Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Plant Physiol Biochem ; 212: 108778, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838570

RESUMO

The albino tea cultivar is one of the most important germplasms for key gene mining and high-quality tea producing. In order to elucidate the chlorophyll-deficient mechanism of albino cultivar 'Huangjinya' and its offspring, color difference, photosynthetic pigments and the relevant genes' expression of the tender shoots were comprehensively investigated in this study. Among the tested 16 offspring, 5 exhibited albino phenotype in spring and autumn, 3 showed albino phenotype in spring but normal green in autumn, while the rests were all normal green. The shoot of albino offspring had significantly higher lightness and/or yellowness than that of green ones, and possessed dramatically lower photosynthetic pigments and chlorophyll precursor protochlorophyllide (Pchlide), as well as higher chlorophyll a/chlorophyll b but lower chlorophylls/carotenoids in comparison with green ones. Among the tested genes involved in chlorophyll and carotenoid metabolism pathways, expression of the magnesium protoporphyrin IX monomethyl ester cyclase (CRD), 3,8-divinyl chlorophyllide 8-vinyl reductase (DVR), 5-aminolevulinate dehydratase 1 (HEMB1), 1-deoxy-D-xylulose 5-phosphate synthase 1 (DXS1) and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (ISPH) was remarkably down-regulated in shoots of the albino offspring. Color difference indices of the offspring were significantly correlated with the levels of photosynthetic pigments and Pchlide, and low level of chlorophylls in shoot of albino offspring was mainly due to conversion obstacle from magnesium protoporphyrin Ⅸ (Mg-Proto IX) to Pchlide which might be attributed to down-regulatory expression of CRD and DVR.


Assuntos
Clorofila , Fenótipo , Protoclorifilida , Protoporfirinas , Clorofila/metabolismo , Protoclorifilida/metabolismo , Protoporfirinas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fotossíntese
2.
J Vis Exp ; (203)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38284522

RESUMO

Chlorophyll biosynthesis is a hallmark of de-etiolation, one of the most dramatic stages in the plant life cycle. The tightly controlled and highly dynamic process of chlorophyll biosynthesis is triggered during the shift from the dark to the light in flowering plants. At the moment when etiolated seedlings are exposed to the first traces of sunlight, rapid (in order of seconds) conversion of protochlorophyllide into chlorophyllide is mediated by unique light-accepting protein complexes, leading via subsequent metabolic steps to the production of fully functional chlorophyll. Standard techniques for chlorophyll content analysis include pigment extraction from detached plant tissues, which does not apply to studying such fast processes. To investigate chlorophyll kinetics in vivo with high accuracy and spatiotemporal resolution in the first hours after light-induced de-etiolation, an instrument and protocol were developed. Here, we present a detailed procedure designed for statistically robust quantification of chlorophyll in the early stages of Arabidopsis de-etiolation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Luz , Estiolamento , Clorofila/metabolismo , Protoclorifilida/metabolismo , Plântula , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
3.
J Exp Bot ; 75(7): 2027-2045, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38070484

RESUMO

The biosynthesis of the tetrapyrrole end-products chlorophyll and heme depends on a multifaceted control mechanism that acts primarily at the post-translational level upon the rate-limiting step of 5-aminolevulinic acid synthesis and upon light-dependent protochlorophyllide oxidoreductase (POR). These regulatory processes require auxiliary factors that modulate the activity, stability, complex formation, and subplastidal localization of the relevant proteins. Together, they ensure optimal metabolic flow during the day and at night. As an Arabidopsis homolog of the POR-interacting tetratricopeptide-repeat protein (Pitt) first reported in Synechocystis, we characterize tetrapyrrole biosynthesis-regulating tetratricopeptide-repeat protein1 (TTP1). TTP1 is a plastid-localized, membrane-bound factor that interacts with POR, the Mg protoporphyrin monomethylester cyclase CHL27, glutamyl-tRNA reductase (GluTR), GluTR-binding protein, and FLUORESCENCE IN BLUE LIGHT. Lack of TTP1 leads to accumulation of GluTR, enhanced 5-aminolevulinic acid synthesis and lower levels of POR. Knockout mutants show enhanced sensitivity to reactive oxygen species and a slower greening of etiolated seedlings. Based on our studies, the interaction of TTP1 with GluTR and POR does not directly inhibit their enzymatic activity and contribute to the control of 5-aminolevulinic acid synthesis. Instead, we propose that TTP1 sequesters a fraction of these proteins on the thylakoid membrane, and contributes to their stability.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Protoclorifilida/metabolismo , Ácido Aminolevulínico/metabolismo , Arabidopsis/genética , Aldeído Oxirredutases/genética , Clorofila/metabolismo , Tetrapirróis/metabolismo
4.
J Agric Food Chem ; 71(30): 11654-11666, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37467369

RESUMO

Herbicide resistance is a prevalent problem that has posed a foremost challenge to crop production worldwide. Light-dependent enzyme NADPH: protochlorophyllide oxidoreductase (LPOR) in plants is a metabolic target that could satisfy this unmet demand. Herein, for the first time, we embarked on proposing a new mode of action of herbicides by performing structure-based virtual screening targeting multiple LPOR binding sites, with the determination of further bioactivity on the lead series. The feasibility of exploiting high selectivity and safety herbicides targeting LPOR was discussed from the perspective of the origin and phylogeny. Besides, we revealed the structural rearrangement and the selection key for NADPH cofactor binding to LPOR. Based on these, multitarget virtual screening was performed and the result identified compounds 2 affording micromolar inhibition, in which the IC50 reached 4.74 µM. Transcriptome analysis revealed that compound 2 induced more genes related to chlorophyll synthesis in Arabidopsis thaliana, especially the LPOR genes. Additionally, we clarified that these compounds binding to the site enhanced the overall stability and local rigidity of the complex systems from molecular dynamics simulation. This study delivers a guideline on how to assess activity-determining features of inhibitors to LPOR and how to translate this knowledge into the design of novel and effective inhibitors against malignant weed that act by targeting LPOR.


Assuntos
Herbicidas , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Protoclorifilida/metabolismo , Luz , Herbicidas/farmacologia , NADP/metabolismo , Plantas/metabolismo , Oxirredutases , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo
5.
Plant J ; 115(6): 1583-1598, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37269173

RESUMO

Protochlorophyllide oxidoreductase (POR), which converts protochlorophyllide into chlorophyllide, is the only light-dependent enzyme in chlorophyll biosynthesis. While its catalytic reaction and importance for chloroplast development are well understood, little is known about the post-translational control of PORs. Here, we show that cpSRP43 and cpSRP54, two components of the chloroplast signal recognition particle pathway, play distinct roles in optimizing the function of PORB, the predominant POR isoform in Arabidopsis. The chaperone cpSRP43 stabilizes the enzyme and provides appropriate amounts of PORB during leaf greening and heat shock, whereas cpSRP54 enhances its binding to the thylakoid membrane, thereby ensuring adequate levels of metabolic flux in late chlorophyll biosynthesis. Furthermore, cpSRP43 and the DnaJ-like protein CHAPERONE-LIKE PROTEIN of POR1 concurrently act to stabilize PORB. Overall, these findings enhance our understanding of the coordinating role of cpSPR43 and cpSRP54 in the post-translational control of chlorophyll synthesis and assembly of photosynthetic chlorophyll-binding proteins.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Protoclorifilida/metabolismo , Cloroplastos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Arabidopsis/metabolismo , Tilacoides/metabolismo , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo
6.
New Phytol ; 239(2): 624-638, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37161708

RESUMO

During photoperiodic growth, the light-dependent nature of chlorophyll synthesis in angiosperms necessitates robust control of the production of 5-aminolevulinic acid (ALA), the rate-limiting step in the initial stage of tetrapyrrole biosynthesis (TBS). We are interested in dissecting the post-translational control of this process, which suppresses ALA synthesis for chlorophyll synthesis in dark-grown plants. Using biochemical approaches for analysis of Arabidopsis wild-type (WT) and mutant lines as well as complementation lines, we show that the heme-synthesizing ferrochelatase 2 (FC2) interacts with protochlorophyllide oxidoreductase and the regulator FLU which both promote the feedback-controlled suppression of ALA synthesis by inactivation of glutamyl-tRNA reductase, thus preventing excessive accumulation of potentially deleterious tetrapyrrole intermediates. Thereby, FC2 stabilizes POR by physical interaction. When the interaction between FC2 and POR is perturbed, suppression of ALA synthesis is attenuated and photoreactive protochlorophyllide accumulates. FC2 is anchored in the thylakoid membrane via its membrane-spanning CAB (chlorophyll-a-binding) domain. FC2 is one of the two isoforms of ferrochelatase catalyzing the last step of heme synthesis. Although FC2 belongs to the heme-synthesizing branch of TBS, its interaction with POR potentiates the effects of the GluTR-inactivation complex on the chlorophyll-synthesizing branch and ensures reciprocal control of chlorophyll and heme synthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Aminolevulínico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Ferroquelatase/genética , Ferroquelatase/metabolismo , Heme/metabolismo , Protoclorifilida/metabolismo , Tetrapirróis/metabolismo
7.
Nature ; 606(7914): 565-569, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35650430

RESUMO

Flowering plants (angiosperms) can grow at extreme altitudes, and have been observed growing as high as 6,400 metres above sea level1,2; however, the molecular mechanisms that enable plant adaptation specifically to altitude are unknown. One distinguishing feature of increasing altitude is a reduction in the partial pressure of oxygen (pO2). Here we investigated the relationship between altitude and oxygen sensing in relation to chlorophyll biosynthesis-which requires molecular oxygen3-and hypoxia-related gene expression. We show that in etiolated seedlings of angiosperm species, steady-state levels of the phototoxic chlorophyll precursor protochlorophyllide are influenced by sensing of atmospheric oxygen concentration. In Arabidopsis thaliana, this is mediated by the PLANT CYSTEINE OXIDASE (PCO) N-degron pathway substrates GROUP VII ETHYLENE RESPONSE FACTOR transcription factors (ERFVIIs). ERFVIIs positively regulate expression of FLUORESCENT IN BLUE LIGHT (FLU), which represses the first committed step of chlorophyll biosynthesis, forming an inactivation complex with tetrapyrrole synthesis enzymes that are negatively regulated by ERFVIIs, thereby suppressing protochlorophyllide. In natural populations representing diverse angiosperm clades, we find oxygen-dependent altitudinal clines for steady-state levels of protochlorophyllide, expression of inactivation complex components and hypoxia-related genes. Finally, A. thaliana accessions from contrasting altitudes display altitude-dependent ERFVII activity and accumulation. We thus identify a mechanism for genetic adaptation to absolute altitude through alteration of the sensitivity of the oxygen-sensing system.


Assuntos
Aclimatação , Altitude , Arabidopsis , Oxigênio , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Oxigênio/metabolismo , Pressão Parcial , Protoclorifilida/metabolismo
8.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613752

RESUMO

Light-dependent protochlorophyllide oxidoreductase (LPOR) is a chlorophyll synthetase that catalyzes the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide) with indispensable roles in regulating photosynthesis processes. A recent study confirmed that thylakoid lipids (TL) were able to allosterically enhance modulator-induced LPOR activation. However, the allosteric modulation mechanism of LPOR by these compounds remains unclear. Herein, we integrated multiple computational approaches to explore the potential cavities in the Arabidopsis thaliana LPOR and an allosteric site around the helix-G region where high affinity for phosphatidyl glycerol (PG) was identified. Adopting accelerated molecular dynamics simulation for different LPOR states, we rigorously analyzed binary LPOR/PG and ternary LPOR/NADPH/PG complexes in terms of their dynamics, energetics, and attainable allosteric regulation. Our findings clarify the experimental observation of increased NADPH binding affinity for LPOR with PGs. Moreover, the simulations indicated that allosteric regulators targeting LPOR favor a mechanism involving lid opening upon binding to an allosteric hinge pocket mechanism. This understanding paves the way for designing novel LPOR activators and expanding the applications of LPOR.


Assuntos
Arabidopsis , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Protoclorifilida/metabolismo , Luz , Tilacoides/metabolismo , NADP/metabolismo , Arabidopsis/metabolismo , Oxirredutases/metabolismo , Lipídeos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Clorofila/metabolismo
9.
Biomolecules ; 11(8)2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34439782

RESUMO

Chlorophyllides can be found in photosynthetic organisms. Generally, chlorophyllides have a-, b-, c-, d-, and f-type derivatives, and all chlorophyllides have a tetrapyrrole structure with a Mg ion at the center and a fifth isocyclic pentanone. Chlorophyllide a can be synthesized from protochlorophyllide a, divinyl chlorophyllide a, or chlorophyll. In addition, chlorophyllide a can be transformed into chlorophyllide b, chlorophyllide d, or chlorophyllide f. Chlorophyllide c can be synthesized from protochlorophyllide a or divinyl protochlorophyllide a. Chlorophyllides have been extensively used in food, medicine, and pharmaceutical applications. Furthermore, chlorophyllides exhibit many biological activities, such as anti-growth, antimicrobial, antiviral, antipathogenic, and antiproliferative activity. The photosensitivity of chlorophyllides that is applied in mercury electrodes and sensors were discussed. This article is the first detailed review dedicated specifically to chlorophyllides. Thus, this review aims to describe the definition of chlorophyllides, biosynthetic routes of chlorophyllides, purification of chlorophyllides, and applications of chlorophyllides.


Assuntos
Técnicas Biossensoriais/métodos , Química Farmacêutica/métodos , Clorofila/análogos & derivados , Clorofilídeos/síntese química , Aditivos Alimentares/química , Protoclorifilida/metabolismo , Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Antineoplásicos Fitogênicos/biossíntese , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/farmacologia , Antivirais/síntese química , Antivirais/farmacologia , Técnicas Biossensoriais/instrumentação , Clorofila/biossíntese , Clorofila/farmacologia , Clorofilídeos/biossíntese , Clorofilídeos/farmacologia , Técnicas Eletroquímicas , Aditivos Alimentares/metabolismo , Humanos , Luz , Estrutura Molecular , Fotossíntese/fisiologia , Plantas/química , Plantas/metabolismo
10.
Proteins ; 89(10): 1300-1314, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34021929

RESUMO

NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR) is a key enzyme of chlorophyll biosynthesis in angiosperms. It is one of few known photoenzymes, which catalyzes the light-activated trans-reduction of the C17-C18 double bond of Pchlide's porphyrin ring. Due to the light requirement, dark-grown angiosperms cannot synthesize chlorophyll. No crystal structure of POR is available, so to improve understanding of the protein's three-dimensional structure, its dimerization, and binding of ligands (both the cofactor NADPH and substrate Pchlide), we computationally investigated the sequence and structural relationships among homologous proteins identified through database searches. The results indicate that α4 and α7 helices of monomers form the interface of POR dimers. On the basis of conserved residues, we predicted 11 functionally important amino acids that play important roles in POR binding to NADPH. Structural comparison of available crystal structures revealed that they participate in formation of binding pockets that accommodate the Pchlide ligand, and that five atoms of the closed tetrapyrrole are involved in non-bonding interactions. However, we detected no clear pattern in the physico-chemical characteristics of the amino acids they interact with. Thus, we hypothesize that interactions of these atoms in the Pchlide porphyrin ring are important to hold the ligand within the POR binding site. Analysis of Pchlide binding in POR by molecular docking and PELE simulations revealed that the orientation of the nicotinamide group is important for Pchlide binding. These findings highlight the complexity of interactions of porphyrin-containing ligands with proteins, and we suggest that fit-inducing processes play important roles in POR-Pchlide interactions.


Assuntos
NADP/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas , Protoclorifilida , Sítios de Ligação , Dimerização , Ligantes , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Protoclorifilida/química , Protoclorifilida/metabolismo
11.
Methods Mol Biol ; 2297: 95-103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33656673

RESUMO

Seedling deetiolation is a hallmark of the photomorphogenic response, and successful conversion of protochlorophyllide (Pchlide) into chlorophyllide during initial light exposure is critical for plant survival and growth. Here we describe the seedling deetiolation process of two typical mutants pif3 and flu by analysis of the cotyledons greening, Pchlide content, and reactive oxygen species (ROS) production and summarize a set of general methods for the research of seedling greening.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Protoclorifilida/metabolismo , Arabidopsis/química , Arabidopsis/genética , Clorofilídeos/metabolismo , Estiolamento , Regulação da Expressão Gênica de Plantas , Mutação , Espécies Reativas de Oxigênio/metabolismo , Plântula/química , Plântula/genética , Plântula/crescimento & desenvolvimento
12.
J Biol Chem ; 296: 100107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33219127

RESUMO

A key step in bacteriochlorophyll biosynthesis is the reduction of protochlorophyllide to chlorophyllide, catalyzed by dark-operative protochlorophyllide oxidoreductase. Dark-operative protochlorophyllide oxidoreductase contains two [4Fe-4S]-containing component proteins (BchL and BchNB) that assemble upon ATP binding to BchL to coordinate electron transfer and protochlorophyllide reduction. But the precise nature of the ATP-induced conformational changes is poorly understood. We present a crystal structure of BchL in the nucleotide-free form where a conserved, flexible region in the N-terminus masks the [4Fe-4S] cluster at the docking interface between BchL and BchNB. Amino acid substitutions in this region produce a hyperactive enzyme complex, suggesting a role for the N-terminus in autoinhibition. Hydrogen-deuterium exchange mass spectrometry shows that ATP binding to BchL produces specific conformational changes leading to release of the flexible N-terminus from the docking interface. The release also promotes changes within the local environment surrounding the [4Fe-4S] cluster and promotes BchL-complex formation with BchNB. A key patch of amino acids, Asp-Phe-Asp (the 'DFD patch'), situated at the mouth of the BchL ATP-binding pocket promotes intersubunit cross stabilization of the two subunits. A linked BchL dimer with one defective ATP-binding site does not support protochlorophyllide reduction, illustrating nucleotide binding to both subunits as a prerequisite for the intersubunit cross stabilization. The masking of the [4Fe-4S] cluster by the flexible N-terminal region and the associated inhibition of the activity is a novel mechanism of regulation in metalloproteins. Such mechanisms are possibly an adaptation to the anaerobic nature of eubacterial cells with poor tolerance for oxygen.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Trifosfato de Adenosina/química , Catálise , Proteínas Ferro-Enxofre/química , Espectrometria de Massas , Nitrogenase/química , Nitrogenase/metabolismo , Fotossíntese , Protoclorifilida/química , Protoclorifilida/metabolismo , Especificidade por Substrato
13.
Methods Mol Biol ; 2202: 63-69, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32857346

RESUMO

Since the recognition of the reactive oxygen species singlet oxygen (1O2) as a versatile signal that induces various stress responses, the mechanisms underlying 1O2-induced signaling transduction pathways have become the subject of much current research. This in turn highlights the need for reliable detection methods for 1O2. Here we describe a protocol for the detection of 1O2 using a commercially available fluorescent probe (Singlet Oxygen Sensor Green) and provide a simple method for direct visualization and quantification of the 1O2-evolving photosensitizer protochlorophyllide in the Arabidopsis fluorescent mutant.


Assuntos
Protoclorifilida/metabolismo , Análise de Célula Única/métodos , Oxigênio Singlete/análise , Arabidopsis/metabolismo , Corantes Fluorescentes/metabolismo , Luz , Oxigênio/análise , Oxigênio/metabolismo , Fármacos Fotossensibilizantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Oxigênio Singlete/metabolismo
14.
FEBS J ; 288(1): 175-189, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866986

RESUMO

Protochlorophyllide oxidoreductase (POR) catalyses reduction of protochlorophyllide (Pchlide) to chlorophyllide, a light-dependent reaction of chlorophyll biosynthesis. POR is also important in plant development as it is the main constituent of prolamellar bodies in etioplast membranes. Prolamellar bodies are highly organised, paracrystalline structures comprising aggregated oligomeric structures of POR-Pchlide-NADPH complexes. How these oligomeric structures are formed and the role of Pchlide in oligomerisation remains unclear. POR crystal structures highlight two peptide regions that form a 'lid' to the active site, and undergo conformational change on binding Pchlide. Here, we show that Pchlide binding triggers formation of large oligomers of POR using size exclusion chromatography. A POR 'octamer' has been isolated and its structure investigated by cryo-electron microscopy at 7.7 Å resolution. This structure shows that oligomer formation is most likely driven by the interaction of amino acid residues in the highly conserved lid regions. Computational modelling indicates that Pchlide binding stabilises exposure of hydrophobic surfaces formed by the lid regions, which supports POR dimerisation and ultimately oligomer formation. Studies with variant PORs demonstrate that lid residues are involved in substrate binding and photocatalysis. These highly conserved lid regions therefore have a dual function. The lid residues position Pchlide optimally to enable photocatalysis. Following Pchlide binding, they also enable POR oligomerisation - a process that is reversed through subsequent photocatalysis in the early stages of chloroplast development.


Assuntos
Clorofila/química , Clorofilídeos/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Fotossíntese/genética , Protoclorifilida/química , Sequência de Aminoácidos , Domínio Catalítico , Clorofila/biossíntese , Clorofilídeos/biossíntese , Cloroplastos/química , Cloroplastos/genética , Cloroplastos/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , NADP/química , NADP/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Plantas/enzimologia , Plantas/genética , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Protoclorifilida/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Thermosynechococcus/enzimologia , Thermosynechococcus/genética
15.
Biochem J ; 477(12): 2221-2236, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32568402

RESUMO

Light-dependent protochlorophyllide oxidoreductase (LPOR) catalyzes the reduction of protochlorophyllide to chlorophyllide, which is a key reaction for angiosperm development. Dark operative light-independent protochlorophyllide oxidoreductase (DPOR) is the other enzyme able to catalyze this reaction, however, it is not present in angiosperms. LPOR, which evolved later than DPOR, requires light to trigger the reaction. The ancestors of angiosperms lost DPOR genes and duplicated the LPORs, however, the LPOR evolution in angiosperms has not been yet investigated. In the present study, we built a phylogenetic tree using 557 nucleotide sequences of LPORs from both bacteria and plants to uncover the evolution of LPOR. The tree revealed that all modern sequences of LPOR diverged from a single sequence ∼1.36 billion years ago. The LPOR gene was then duplicated at least 10 times in angiosperms, leading to the formation of two or even more LPOR isoforms in multiple species. In the case of Arabidopsis thaliana, AtPORA and AtPORB originated in one duplication event, in contrary to the isoform AtPORC, which diverged first. We performed biochemical characterization of these isoforms in vitro, revealing differences in the lipid-driven properties. The results prone us to hypothesize that duplication events of LPOR gave rise to the isoforms having different lipid-driven activity, which may predispose them for functioning in different locations in plastids. Moreover, we showed that LPOR from Synechocystis operated in the lipid-independent manner, revealing differences between bacterial and plant LPORs. Based on the presented results, we propose a novel classification of LPOR enzymes based on their biochemical properties and phylogenetic relationships.


Assuntos
Evolução Molecular , Luz , Magnoliopsida/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Filogenia , Protoclorifilida/metabolismo , Sequência de Aminoácidos , Clorofila/metabolismo , Isoenzimas , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Conformação Proteica , Homologia de Sequência , Especificidade por Substrato
16.
PLoS One ; 15(5): e0232694, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32375166

RESUMO

Malus halliana is an iron (Fe)-efficient apple rootstock growing in calcareous soil that shows obvious 'greenness' traits during Fe deficiency. Recent studies have shown that exogenous sugars can be involved in abiotic stress. To identify the key regulatory steps of chlorophyll (Chl) biosynthesis in M. halliana under Fe deficiency and to verify whether exogenous sucrose (Suc) is involved in Fe deficiency stress, we determined the contents of the Chl precursor and the expression of several Chl biosynthetic genes in M. halliana. The results showed that Fe deficiency caused a significant increase in the contents of protoporphyrin IX (Proto IX), Mg-protoporphyrin IX (Mg-Proto IX) and protochlorophyllide (Pchlide) in M. halliana compared to the Fe-sensitive rootstock Malus hupehensis. Quantitative real-time PCR (RT-qPCR) also showed that the expression of protoporphyrinogen oxidase (PPOX), which synthesizes Proto IX, was upregulated in M. halliana and downregulated in M. hupehensis under Fe deficiency. Exogenous Suc application prominently enhanced the contents of porphobilinogen (PBG) and the subsequent precursor, whereas it decreased the level of δ-aminolaevulinic acid (ALA), suggesting that the transformation from ALA to PBG was catalyzed in M. halliana. Additionally, the transcript level of δ-aminolevulinate acid dehydratase (ALAD) was noticeably upregulated after exogenous Suc treatment. This result, combined with the precursor contents, indicated that Suc accelerated the steps of Chl biosynthesis by modulating the ALAD gene. Therefore, we conclude that PPOX is the key regulatory gene of M. halliana in response to Fe deficiency. Exogenous Suc enhances M. halliana tolerance to Fe deficiency stress by regulating Chl biosynthesis.


Assuntos
Clorofila/metabolismo , Ferro/metabolismo , Malus/metabolismo , Sacarose/metabolismo , Protoclorifilida/metabolismo , Protoporfirinas/metabolismo
17.
Proc Natl Acad Sci U S A ; 117(15): 8455-8461, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32234783

RESUMO

The reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide) is the penultimate step of chlorophyll biosynthesis. In oxygenic photosynthetic bacteria, algae, and plants, this reaction can be catalyzed by the light-dependent Pchlide oxidoreductase (LPOR), a member of the short-chain dehydrogenase superfamily sharing a conserved Rossmann fold for NAD(P)H binding and the catalytic activity. Whereas modeling and simulation approaches have been used to study the catalytic mechanism of this light-driven reaction, key details of the LPOR structure remain unclear. We determined the crystal structures of LPOR from two cyanobacteria, Synechocystis sp. PCC 6803 and Thermosynechococcus elongatus Structural analysis defines the LPOR core fold, outlines the LPOR-NADPH interaction network, identifies the residues forming the substrate cavity and the proton-relay path, and reveals the role of the LPOR-specific loop. These findings provide a basis for understanding the structure-function relationships of the light-driven Pchlide reduction.


Assuntos
Cianobactérias/enzimologia , Luz , NADP/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Protoclorifilida/metabolismo , Synechocystis/enzimologia , Catálise , Clorofila/metabolismo , Cristalografia por Raios X , Modelos Moleculares , NADP/química , Conformação Proteica , Protoclorifilida/química , Prótons , Thermosynechococcus
18.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092859

RESUMO

Rice (Oryza sativa L.) frequently suffers in late spring from severe damage due to cold spells, which causes the block of chlorophyll biosynthesis during early rice seedling greening. However, the inhibitory mechanism by which this occurs is still unclear. To explore the responsive mechanism of rice seedlings to low temperatures during greening, the effects of chilling stress on chlorophyll biosynthesis and plastid development were studied in rice seedlings. Chlorophyll biosynthesis was obviously inhibited and chlorophyll accumulation declined under low temperatures during greening. The decrease in chlorophyll synthesis was due to the inhibited synthesis of δ-aminolevulinic acid (ALA) and the suppression of conversion from protochlorophyllide (Pchlide) into chlorophylls (Chls). Meanwhile, the activities of glutamate-1-semialdehyde transaminase (GSA-AT), Mg-chelatase, and protochlorophyllide oxidoreductase (POR) were downregulated under low temperatures. Further investigations showed that chloroplasts at 18 °C had loose granum lamellae, while the thylakoid and lamellar structures of grana could hardly develop at 12 °C after 48 h of greening. Additionally, photosystem II (PSII) and photosystem I (PSI) proteins obviously declined in the stressed seedlings, to the point that the PSII and PSI proteins could hardly be detected after 48 h of greening at 12 °C. Furthermore, the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) and cell death were all induced by low temperature. Chilling stress had no effect on the development of epidermis cells, but the stomata were smaller under chilling stress than those at 28 °C. Taken together, our study promotes more comprehensive understanding in that chilling could inhibit chlorophyll biosynthesis and cause oxidative damages during greening.


Assuntos
Clorofila/biossíntese , Cloroplastos/metabolismo , Resposta ao Choque Frio/genética , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Plântula/metabolismo , Ácido Aminolevulínico/metabolismo , Morte Celular/fisiologia , Clorofila/metabolismo , Cloroplastos/ultraestrutura , Regulação para Baixo , Epiderme/metabolismo , Transferases Intramoleculares/metabolismo , Liases/metabolismo , Malondialdeído/metabolismo , Microscopia Eletrônica de Transmissão , Oryza/enzimologia , Oryza/crescimento & desenvolvimento , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/metabolismo , Plastídeos/metabolismo , Plastídeos/ultraestrutura , Protoclorifilida/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/crescimento & desenvolvimento , Temperatura
19.
Nature ; 574(7780): 722-725, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31645759

RESUMO

The enzyme protochlorophyllide oxidoreductase (POR) catalyses a light-dependent step in chlorophyll biosynthesis that is essential to photosynthesis and, ultimately, all life on Earth1-3. POR, which is one of three known light-dependent enzymes4,5, catalyses reduction of the photosensitizer and substrate protochlorophyllide to form the pigment chlorophyllide. Despite its biological importance, the structural basis for POR photocatalysis has remained unknown. Here we report crystal structures of cyanobacterial PORs from Thermosynechococcus elongatus and Synechocystis sp. in their free forms, and in complex with the nicotinamide coenzyme. Our structural models and simulations of the ternary protochlorophyllide-NADPH-POR complex identify multiple interactions in the POR active site that are important for protochlorophyllide binding, photosensitization and photochemical conversion to chlorophyllide. We demonstrate the importance of active-site architecture and protochlorophyllide structure in driving POR photochemistry in experiments using POR variants and protochlorophyllide analogues. These studies reveal how the POR active site facilitates light-driven reduction of protochlorophyllide by localized hydride transfer from NADPH and long-range proton transfer along structurally defined proton-transfer pathways.


Assuntos
Clorofila/biossíntese , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Synechococcus/enzimologia , Synechocystis/enzimologia , Catálise , Clorofila/química , Estrutura Molecular , Fotoquímica , Protoclorifilida/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
20.
Plant Cell Physiol ; 60(10): 2307-2318, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31290959

RESUMO

Chlorophyll biosynthesis plays essential roles in photosynthesis and plant growth in response to environmental conditions. The accumulation of excess chlorophyll biosynthesis intermediates under light results in the production of reactive oxygen species and oxidative stress. In this study, we identified a rice (Oryza sativa) mutant, oxidation under photoperiod (oxp), that displayed photobleached lesions on its leaves, reduced growth and decreased chlorophyll content during light/dark cycles or following a dark-to-light transition. The oxp mutant accumulated more chlorophyll precursors (5-aminolevulinic acid and protochlorophyllide) than the wild type in the dark, and more singlet oxygen following light exposure. Several singlet-oxygen-responsive genes were greatly upregulated in oxp, whereas the expression patterns of OsPORA and OsPORB, two genes encoding the chlorophyll biosynthesis enzyme NADPH:protochlorop hyllide oxidoreductase, were altered in de-etiolated oxp seedlings. Molecular and complementation studies revealed that oxp is a loss-of-function mutant in LOC_Os01g32730, a homolog of FLUORESCENT (FLU) in Arabidopsis thaliana. Rice PHYTOCHROME-INTERACTING FACTOR-LIKE14 (OsPIL14) transcription factor directly bound to the OsFLU1 promoter and activated its expression. Dark-grown transgenic rice seedlings overexpressing OsPIL14 accumulated more chlorophyll and turned green faster than the wild type upon light illumination. Thus, OsFLU1 is an important regulator of chlorophyll biosynthesis in rice.


Assuntos
Proteínas de Arabidopsis/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/efeitos da radiação , Ácido Aminolevulínico/metabolismo , Clorofila/biossíntese , Estiolamento , Luz , Mutação , Oryza/fisiologia , Oryza/efeitos da radiação , Estresse Oxidativo , Fotoperíodo , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Protoclorifilida/metabolismo , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação , Oxigênio Singlete/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA