can greatly influence the behavior of the virus. We therefore wished to re-examine BKPyV entry in a physiologically relevant primary cell culture model, human renal proximal tubule epithelial cells. Using siRNA knockdowns, we interfered with expression of UDP-glucose ceramide glucosyltransferase (UGCG), and the endocytic vesicle coat proteins caveolin 1, caveolin 2, and clathrin heavy chain. The results demonstrate that while BKPyV does require gangliosides for efficient infection, it can enter its natural host cells via a caveolin- and clathrin-independent pathway. The results emphasize the importance of studying viruses in a relevant cell culture model.


Assuntos
Vírus BK/efeitos dos fármacos , Caveolina 1/genética , Caveolina 2/genética , Cadeias Pesadas de Clatrina/genética , Células Epiteliais/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Vírus BK/genética , Vírus BK/metabolismo , Caveolina 1/antagonistas & inibidores , Caveolina 1/metabolismo , Caveolina 2/antagonistas & inibidores , Caveolina 2/metabolismo , Linhagem Celular , Cadeias Pesadas de Clatrina/antagonistas & inibidores , Cadeias Pesadas de Clatrina/metabolismo , Células Epiteliais/virologia , Gangliosídeo G(M1)/farmacologia , Gangliosídeos/farmacologia , Regulação da Expressão Gênica , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Internalização do Vírus/efeitos dos fármacos
18.
Genetics ; 202(3): 997-1012, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26757771

RESUMO

Action mechanisms of anesthetics remain unclear because of difficulty in explaining how structurally different anesthetics cause similar effects. In Saccharomyces cerevisiae, local anesthetics and antipsychotic phenothiazines induced responses similar to those caused by glucose starvation, and they eventually inhibited cell growth. These drugs inhibited glucose uptake, but additional glucose conferred resistance to their effects; hence, the primary action of the drugs is to cause glucose starvation. In hxt(0) strains with all hexose transporter (HXT) genes deleted, a strain harboring a single copy of HXT1 (HXT1s) was more sensitive to tetracaine than a strain harboring multiple copies (HXT1m), which indicates that quantitative reduction of HXT1 increases tetracaine sensitivity. However, additional glucose rather than the overexpression of HXT1/2 conferred tetracaine resistance to wild-type yeast; therefore, Hxts that actively transport hexoses apparently confer tetracaine resistance. Additional glucose alleviated sensitivity to local anesthetics and phenothiazines in the HXT1m strain but not the HXT1s strain; thus, the glucose-induced effects required a certain amount of Hxt1. At low concentrations, fluorescent phenothiazines were distributed in various membranes. At higher concentrations, they destroyed the membranes and thereby delocalized Hxt1-GFP from the plasma membrane, similar to local anesthetics. These results suggest that the aforementioned drugs affect various membrane targets via nonspecific interactions with membranes. However, the drugs preferentially inhibit the function of abundant Hxts, resulting in glucose starvation. When Hxts are scarce, this preference is lost, thereby mitigating the alleviation by additional glucose. These results provide a mechanism that explains how different compounds induce similar effects based on lipid theory.


Assuntos
Anestésicos Locais/farmacologia , Antipsicóticos/farmacologia , Membrana Celular/efeitos dos fármacos , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Fenotiazinas/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Meios de Cultura , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética
19.
PLoS One ; 10(11): e0141767, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528718

RESUMO

BACKGROUND: 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) interconverts active 11ß-hydroxyl glucocorticoids and inactive 11keto forms. However, its directionality is determined by availability of NADP+/NADPH. In liver cells, 11ß-HSD1 behaves as a primary reductase, while in Leydig cells it acts as a primary oxidase. However, the exact mechanism is not clear. The direction of 11ß-HSD1 has been proposed to be regulated by hexose-6-phosphate dehydrogenase (H6PDH), which catalyzes glucose-6-phosphate (G6P) to generate NADPH that drives 11ß-HSD1 towards reduction. METHODOLOGY: To examine the coupling between 11ß-HSD1 and H6PDH, we added G6P to rat and human liver and testis or Leydig cell microsomes, and 11ß-HSD1 activity was measured by radiometry. RESULTS AND CONCLUSIONS: G6P stimulated 11ß-HSD1 reductase activity in rat (3 fold) or human liver (1.5 fold), but not at all in testis. S3483, a G6P transporter inhibitor, reversed the G6P-mediated increases of 11ß-HSD1 reductase activity. We compared the extent to which 11ß-HSD1 in rat Leydig and liver cells might be coupled to H6PDH. In order to clarify the location of H6PDH within the testis, we used the Leydig cell toxicant ethane dimethanesulfonate (EDS) to selectively deplete Leydig cells. The depletion of Leydig cells eliminated Hsd11b1 (encoding 11ß-HSD1) expression but did not affect the expression of H6pd (encoding H6PDH) and Slc37a4 (encoding G6P transporter). H6pd mRNA level and H6PDH activity were barely detectable in purified rat Leydig cells. In conclusion, the availability of H6PDH determines the different direction of 11ß-HSD1 in liver and Leydig cells.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Desidrogenases de Carboidrato/metabolismo , Glucose-6-Fosfato/metabolismo , Células Intersticiais do Testículo/enzimologia , Fígado/enzimologia , Animais , Antiporters/antagonistas & inibidores , Antiporters/metabolismo , Ácidos Cicloexanocarboxílicos/farmacologia , Humanos , Células Intersticiais do Testículo/citologia , Fígado/citologia , Masculino , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/metabolismo , NADP/metabolismo , Ratos , Ratos Sprague-Dawley
20.
Antimicrob Agents Chemother ; 59(10): 6203-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26248369

RESUMO

Malaria and HIV infection are coendemic in a large portion of the world and remain a major cause of morbidity and mortality. Growing resistance of Plasmodium species to existing therapies has increased the need for new therapeutic approaches. The Plasmodium glucose transporter PfHT is known to be essential for parasite growth and survival. We have previously shown that HIV protease inhibitors (PIs) act as antagonists of mammalian glucose transporters. While the PI lopinavir is known to have antimalarial activity, the mechanism of action is unknown. We report here that lopinavir blocks glucose uptake into isolated malaria parasites at therapeutically relevant drug levels. Malaria parasites depend on a constant supply of glucose as their primary source of energy, and decreasing the available concentration of glucose leads to parasite death. We identified the malarial glucose transporter PfHT as a target for inhibition by lopinavir that leads to parasite death. This discovery provides a mechanistic basis for the antimalarial effect of lopinavir and provides a direct target for novel drug design with utility beyond the HIV-infected population.


Assuntos
Glucose/antagonistas & inibidores , Inibidores da Protease de HIV/farmacologia , Lopinavir/farmacologia , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Antimaláricos/química , Antimaláricos/farmacologia , Transporte Biológico , Reposicionamento de Medicamentos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Expressão Gênica , Glucose/metabolismo , Células HEK293 , Inibidores da Protease de HIV/química , Humanos , Concentração Inibidora 50 , Lopinavir/química , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA