Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 439
Filtrar
1.
Molecules ; 28(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005256

RESUMO

The parasites Trypanosoma brucei (Tb) and Leishmania major (Lm) cause the tropical diseases sleeping sickness, nagana, and cutaneous leishmaniasis. Every year, millions of humans, as well as animals, living in tropical to subtropical climates fall victim to these illnesses' health threats. The parasites' frequent drug resistance and widely spread natural reservoirs heavily impede disease prevention and treatment. Due to pteridine auxotrophy, trypanosomatid parasites have developed a peculiar enzyme system consisting of dihydrofolate reductase-thymidylate synthase (DHFR-TS) and pteridine reductase 1 (PTR1) to support cell survival. Extending our previous studies, we conducted a comparative study of the T. brucei (TbDHFR, TbPTR1) and L. major (LmDHFR, LmPTR1) enzymes to identify lead structures with a dual inhibitory effect. A pharmacophore-based in silico screening of three natural product databases (approximately 4880 compounds) was performed to preselect possible inhibitors. Building on the in silico results, the inhibitory potential of promising compounds was verified in vitro against the recombinant DHFR and PTR1 of both parasites using spectrophotometric enzyme assays. Twelve compounds were identified as dual inhibitors against the Tb enzymes (0.2 µM < IC50 < 85.1 µM) and ten against the respective Lm enzymes (0.6 µM < IC50 < 84.5 µM). These highly promising results may represent the starting point for the future development of new leads and drugs utilizing the trypanosomatid pteridine metabolism as a target.


Assuntos
Leishmania major , Trypanosoma brucei brucei , Tripanossomíase Africana , Humanos , Animais , Tetra-Hidrofolato Desidrogenase/metabolismo , Pteridinas/química , Tripanossomíase Africana/tratamento farmacológico
2.
Protein Sci ; 32(9): e4753, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37572332

RESUMO

Within the cell, the trace element molybdenum (Mo) is only biologically active when complexed either within the nitrogenase-specific FeMo cofactor or within the molybdenum cofactor (Moco). Moco consists of an organic part, called molybdopterin (MPT) and an inorganic part, that is, the Mo-center. The enzyme which catalyzes the Mo-center formation is the molybdenum insertase (Mo-insertase). Mo-insertases consist of two functional domains called G- and E-domain. The G-domain catalyzes the formation of adenylated MPT (MPT-AMP), which is the substrate for the E-domain, that catalyzes the actual molybdate insertion reaction. Though the functions of E- and G-domain have been elucidated to great structural and mechanistic detail, their combined function is poorly characterized. In this work, we describe a structural model of the eukaryotic Mo-insertase Cnx1 complex that was generated based on cross-linking mass spectrometry combined with computational modeling. We revealed Cnx1 to form an asymmetric hexameric complex which allows the E- and G-domain active sites to align in a catalytic productive orientation toward each other.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Metaloproteínas , Proteínas de Arabidopsis/química , Calnexina/química , Calnexina/metabolismo , Arabidopsis/química , Molibdênio/metabolismo , Coenzimas/química , Metaloproteínas/química , Pteridinas/química
3.
Molecules ; 28(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513211

RESUMO

Mo/W-containing formate dehydrogenases (FDH) catalyzes the reversible oxidation of formate to carbon dioxide at their molybdenum or tungsten active sites. The metal-containing FDHs are members of the dimethylsulfoxide reductase family of mononuclear molybdenum cofactor (Moco)- or tungsten cofactor (Wco)-containing enzymes. In these enzymes, the active site in the oxidized state comprises a Mo or W atom present in the bis-Moco, which is coordinated by the two dithiolene groups from the two MGD moieties, a protein-derived SeCys or Cys, and a sixth ligand that is now accepted as being a sulfido group. SeCys-containing enzymes have a generally higher turnover number than Cys-containing enzymes. The analogous chemical properties of W and Mo, the similar active sites of W- and Mo-containing enzymes, and the fact that W can replace Mo in some enzymes have led to the conclusion that Mo- and W-containing FDHs have the same reaction mechanism. Details of the catalytic mechanism of metal-containing formate dehydrogenases are still not completely understood and have been discussed here.


Assuntos
Formiato Desidrogenases , Metaloproteínas , Formiato Desidrogenases/metabolismo , Oxirredução , Metaloproteínas/química , Molibdênio/química , Domínio Catalítico , Pteridinas/química , Coenzimas/química
4.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499560

RESUMO

Pterins are an inseparable part of living organisms. Pterins participate in metabolic reactions mostly as tetrahydropterins. Dihydropterins are usually intermediates of these reactions, whereas oxidized pterins can be biomarkers of diseases. In this review, we analyze the available data on the quantum chemistry of unconjugated pterins as well as their photonics. This gives a comprehensive overview about the electronic structure of pterins and offers some benefits for biomedicine applications: (1) one can affect the enzymatic reactions of aromatic amino acid hydroxylases, NO synthases, and alkylglycerol monooxygenase through UV irradiation of H4pterins since UV provokes electron donor reactions of H4pterins; (2) the emission properties of H2pterins and oxidized pterins can be used in fluorescence diagnostics; (3) two-photon absorption (TPA) should be used in such pterin-related infrared therapy because single-photon absorption in the UV range is inefficient and scatters in vivo; (4) one can affect pathogen organisms through TPA excitation of H4pterin cofactors, such as the molybdenum cofactor, leading to its detachment from proteins and subsequent oxidation; (5) metal nanostructures can be used for the UV-vis, fluorescence, and Raman spectroscopy detection of pterin biomarkers. Therefore, we investigated both the biochemistry and physical chemistry of pterins and suggested some potential prospects for pterin-related biomedicine.


Assuntos
Metaloproteínas , Pterinas , Estrutura Molecular , Pterinas/metabolismo , Pteridinas/química , Coenzimas/metabolismo , Metaloproteínas/metabolismo , Oxirredução
5.
Arch Pharm (Weinheim) ; 355(12): e2200252, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36166689

RESUMO

The present article is devoted to searching for biologically active agents among novel thio-containing pteridines. Synthetic protocols based on the condensation of 5,6-diamino-2-thioxo-2,3-dihydropyrimidin-4(1H)-ones with dicarbonyl compounds were elaborated and used for the synthesis of target products. The directions for further modification of the obtained thio-containing pteridines were substantiated and realized. The spectral properties of the obtained compounds were studied and described. The results of the in silico study revealed that the predicted affinity of the obtained compounds to the dihydrofolate reductase (DHFR) active site is comparable with the affinity of methotrexate, despite the differences in the nature of the ligand-enzyme interactions. The in vitro study of DHFR-inhibiting activity revealed that the most active compounds 3.9 and 4.2 have lg IC50 values of -5.889 and -5.233, respectively, significantly inferior to methotrexate (lg IC50 = -7.605). Additionally, the synthesized compounds were studied for their antiradical activity as a possible mechanism of pharmacological effects. Among the obtained pteridines, compounds 5.1 (lg EC50 = -4.82) and 5.3 (lg EC50 = -4.92) have antiradical activity higher than the reference compound ascorbic acid (lg EC50 = -4.81). The conducted structure-activity relationship analysis provided valuable data for the further search for biologically active agents among thio-containing pteridines and related compounds.


Assuntos
Antagonistas do Ácido Fólico , Pteridinas , Pteridinas/farmacologia , Pteridinas/química , Metotrexato/farmacologia , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo
6.
J Med Chem ; 65(13): 9011-9033, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35675511

RESUMO

The optimization of compounds with multiple targets is a difficult multidimensional problem in the drug discovery cycle. Here, we present a systematic, multidisciplinary approach to the development of selective antiparasitic compounds. Computational fragment-based design of novel pteridine derivatives along with iterations of crystallographic structure determination allowed for the derivation of a structure-activity relationship for multitarget inhibition. The approach yielded compounds showing apparent picomolar inhibition of T. brucei pteridine reductase 1 (PTR1), nanomolar inhibition of L. major PTR1, and selective submicromolar inhibition of parasite dihydrofolate reductase (DHFR) versus human DHFR. Moreover, by combining design for polypharmacology with a property-based on-parasite optimization, we found three compounds that exhibited micromolar EC50 values against T. brucei brucei while retaining their target inhibition. Our results provide a basis for the further development of pteridine-based compounds, and we expect our multitarget approach to be generally applicable to the design and optimization of anti-infective agents.


Assuntos
Leishmania major , Oxirredutases , Tetra-Hidrofolato Desidrogenase , Trypanosoma brucei brucei , Leishmania major/efeitos dos fármacos , Leishmania major/enzimologia , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Pteridinas/química , Pteridinas/farmacologia , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia
7.
SAR QSAR Environ Res ; 32(12): 985-1011, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34845959

RESUMO

The origin of cancer is related to the dysregulation of multiple signal pathways and of physiological processes. Bromodomain-containing protein 4 (BRD4) has become an attractive target for the development of anticancer and anti-inflammatory agents since it can epigenetically regulate the transcription of growth-promoting genes. The synthesized BRD4 inhibitors with new chemical structures can reduce the drug resistance, but their binding modes and the inhibitory mechanism remain unclear. Here, we initially constructed robust QSAR models based on 68 reported tetrahydropteridin analogues using topomer CoMFA and HQSAR. On the basis of QSAR results, we designed 16 novel tetrahydropteridin analogues with modified structures and carried out docking studies. Instead of significant hydrogen bondings with amino acid residue Asn140 as reported in previous research, the molecular docking modelling suggested a novel docking pose that involves the amino acid residues (Trp81, Pro82, Val87, Leu92, Leu94, Cys136, Asp144, and Ile146) at the active site of BRD4. The MD simulations, free energy calculations, and residual energy contributions all indicate that hydrophobic interactions are decisive factors affecting bindings between inhibitors and BRD4. The current study provides new insights that can aid the discovery of BRD4 inhibitors with enhanced anti-cancer ability.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Desenho de Fármacos , Pteridinas/farmacologia , Relação Quantitativa Estrutura-Atividade , Fatores de Transcrição/antagonistas & inibidores , Proteínas de Ciclo Celular/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pteridinas/química , Fatores de Transcrição/química
8.
Bioorg Chem ; 116: 105324, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509794

RESUMO

CDK4/6 have been validated as the cancer therapeutic targets. Here, we describe a series of pteridin-7(8H)-one analogues as potent CDK4/6 inhibitors. Among them, the most promising compound 7s demonstrated remarkable and broad-spectrum antiproliferative activities toward HCT116, HeLa, MDA-MB-231, and HT-29 cells with IC50 values of 0.65, 0.70, 0.39, and 2.53 µM, respectively, which were more potent than that of the anticancer drug Palbociclib. Interestingly, 7s also manifested the greatest inhibitory activities toward both CDK4/cyclin D3 and CDK6/cyclin D3 (IC50 = 34.0 and 65.1 nM, respectively), which was comparable with Palbociclib. Additionally, molecular simulation indicated that 7s bound efficiently at the ATPbindingsitesofCDK4 and CDK6. Further mechanistic studies revealed that compound 7s could concentration-dependently induce cell cycle arrest and apoptosis in HeLa cells. Takentogether, 7s represents a promising novel CDK4/6 inhibitor for the potential treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Desenvolvimento de Medicamentos , Inibidores de Proteínas Quinases/farmacologia , Pteridinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pteridinas/síntese química , Pteridinas/química , Relação Estrutura-Atividade
9.
Nat Chem ; 13(8): 758-765, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34183818

RESUMO

The molybdenum cofactor (Moco) is found in the active site of numerous important enzymes that are critical to biological processes. The bidentate ligand that chelates molybdenum in Moco is the pyranopterin dithiolene (molybdopterin, MPT). However, neither the mechanism of molybdate insertion into MPT nor the structure of Moco prior to its insertion into pyranopterin molybdenum enzymes is known. Here, we report this final maturation step, where adenylated MPT (MPT-AMP) and molybdate are the substrates. X-ray crystallography of the Arabidopsis thaliana Mo-insertase variant Cnx1E S269D D274S identified adenylated Moco (Moco-AMP) as an unexpected intermediate in this reaction sequence. X-ray absorption spectroscopy revealed the first coordination sphere geometry of Moco trapped in the Cnx1E active site. We have used this structural information to deduce a mechanism for molybdate insertion into MPT-AMP. Given their high degree of structural and sequence similarity, we suggest that this mechanism is employed by all eukaryotic Mo-insertases.


Assuntos
Proteínas de Arabidopsis , Coenzimas , Molibdênio , Oxirredutases , Pteridinas , Monofosfato de Adenosina/análogos & derivados , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Coenzimas/química , Cristalografia por Raios X , Modelos Químicos , Molibdênio/química , Cofatores de Molibdênio , Oxirredutases/química , Pteridinas/química
10.
Molecules ; 26(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799340

RESUMO

In this report, we employed the solid-phase synthetic approach to prepare variously substituted dihydropteridinones, tetrahydropyrrolopteridinones, and pyrimidodiazepinones, using a versatile building block-4,6-dichloro-5-nitropyrimidine. All these compounds are pharmacologically significant scaffolds of the great importance of medicinal chemists. The fast and efficient synthetic methodology is highly desirable for defining their structure-activity relationship (SAR) and optimizing pharmacokinetic properties. Our research efforts utilize simple synthetic methods to generate a library of analogues for future SAR studies. The efficiency of our approach was exemplified in various pteridinones as well as pyrimidodiazepinones.


Assuntos
Polímeros/química , Pteridinas/química , Preparações Farmacêuticas/química , Relação Estrutura-Atividade
11.
Mar Drugs ; 19(2)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562248

RESUMO

Two new fluorescent pteridine alkaloids, tedaniophorbasins A (1) and B (2), together with the known alkaloid N-methyltryptamine, were isolated, through application of mass directed purification, from the sponge Tedaniophorbas ceratosis collected from northern New South Wales, Australia. The structures of tedaniophorbasins A and B were deduced from the analysis of 1D/2D NMR and MS data and through application of 13C NMR DFT calculations. Tedaniophorbasin A possesses a novel 2-imino-1,3-dimethyl-2,3,7,8-tetrahydro-1H-[1,4]thiazino[3,2-g]pteridin-4(6H)-one skeleton, while tedaniophorbasin B is its 2-oxo derivative. The compounds show significant Stokes shifts (~14,000 cm-1) between excitation and emission wavelengths in their fluorescence spectra. The new compounds were tested for bioactivity against chloroquine-sensitive and chloroquine-resistant strains of the malaria parasite Plasmodium falciparum, breast and pancreatic cancer cell lines, and the protozoan parasite Trypanosoma brucei brucei but were inactive against all targets at 40 µM.


Assuntos
Alcaloides/isolamento & purificação , Poríferos/química , Pteridinas/isolamento & purificação , Alcaloides/química , Alcaloides/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética , Plasmodium falciparum/efeitos dos fármacos , Pteridinas/química , Pteridinas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos
12.
Bioorg Chem ; 109: 104725, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33611139

RESUMO

In lumazines, deazalumazines and pyrimidines, there are extremely low-energy "rare" tautomers (<2.3 kcal/mol), this fact perfectly explains the observed mobility of usually "non-labile" protons of methyl groups in such systems. In general, the dependence of tautomeric preference on structure correlates well with experimental findings. Thus, the activity of alkyl groups during biological transformations may be due to the presence of the corresponding thermodynamically stable tautomers.


Assuntos
Flavinas/química , Pteridinas/química , Pirimidinas/química , Teoria da Densidade Funcional , Estrutura Molecular , Termodinâmica
13.
Mar Drugs ; 19(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572212

RESUMO

Chemical investigation of secondary metabolites from the marine-derived fungus Aspergillus austroafricanus Y32-2 resulted in the isolation of two new prenylated indole alkaloid homodimers, di-6-hydroxydeoxybrevianamide E (1) and dinotoamide J (2), one new pteridine alkaloid asperpteridinate A (3), with eleven known compounds (4-14). Their structures were elucidated by various spectroscopic methods including HRESIMS and NMR, while their absolute configurations were determined by ECD calculations. Each compound was evaluated for pro-angiogenic, anti-inflammatory effects in zebrafish models and cytotoxicity for HepG2 human liver carcinoma cells. As a result, compounds 2, 4, 5, 7, 10 exhibited pro-angiogenic activity in a PTK787-induced vascular injury zebrafish model in a dose-dependent manner, compounds 7, 8, 10, 11 displayed anti-inflammatory activity in a CuSO4-induced zebrafish inflammation model, and compound 6 showed significant cytotoxicity against HepG2 cells with an IC50 value of 30 µg/mL.


Assuntos
Aspergillus/metabolismo , Alcaloides Indólicos/isolamento & purificação , Pteridinas/isolamento & purificação , Microbiologia da Água , Indutores da Angiogênese/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Células Hep G2 , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Espectroscopia de Ressonância Magnética , Pteridinas/química , Pteridinas/farmacologia , Peixe-Zebra
14.
Mol Divers ; 25(3): 1855-1872, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33392965

RESUMO

Cancer treatment continues to be one of the most serious public health issues in the world. The overexpression of BRD4 protein has led to a series of malignant tumors, hence the development of small molecule BRD4 protease inhibitors has always been a hot spot in the field of medical research. In this study, a series of 4,5-dihydro-[1, 2, 4] triazolo [4, 3-f] pteridine derivatives were used to establish 3D/2D-QSAR models and to discuss the relationship between inhibitor structure and activity. Four ideal models were established, including the comparative molecular field analysis (CoMFA: [Formula: see text] = 0.574, [Formula: see text] = 0.947) model, comparative molecular similarity index analysis (CoMSIA: [Formula: see text]= 0.622, [Formula: see text] = 0.916) model, topomer CoMFA ([Formula: see text] = 0.691, [Formula: see text]= 0.912) model and hologram quantitative structure-activity relationship (HQSAR: [Formula: see text]= 0.759, [Formula: see text] = 0.963) model. They show quite good external predictive power for the test set, with [Formula: see text] values of 0.602, 0.624, 0.671 and 0.750, respectively. In addition, the contour and color code map given by the 2D/3D-QSAR model with the results of molecular docking analyzed to chalk up modification methods for improving inhibitory activity, which was verified by designing novel compounds. The analysis results are helpful to promote the modification of the inhibitor framework and to provide a reference for the construction of new and promising BRD4 inhibitor compounds.


Assuntos
Proteínas de Ciclo Celular/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Pteridinas/química , Relação Quantitativa Estrutura-Atividade , Fatores de Transcrição/química , Sítios de Ligação , Proteínas de Ciclo Celular/antagonistas & inibidores , Desenho de Fármacos , Humanos , Conformação Molecular , Estrutura Molecular , Inibidores de Proteases/farmacologia , Ligação Proteica , Pteridinas/farmacologia , Fatores de Transcrição/antagonistas & inibidores
15.
Bioorg Med Chem Lett ; 31: 127684, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197548

RESUMO

Based on our previous work, a novel class of 8-cyclopentyl-7,8-dihydropteridin-6(5H)-one derivatives were synthesized and evaluated as antiproliferative agents. Structure-activity relationship analysis revealed that the greatest activities were achieved with a 4-(4-methylpiperazin-1-yl)aniline group at C-2 position of dihydropteridin-6(5H)-one core, and the most promising compound 6k demonstrated comparable antiproliferative activity with Palbociclib and more potent than our parent derivative 4 toward four cell lines including HCT-116, HeLa, HT-29, and MDA-MB-231 with IC50 values of 3.29, 6.75, 7.56, and 10.30 µM, respectively. Moreover, the mechanism studies revealed that compound 6k could induce cell cycle arrest at G2/M phase via a concentration-dependent manner. In general, these preliminary observations suggested that these compounds could serve as promising scaffolds for further modification to develop novel and highly potent cancer therapy agents.


Assuntos
Antineoplásicos/farmacologia , Pteridinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Pteridinas/síntese química , Pteridinas/química , Relação Estrutura-Atividade
16.
J Biol Inorg Chem ; 26(1): 81-91, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33381859

RESUMO

Mo nitrogenase is the primary source of biologically fixed nitrogen, making this system highly interesting for developing new, energy efficient ways of ammonia production. Although heavily investigated, studies of the active site of this enzyme have generally been limited to spectroscopic methods that are compatible with the presence of water and relatively low protein concentrations. One method of overcoming this limitation is through lyophilization, which allows for measurements to be performed on solvent free, high concentration samples. This method also has the potential for allowing efficient protein storage and solvent exchange. To investigate the viability of this preparatory method with Mo nitrogenase, we employ a combination of electron paramagnetic resonance, Mo and Fe K-edge X-ray absorption spectroscopy, and acetylene reduction assays. Our results show that while some small distortions in the metallocofactors occur, oxidation and spin states are maintained through the lyophilization process and that reconstitution of either lyophilized protein component into buffer restores acetylene reducing activity.


Assuntos
Nitrogenase/química , Acetileno/química , Biocatálise , Coenzimas/química , Espectroscopia de Ressonância de Spin Eletrônica , Ensaios Enzimáticos , Liofilização , Ferro/química , Metaloproteínas/química , Molibdênio/química , Cofatores de Molibdênio , Pteridinas/química , Espectroscopia por Absorção de Raios X
17.
Eur J Pharm Biopharm ; 157: 183-190, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33222770

RESUMO

Cancer drugs which are specifically targeted at mitosis have generally under-delivered as a class. One likely reason is that only a small percentage of cancer cells in a tumor are actually dividing at any moment. If this is the case, then prolonged bioavailability in the tumor should significantly increase the efficacy of antimitotic agents. Here, we show that if the Plk1 inhibitor BI 2536 is co-encapsulated in a liposome with a pair of anions, its release rate is dependent on both the identity and stoichiometry of the anions. We created a library of liposomes with varying release rates using this approach and found that liposomal drug release rates correlated inversely with in vitro cancer cell killing. Xenografted mice treated with a single dose of slow-releasing liposomal BI 2536 experienced tumor volume decreases lasting 12 days and complete responses in 20% of mice. Treatment with two doses a week apart increased the response rate to 75%. This approach, which we termed Paired Anion Calibrated Release (PACeR), has the potential to revive the clinical utility of antimitotic cancer drugs which have failed clinical trials.


Assuntos
Antimitóticos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Lipídeos/química , Mitose/efeitos dos fármacos , Pteridinas/farmacologia , Animais , Antimitóticos/química , Antimitóticos/farmacocinética , Neoplasias do Colo/patologia , Composição de Medicamentos , Liberação Controlada de Fármacos , Feminino , Células HCT116 , Humanos , Cinética , Lipossomos , Camundongos Nus , Pteridinas/química , Pteridinas/farmacocinética , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Biosci Rep ; 40(11)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33084886

RESUMO

The molybdenum cofactor (Moco) is a redox active prosthetic group found in the active site of Moco-dependent enzymes (Mo-enzymes). As Moco and its intermediates are highly sensitive towards oxidative damage, these are believed to be permanently protein bound during synthesis and upon maturation. As a major component of the plant Moco transfer and storage system, proteins have been identified that are capable of Moco binding and release but do not possess Moco-dependent enzymatic activities. The first protein found to possess these properties was the Moco carrier protein (MCP) from the green alga Chlamydomonas reinhardtii. Here, we describe the identification and biochemical characterisation of the Volvox carteri (V. carteri) MCP and, for the first time, employ a comparative analysis to elucidate the principles behind MCP Moco binding. Doing so identified a sequence region of low homology amongst the existing MCPs, which we showed to be essential for Moco binding to V. carteri MCP.


Assuntos
Proteínas de Transporte/metabolismo , Coenzimas/metabolismo , Metaloproteínas/metabolismo , Proteínas de Plantas/metabolismo , Pteridinas/metabolismo , Volvox/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Coenzimas/química , Coenzimas/genética , Metaloproteínas/química , Metaloproteínas/genética , Modelos Moleculares , Cofatores de Molibdênio , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Pteridinas/química , Relação Estrutura-Atividade , Volvox/genética
19.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 9): 453-463, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32880594

RESUMO

The molybdenum cofactor (Moco) is the prosthetic group of all molybdenum-dependent enzymes except for nitrogenase. The multistep biosynthesis pathway of Moco and its function in molybdenum-dependent enzymes are already well understood. The mechanisms of Moco transfer, storage and insertion, on the other hand, are not. In the cell, Moco is usually not found in its free form and remains bound to proteins because of its sensitivity to oxidation. The green alga Chlamydomonas reinhardtii harbors a Moco carrier protein (MCP) that binds and protects Moco but is devoid of enzymatic function. It has been speculated that this MCP acts as a means of Moco storage and transport. Here, the search for potential MCPs has been extended to the prokaryotes, and many MCPs were found in cyanobacteria. A putative MCP from Rippkaea orientalis (RoMCP) was selected for recombinant production, crystallization and structure determination. RoMCP has a Rossmann-fold topology that is characteristic of nucleotide-binding proteins and a homotetrameric quaternary structure similar to that of the MCP from C. reinhardtii. In each protomer, a positively charged crevice was identified that accommodates up to three chloride ions, hinting at a potential Moco-binding site. Computational docking experiments supported this notion and gave an impression of the RoMCP-Moco complex.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte/química , Cloretos/química , Coenzimas/química , Cianobactérias/química , Metaloproteínas/química , Pteridinas/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloretos/metabolismo , Clonagem Molecular , Coenzimas/metabolismo , Cristalografia por Raios X , Cianobactérias/genética , Cianobactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Metaloproteínas/genética , Metaloproteínas/metabolismo , Simulação de Acoplamento Molecular , Cofatores de Molibdênio , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Pteridinas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
20.
Bioorg Med Chem Lett ; 30(16): 127329, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32631534

RESUMO

A series of novel pteridinone derivatives possessing a hydrazone moiety were designed, synthesized and evaluated for their biological activity. Most of the synthesized compounds demonstrated moderate to excellent activity against A549, HCT116 and PC-3 cancer cell lines. In particular, compound L19 exhibited the most potent antiproliferative effects on three cell lines with IC50 values of 3.23 µM, 4.36 µM and 8.20 µM, respectively. In kinase assays, the compound L19 also showed potent inhibition activity toward PLK1 with % inhibition values of 75.1. Further mechanism studies revealed that compound L19 significantly inhibited proliferation of HCT-116 cell lines, induced a great decrease in mitochondrial membrane potential resulting in apoptosis of cancer cells, inhibited the migration of tumor cells, and arrested G1 phase of HCT116 cells.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Desenho de Fármacos , Hidrazonas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pteridinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proteínas de Ciclo Celular/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidrazonas/química , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Pteridinas/síntese química , Pteridinas/química , Relação Estrutura-Atividade , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA