RESUMO
PURPOSE: Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is defined as a congenital visceral myopathy with genetic mutations. However, the etiology and pathophysiology are not fully understood. We aimed to generate a gene leiomodin-1a (lmod1a) modification technique to establish a zebrafish model of MMIHS. METHODS: We targeted lmod1a in zebrafish using CRISPR/Cas9. After confirming the genotype, we measured the expression levels of the target gene and protein associated with MMIHS. A gut transit assay and spatiotemporal mapping were conducted to analyze the intestinal function. RESULTS: Genetic confirmation showed a 5-base-pair deletion in exon 1 of lmod1a, which caused a premature stop codon. We observed significant mRNA downregulation of lmod1a, myh11, myod1, and acta2 and the protein expression of Lmod1 and Acta2 in the mutant group. A functional analysis of the lmod1a mutant zebrafish showed that its intestinal peristalsis was fewer, slower, and shorter in comparison to the wild type. CONCLUSION: This study showed that targeted deletion of lmod1a in zebrafish resulted in depletion of MMIHS-related genes and proteins, resulting in intestinal hypoperistalsis. This model may have the potential to be utilized in future therapeutic approaches, such as drug discovery screening and gene repair therapy for MMIHS.
Assuntos
Sistemas CRISPR-Cas , Colo , Modelos Animais de Doenças , Pseudo-Obstrução Intestinal , Peixe-Zebra , Animais , Peixe-Zebra/genética , Pseudo-Obstrução Intestinal/genética , Colo/anormalidades , Mutação , Bexiga Urinária/anormalidades , Anormalidades Múltiplas/genética , Proteínas Musculares/genética , Proteínas de Peixe-Zebra/genéticaRESUMO
BACKGROUND AND OBJECTIVES: Deoxyguanosine kinase deficiency is one genetic cause of mtDNA depletion syndrome. Its major phenotypes include neonatal/infantile-onset hepatocerebral disease, isolated hepatic disease and myopathic disease. In this retrospective study, we seek to describe the natural history of deoxyguanosine kinase deficiency and identify any genotype-phenotype correlations. METHODS: Retrospective literature search and collation of data from genetically confirmed cases of deoxyguanosine kinase deficiency. RESULTS: 173 cases of DGUOK deficiency were identified. Neonatal/infantile-onset hepatocerebral disease accounted for 128 (74%) of cases. Isolated liver disease was seen in 36 (21%) and myopathic disease in 9 (5%) of cases. The most frequently involved systems were liver (98%), brain (75%), growth (46%) and gastrointestinal tract (26%). Infantile-onset disease typically presented with cholestatic jaundice and lactic acidosis. Neurological involvement included hypotonia, nystagmus and developmental delay with MRI brain abnormalities in about half of cases. Missense variants accounted for 48% of all pathogenic variants while variants resulting in truncated transcripts accounted for 39%. Prognosis was poor, especially for neonatal/ infantile-onset hepatocerebral disease for which 1 year survival was 11%. Twenty-three patients received liver transplants, of whom 12 died within 2 years of transplant. Patients with two truncating variants had a higher risk of death and were more likely to have the neonatal/infantile-onset hepatocerebral disease phenotype. No blood biomarker predictive of neurological involvement was identified. Earlier onset correlated with increased mortality. CONCLUSIONS: There is a narrow window for therapeutic intervention. For the hepatocerebral disease phenotype, median age of onset was 1 month while the median age of death was 6.5 months implying rapid disease progression.
Assuntos
Fosfotransferases (Aceptor do Grupo Álcool) , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Estudos Retrospectivos , Lactente , Masculino , Feminino , Recém-Nascido , Fenótipo , Estudos de Associação Genética , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/patologia , Pré-Escolar , Mutação , DNA Mitocondrial/genética , Doenças MitocondriaisRESUMO
Rare early-onset lower urinary tract disorders include defects of functional maturation of the bladder. Current treatments do not target the primary pathobiology of these diseases. Some have a monogenic basis, such as urofacial, or Ochoa, syndrome (UFS). Here, the bladder does not empty fully because of incomplete relaxation of its outflow tract, and subsequent urosepsis can cause kidney failure. UFS is associated with biallelic variants of HPSE2, encoding heparanase-2. This protein is detected in pelvic ganglia, autonomic relay stations that innervate the bladder and control voiding. Bladder outflow tracts of Hpse2 mutant mice display impaired neurogenic relaxation. We hypothesized that HPSE2 gene transfer soon after birth would ameliorate this defect and explored an adeno-associated viral (AAV) vector-based approach. AAV9/HPSE2, carrying human HPSE2 driven by CAG, was administered intravenously into neonatal mice. In the third postnatal week, transgene transduction and expression were sought, and ex vivo myography was undertaken to measure bladder function. In mice administered AAV9/HPSE2, the viral genome was detected in pelvic ganglia. Human HPSE2 was expressed and heparanase-2 became detectable in pelvic ganglia of treated mutant mice. On autopsy, wild-type mice had empty bladders, whereas bladders were uniformly distended in mutant mice, a defect ameliorated by AAV9/HPSE2 treatment. Therapeutically, AAV9/HPSE2 significantly ameliorated impaired neurogenic relaxation of Hpse2 mutant bladder outflow tracts. Impaired neurogenic contractility of mutant detrusor smooth muscle was also significantly improved. These results constitute first steps towards curing UFS, a clinically devastating genetic disease featuring a bladder autonomic neuropathy.
Assuntos
Dependovirus , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Glucuronidase , Bexiga Urinária , Animais , Camundongos , Humanos , Bexiga Urinária/fisiopatologia , Glucuronidase/genética , Glucuronidase/metabolismo , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/terapia , Pseudo-Obstrução Intestinal/fisiopatologia , Doenças Urológicas , FáciesRESUMO
Visceral myopathy is a life-threatening disease characterized by muscle weakness in the bowel, bladder, and uterus. Mutations in smooth muscle γ-actin (ACTG2) are the most common cause of the disease, but the mechanisms by which the mutations alter muscle function are unknown. Here, we examined four prevalent ACTG2 mutations (R40C, R148C, R178C, and R257C) that cause different disease severity and are spread throughout the actin fold. R178C displayed premature degradation, R148C disrupted interactions with actin-binding proteins, R40C inhibited polymerization, and R257C destabilized filaments. Because these mutations are heterozygous, we also analyzed 50/50 mixtures with wild-type (WT) ACTG2. The WT/R40C mixture impaired filament nucleation by leiomodin 1, and WT/R257C produced filaments that were easily fragmented by smooth muscle myosin. Smooth muscle tropomyosin isoform Tpm1.4 partially rescued the defects of R40C and R257C. Cryo-electron microscopy structures of filaments formed by R40C and R257C revealed disrupted intersubunit contacts. The biochemical and structural properties of the mutants correlate with their genotype-specific disease severity.
Assuntos
Actinas , Pseudo-Obstrução Intestinal , Mutação de Sentido Incorreto , Humanos , Actinas/metabolismo , Actinas/genética , Microscopia Crioeletrônica , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/metabolismo , Pseudo-Obstrução Intestinal/patologia , Modelos Moleculares , Músculo Liso/metabolismo , Músculo Liso/patologia , Ligação ProteicaRESUMO
Inherited deficiency of thymidine phosphorylase (TP), encoded by TYMP, leads to a rare disease with multiple mitochondrial DNA (mtDNA) abnormalities, mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). However, the impact of TP deficiency on lysosomes remains unclear, which are important for mitochondrial quality control and nucleic acid metabolism. Muscle biopsy tissue and skin fibroblasts from MNGIE patients, patients with m.3243 A > G mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) and healthy controls (HC) were collected to perform mitochondrial and lysosomal functional analyses. In addition to mtDNA abnormalities, compared to controls distinctively reduced expression of LAMP1 and increased mitochondrial content were detected in the muscle tissue of MNGIE patients. Skin fibroblasts from MNGIE patients showed decreased expression of LAMP2, lowered lysosomal acidity, reduced enzyme activity and impaired protein degradation ability. TYMP knockout or TP inhibition in cells can also induce the similar lysosomal dysfunction. Using lysosome immunoprecipitation (Lyso- IP), increased mitochondrial proteins, decreased vesicular proteins and V-ATPase enzymes, and accumulation of various nucleosides were detected in lysosomes with TP deficiency. Treatment of cells with high concentrations of dThd and dUrd also triggers lysosomal dysfunction and disruption of mitochondrial homeostasis. Therefore, the results provided evidence that TP deficiency leads to nucleoside accumulation in lysosomes and lysosomal dysfunction, revealing the widespread disruption of organelles underlying MNGIE.
Assuntos
DNA Mitocondrial , Fibroblastos , Lisossomos , Mitocôndrias , Encefalomiopatias Mitocondriais , Nucleosídeos , Timidina Fosforilase , Humanos , Lisossomos/metabolismo , Timidina Fosforilase/metabolismo , Timidina Fosforilase/deficiência , Timidina Fosforilase/genética , Encefalomiopatias Mitocondriais/metabolismo , Encefalomiopatias Mitocondriais/patologia , Encefalomiopatias Mitocondriais/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Nucleosídeos/metabolismo , Pseudo-Obstrução Intestinal/metabolismo , Pseudo-Obstrução Intestinal/patologia , Pseudo-Obstrução Intestinal/enzimologia , Pseudo-Obstrução Intestinal/genética , Oftalmoplegia/metabolismo , Oftalmoplegia/patologia , Oftalmoplegia/congênito , Distrofia Muscular Oculofaríngea/metabolismo , Distrofia Muscular Oculofaríngea/patologia , Masculino , Feminino , Pele/patologia , Pele/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismoRESUMO
Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a rare, congenital functional intestinal obstruction, characterised by megacystis (bladder distention in the absence of mechanical obstruction), microcolon and intestinal hypoperistalsis (dysmotility).We are reporting a case of a female child with normal antenatal course who presented with recurrent episodes of abdominal distension since the second day of life and underwent negative exploratory laparotomy on multiple occasions. She also had urinary retention with a grossly distended bladder, requiring drainage by clean intermittent catheterisation. Surgical procedures for bowel decompression, including gastrostomy and ileostomy, were carried out without success. Genetic analysis revealed a mutation in the human smooth muscle (enteric) gamma-actin gene (ACTG2 gene), clinching the diagnosis of MMIHS. The patient was managed with parenteral nutrition and prokinetic medications and tolerated jejunostomy feeds for a brief period before she succumbed to the illness.Female neonates or infants presenting with abdominal distension and dilated urinary tract should be investigated for MMIHS early on. A timely diagnosis will enable the early involvement of a multidisciplinary team to provide the best options available for management.
Assuntos
Anormalidades Múltiplas , Colo/anormalidades , Doenças Fetais , Pseudo-Obstrução Intestinal , Bexiga Urinária/anormalidades , Retenção Urinária , Lactente , Recém-Nascido , Criança , Humanos , Feminino , Gravidez , Pseudo-Obstrução Intestinal/diagnóstico , Pseudo-Obstrução Intestinal/terapia , Pseudo-Obstrução Intestinal/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/terapia , Anormalidades Múltiplas/genética , Colo/cirurgia , PeristaltismoRESUMO
Megacystis-microcolon-hypoperistalsis-syndrome (MMIHS) is a rare and early-onset congenital disease characterized by massive abdominal distension due to a large non-obstructive bladder, a microcolon and decreased or absent intestinal peristalsis. While in most cases inheritance is autosomal dominant and associated with heterozygous variant in ACTG2 gene, an autosomal recessive transmission has also been described including pathogenic bialellic loss-of-function variants in MYH11. We report here a novel family with visceral myopathy related to MYH11 gene, confirmed by whole genome sequencing (WGS). WGS was performed in two siblings with unusual presentation of MMIHS and their two healthy parents. The 38 years-old brother had severe bladder dysfunction and intestinal obstruction, whereas the 30 years-old sister suffered from end-stage kidney disease with neurogenic bladder and recurrent sigmoid volvulus. WGS was completed by retrospective digestive pathological analyses. Compound heterozygous variants of MYH11 gene were identified, associating a deletion of 1.2 Mb encompassing MYH11 inherited from the father and an in-frame variant c.2578_2580del, p.Glu860del inherited from the mother. Pathology analyses of the colon and the rectum revealed structural changes which significance of which is discussed. Cardiac and vascular assessment of the mother was normal. This is the second report of a visceral myopathy corresponding to late-onset form of MMIHS related to compound heterozygosity in MYH11; with complete gene deletion and a hypomorphic allele in trans. The hypomorphic allele harbored by the mother raised the question of the risk of aortic disease in adults. This case shows the interest of WGS in deciphering complex phenotypes, allowing adapted diagnosis and genetic counselling.
Assuntos
Anormalidades Múltiplas , Colo , Duodeno , Doenças Fetais , Obstrução Intestinal , Pseudo-Obstrução Intestinal , Bexiga Urinária , Adulto , Humanos , Masculino , Colo/anormalidades , Duodeno/anormalidades , Pseudo-Obstrução Intestinal/genética , Cadeias Pesadas de Miosina/genética , Estudos Retrospectivos , Bexiga Urinária/anormalidades , FemininoRESUMO
Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is an uncommon genetic disorder inherited in an autosomal recessive pattern that affects the muscles that line the bladder and intestines. The most common genes associated with MMIHS mutations are ACTG2, LMOD1, MYH11, MYL9, MYLK, and PDCL3. However, the complete genetic landscape of MMIHS still needs to be fully understood. The diagnosis of MMIHS can be challenging. However, advances in prenatal and diagnostic techniques, such as ultrasound and fetal urine analysis, have improved the ability to detect the syndrome early. Targeted next-generation sequencing (NGS) and other diagnostic tests can also diagnose MMIHS. The management of MMIHS involves addressing severe intestinal dysmotility, which often necessitates total parenteral nutrition (TPN), which can lead to complications such as hepatotoxicity and nutritional deficiencies. Multivisceral and intestinal transplantation has emerged as therapeutic options, offering the potential for improved outcomes and enteral autonomy. Understanding the genetic underpinnings of MMIHS is crucial for personalized care. While the prognosis varies, timely interventions and careful monitoring enhance patient outcomes. Genetic studies have given us valuable insights into the molecular mechanisms of MMIHS. These studies have identified mutations in genes involved in the development and function of smooth muscle cells. They have also shown that MMIHS is associated with defects in the signaling pathways that control muscle contraction. Continued research in the genetics of MMIHS holds promise for unraveling the complexities of MMIHS and improving the lives of affected individuals.
Assuntos
Anormalidades Múltiplas , Colo , Pseudo-Obstrução Intestinal , Mutação , Bexiga Urinária , Humanos , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/terapia , Pseudo-Obstrução Intestinal/diagnóstico , Bexiga Urinária/anormalidades , Colo/anormalidades , Anormalidades Múltiplas/genética , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
BACKGROUND: Pediatric chronic intestinal pseudo-obstruction (PIPO) is a rare disease characterized by symptoms and radiological signs suggestive of intestinal obstruction, in the absence of lumen-occluding lesions. It results from an extremely severe impairment of propulsive motility. The intestinal endocrine system (IES) jointly with the enteric nervous system (ENS) regulates secreto-motor functions via different hormones and bioactive messengers/neurotransmitters. The neurotransmitter 5-hydroxytryptamine (5-HT) (or serotonin) is linked to intestinal peristalsis and secretory reflexes. Gut microbiota and its interplay with ENS affect 5-HT synthesis, release, and the subsequent serotonin receptor activation. To date, the interplay between 5-HT and gut microbiota in PIPO remains largely unclear. This study aimed to assess correlations between mucosa associated microbiota (MAM), intestinal serotonin-related genes expression in PIPO. To this purpose, biopsies of the colon, ileum and duodenum have been collected from 7 PIPO patients, and 7 age-/sex-matched healthy controls. After DNA extraction, the MAM was assessed by next generation sequencing (NGS) of the V3-V4 region of the bacterial RNA 16 S, on an Illumina Miseq platform. The expression of genes implicated in serotoninergic pathway (TPH1, SLC6A4, 5-HTR3 and 5-HTR4) was established by qPCR, and correlations with MAM and clinical parameters of PIPO have been evaluated. RESULTS: Our results revealed that PIPO patients exhibit a MAM with a different composition and with dysbiosis, i.e. with a lower biodiversity and fewer less connected species with a greater number of non-synergistic relationships, compared to controls. qPCR results revealed modifications in the expression of serotonin-related intestinal genes in PIPO patients, when compared to controls. Correlation analysis do not reveal any kind of connection. CONCLUSIONS: For the first time, we report in PIPO patients a specific MAM associated to underlying pathology and an altered intestinal serotonin pathway. A possible dysfunction of the serotonin pathway, possibly related to or triggered by an altered microbiota, may contribute to dysmotility in PIPO patients. The results of our pilot study provide the basis for new biomarkers and innovative therapies targeting the microbiota or serotonin pathways in PIPO patients.
Assuntos
Microbioma Gastrointestinal , Pseudo-Obstrução Intestinal , Humanos , Criança , Serotonina/metabolismo , Projetos Piloto , Intestinos , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/diagnóstico , Proteínas da Membrana Plasmática de Transporte de SerotoninaAssuntos
Pseudo-Obstrução Intestinal , Encefalomiopatias Mitocondriais , Distrofia Muscular Oculofaríngea , Oftalmoplegia/congênito , Humanos , DNA Polimerase gama/genética , Fenótipo , Pseudo-Obstrução Intestinal/genética , Encefalomiopatias Mitocondriais/genética , Mutação/genética , DNA Mitocondrial/genéticaAssuntos
Pseudo-Obstrução Intestinal , Encefalomiopatias Mitocondriais , Distrofia Muscular Oculofaríngea , Oftalmoplegia , Humanos , DNA Polimerase gama/genética , Fenótipo , Pseudo-Obstrução Intestinal/genética , DNA Mitocondrial/genética , Mutação/genética , Encefalomiopatias Mitocondriais/genéticaRESUMO
Visceral myopathies are debilitating conditions characterized by dysfunction of smooth muscle in visceral organs (bowel, bladder, and uterus). Individuals affected by visceral myopathy experience feeding difficulties, growth failure, life-threatening abdominal distension, and may depend on intravenous nutrition for survival. Unfortunately, our limited understanding of the pathophysiology of visceral myopathies means that current therapies remain supportive, with no mechanism-based treatments. We developed a patient-derived iPSC line with a c.769C > T p.R257C/+ mutation, the most common genetic cause of visceral myopathy. This cell line will facilitate studies of how the ACTG2 R257C heterozygous variant affects smooth muscle development and function.
Assuntos
Células-Tronco Pluripotentes Induzidas , Pseudo-Obstrução Intestinal , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Actinas/metabolismo , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/metabolismo , Intestinos , MutaçãoRESUMO
BACKGROUND: Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare mitochondrial disease caused by mutations in TYMP, encoding thymidine phosphorylase. Clinically it is characterized by severe gastrointestinal dysmotility associated with cachexia and a demyelinating sensorimotor polyneuropathy. Even though digestive manifestations are progressive and invariably lead to death, the features of gastrointestinal motor dysfunction have not been systematically evaluated. The objective of this study was to describe gastrointestinal motor dysfunction in MNGIE using state-of-the art techniques and to evaluate the relationship between motor abnormalities and symptoms. METHODS: Prospective study evaluating gastrointestinal motor function and digestive symptoms in all patients with MNGIE attended at a national referral center in Spain between January 2018 and July 2022. KEY RESULTS: In this period, five patients diagnosed of MNGIE (age range 16-46 years, four men) were evaluated. Esophageal motility by high-resolution manometry was abnormal in four patients (two hypoperistalsis, two aperistalsis). Gastric emptying by scintigraphy was mildly delayed in four and indicative of gastroparesis in one. In all patients, small bowel high-resolution manometry exhibited a common, distinctive dysmotility pattern, characterized by repetitive bursts of spasmodic contractions, without traces of normal fasting and postprandial motility patterns. Interestingly, objective motor dysfunctions were detected in the absence of severe digestive symptoms. CONCLUSIONS AND INFERENCES: MNGIE patients exhibit a characteristic motor dysfunction, particularly of the small bowel, even in patients with mild digestive symptoms and in the absence of morphological signs of intestinal failure. Since symptoms are not predictive of objective findings, early investigation is indicated.
Assuntos
Gastroenteropatias , Pseudo-Obstrução Intestinal , Encefalomiopatias Mitocondriais , Masculino , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Estudos Prospectivos , Pseudo-Obstrução Intestinal/genética , Encefalomiopatias Mitocondriais/diagnóstico , Encefalomiopatias Mitocondriais/genética , Mutação , Gastroenteropatias/genéticaRESUMO
OBJECTIVES: Pediatric intestinal pseudo-obstruction (PIPO) management is based on nutritional, medical, and surgical care while available evidence is scarce. The aim of this study was to outline the current diagnostic and management strategies in intestinal failure (IF) teams of the European Reference Network for rare Inherited and Congenital Anomalies (ERNICA) and to compare these practices to the latest PIPO international guidelines. METHODS: An online survey on institutional diagnostic and management strategies of PIPO was conducted among the ERNICA IF teams. RESULTS: In total, 11 of 21 ERNICA IF centers from 8 countries participated. On average, 64% of teams had ≥6 and 36% had 1-5 PIPO patients under active follow-up. In total, 80 of 102 PIPO patients were parenteral nutrition (PN) dependent while each IF team had median 4 (range 0-19) PN dependent PIPO patients under follow-up. On average, each center received 1-2 new PIPO patients per year. Diagnostics mostly followed current guidelines while medical and surgical management strategies were diverse. CONCLUSIONS: Numbers of PIPO patients are low and management strategies are diverse among ERNICA IF teams. To improve PIPO patient care, regional reference centers with specialized multidisciplinary IF teams and continuous collaboration across centers are needed.
Assuntos
Insuficiência Intestinal , Pseudo-Obstrução Intestinal , Criança , Humanos , Pseudo-Obstrução Intestinal/diagnóstico , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/terapia , Nutrição Parenteral , Inquéritos e QuestionáriosRESUMO
Visceral myopathy (VSCM) is a rare genetic disease, orphan of pharmacological therapy. VSCM diagnosis is not always straightforward due to symptomatology similarities with mitochondrial or neuronal forms of intestinal pseudo-obstruction. The most prevalent form of VSCM is associates with variants in the gene ACTG2, encoding the protein gamma-2 actin. Overall, VSCM is a mechano-biological disorder, in which different genetic variants lead to similar alterations to the contractile phenotype of enteric smooth muscles, resulting in the emergence of life-threatening symptoms. In this work we analyzed the morpho-mechanical phenotype of human dermal fibroblasts from patients affected with VSCM, demonstrating that they retain a clear signature of the disease when compared with different controls. We evaluated several biophysical traits of fibroblasts, and we show that a measure of cellular traction forces can be used as a non-specific biomarker of the disease. We propose that a simple assay based on traction forces could be designed to provide a valuable support for clinical decision or pre-clinical research.
Assuntos
Pseudo-Obstrução Intestinal , Humanos , Pseudo-Obstrução Intestinal/diagnóstico , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/metabolismo , Actinas/genética , Actinas/metabolismo , Contração Muscular , Fenótipo , Músculo Liso/metabolismoRESUMO
BACKGROUND: Pathogenic mutations in the smooth muscle myosin heavy chain gene, MYH11, cause megacystis megacolon intestinal hypoperistalsis syndrome and other forms of chronic intestinal pseudo-obstruction. Evaluation of intestinal tissues from affected patients is often performed before mutational analysis, but the pathological findings of MYH11-variant visceral myopathy have not been well defined. METHODS: Light microscopic, immunohistochemical, and ultrastructural findings from multiple intestinal samples from 2 patients with MYH11-variant visceral myopathy were reviewed, including MYH11-specific immunohistochemistry. The findings were compared with intestinal samples from patients with gamma-smooth muscle actin (ACTG2)-variant visceral myopathy and non-pseudo-obstruction controls. RESULTS: Apart from non-specific changes (e.g., muscle hypertrophy and distension-related muscularis propria necrosis), no alterations were identified by routine histopathological evaluation or electron microscopy. Immunohistochemistry with antibodies against a battery of smooth muscle proteins, including MYH11, revealed indistinguishable patterns of immunoreactivity in the muscularis propria of both patients and controls. CONCLUSIONS: Myopathic morphological or immunohistochemical changes may not be present in intestinal specimens from patients with MYH11-variant visceral myopathy. Molecular genetic studies should be considered for patients with chronic intestinal pseudo-obstruction and normal or non-specific pathology findings.
Assuntos
Anormalidades Múltiplas , Doenças Fetais , Pseudo-Obstrução Intestinal , Feminino , Humanos , Colo/patologia , Anormalidades Múltiplas/patologia , Pseudo-Obstrução Intestinal/diagnóstico , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/metabolismo , Mutação , Doenças Fetais/patologia , Actinas/genética , Cadeias Pesadas de Miosina/genéticaRESUMO
Filamin A (FLNA) is a cytoplasmic actin binding protein, recently shown to be expressed as a long and short isoform. Mutations in FLNA are associated with a wide spectrum of disorders, including an X-linked form of chronic intestinal pseudo-obstruction (CIPO). However, the role of FLNA in intestinal development and function is largely unknown. In this study, we show that FLNA is expressed in the muscle layer of the small intestine from early human fetal stages. Expression of FLNA variants associated with CIPO, blocked expression of the long flna isoform and led to an overall reduction of RNA and protein levels. As a consequence, contractility of human intestinal smooth muscle cells was affected. Lastly, our transgenic zebrafish line showed that the flna long isoform is required for intestinal elongation and peristalsis. Histological analysis revealed structural and architectural changes in the intestinal smooth muscle of homozygous fish, likely triggered by the abnormal expression of intestinal smooth muscle markers. No defect in the localization or numbers of enteric neurons was observed. Taken together, our study demonstrates that the long FLNA isoform contributes to intestinal development and function. Since loss of the long FLNA isoform does not seem to affect the enteric nervous system, it likely results in a myopathic form of CIPO, bringing new insights to disease pathogenesis.
Assuntos
Pseudo-Obstrução Intestinal , Peixe-Zebra , Animais , Humanos , Filaminas/genética , Filaminas/metabolismo , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/patologia , Intestinos/patologia , Isoformas de Proteínas/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais Geneticamente ModificadosRESUMO
BACKGROUND: Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a rare and serious congenital disorder with poor outcomes, where a heterozygous missense mutation is present in the ACTG2 gene. Here, we aimed to investigate the pathogenesis of ACTG2 in MMIHS. METHODS: A cohort with 20 patients with MMIHS was screened. Actg2R257C heterozygous mutant mice were generated using the CRISPR/Cas9 system. Gastrointestinal (GI) motility, voluntary urination, collagen gel contraction, and G-actin/F-actin analysis were performed. KEY RESULTS: The R257C variant of ACTG2 most frequently occurred in patients with MMIHS and demonstrated the typical symptoms of MMIHS. Actg2R257C heterozygous mutant mice had dilated intestines and bladders. The functional assay showed a prolonged total time of GI transit and decreased urine spot area. Collagen gel contraction assay and G-actin/F-actin analysis indicated that mutant mice showed reduced area of contraction of smooth muscle cells (SMCs) and impaired actin polymerization. CONCLUSIONS & INFERENCES: A mouse model demonstrating MMIHS-like symptoms was generated. The Actg2R257C heterozygous variant impairs SMCs contraction by interfering with actin polymerization, leading to GI motility disorders.
Assuntos
Anormalidades Múltiplas , Actinas , Pseudo-Obstrução Intestinal , Animais , Camundongos , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Actinas/genética , Colo/patologia , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/patologia , Fenótipo , HumanosRESUMO
Severe gut motility disorders are characterized by the ineffective propulsion of intestinal contents. As a result, the patients develop disabling/distressful symptoms, such as nausea and vomiting along with altered bowel habits up to radiologically demonstrable intestinal sub-obstructive episodes. Chronic intestinal pseudo-obstruction (CIPO) is a typical clinical phenotype of severe gut dysmotility. This syndrome occurs due to changes altering the morpho-functional integrity of the intrinsic (enteric) innervation and extrinsic nerve supply (hence neuropathy), the interstitial cells of Cajal (ICC) (mesenchymopathy), and smooth muscle cells (myopathy). In the last years, several genes have been identified in different subsets of CIPO patients. The focus of this review is to cover the most recent update on enteric dysmotility related to CIPO, highlighting (a) forms with predominant underlying neuropathy, (b) forms with predominant myopathy, and (c) mitochondrial disorders with a clear gut dysfunction as part of their clinical phenotype. We will provide a thorough description of the genes that have been proven through recent evidence to cause neuro-(ICC)-myopathies leading to abnormal gut contractility patterns in CIPO. The discovery of susceptibility genes for this severe condition may pave the way for developing target therapies for enteric neuro-(ICC)-myopathies underlying CIPO and other forms of gut dysmotility.
Assuntos
Gastroenteropatias , Pseudo-Obstrução Intestinal , Doenças Neuromusculares , Humanos , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/diagnóstico , Doença Crônica , Intestino DelgadoRESUMO
INTRODUCTION: Megacystis microcolon hypoperistalsis syndrome (MMIHS) is a rare condition with high morbidity and mortality. It is characterized by megacystis, microcolon, and intestinal hypoperistalsis leading to various grades of bladder and bowel obstruction. CASE PRESENTATION: This report describes a pregnant woman with a history of bowel obstruction, urine retention, and heavy postpartum bleeding where ultrasound findings of fetal megacystis during pregnancy led to genetic testing in the family. The fetus, the pregnant woman, and four female family members were heterozygous for a pathogenic variant detected in the ACTG2 gene. The fetus was treated successfully for hydronephrosis using vesicoamniotic shunting. DISCUSSION: Early diagnosis of a fetus with MMIHS is important to secure multidisciplinary prenatal and neonatal treatment. Furthermore, gene testing must be considered when a woman presents a history of pseudo-obstruction and urine retention to prevent complications during pregnancy and labor. Finally, recurrent familial postpartum bleeding should lead to referral to genetic evaluation.