Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Steroids ; 201: 109344, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979822

RESUMO

The striatal brain regions encompassing the nucleus accumbens core (NAcc), shell (NAcs) and caudate-putamen (CPu) regulate cognitive functions including motivated behaviors, habit, learning, and sensorimotor action, among others. Sex steroid hormone sensitivity and sex differences have been documented in all of these functions in both normative and pathological contexts, including anxiety, depression and addiction. The neurotransmitter glutamate has been implicated in regulating these behaviors as well as striatal physiology, and there are likewise documented sex differences in glutamate action upon the striatal output neurons, the medium spiny neurons (MSNs). Here we review the available data regarding the role of steroid sex hormones such as 17ß-estradiol (estradiol), progesterone, and testosterone in rapidly modulating MSN glutamatergic synapse properties, presented in the context of the estrous cycle as appropriate. Estradiol action upon glutamatergic synapse properties in female NAcc MSNs is most comprehensively discussed. In the female NAcc, MSNs exhibit development period-specific sex differences and estrous cycle variations in glutamatergic synapse properties as shown by multiple analyses, including that of miniature excitatory postsynaptic currents (mEPSCs). Estrous cycle-differences in NAcc MSN mEPSCs can be mimicked by acute exposure to estradiol or an ERα agonist. The available evidence, or lack thereof, is also discussed concerning estrogen action upon MSN glutamatergic synapse in the other striatal regions as well as the underexplored roles of progesterone and testosterone. We conclude that there is strong evidence regarding estradiol action upon glutamatergic synapse function in female NAcs MSNs and call for more research regarding other hormones and striatal regions.


Assuntos
Núcleo Accumbens , Progesterona , Feminino , Humanos , Masculino , Encéfalo , Estradiol/farmacologia , Ciclo Estral , Glutamatos , Núcleo Accumbens/fisiologia , Putamen/química , Sinapses , Testosterona , Núcleo Caudado/química , Núcleo Caudado/fisiologia
2.
Head Face Med ; 19(1): 34, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553683

RESUMO

Eggshell peptides (EP) majorly contribute to rapid bone building in chicks, wherefore this paper investigated their potential for stimulating osteogenesis in vitro. In this study, the effects of EP, also called putamen ovi peptides and a combination of hyaluronic acid with EP in cell culture medium were tested towards proliferation, differentiation, gene expression and mineralization of bovine osteoprogenitors and primary human osteoblasts. The influence of EP at concentrations of 0.005 g/L, 0.5 g/L and 0.5 g/L with 0.25% hyaluronic acid was analyzed using immunocytochemical staining of bone-specific matrix proteins, namely collagen type I, osteonectin, osteopontin and osteocalcin, to prove osteoblastic differentiation. Additionally, Richardson-staining was performed. All tests revealed a superior osteoblastic differentiation with EP at 0.5 g/L after 5 days of cultivation. Hyaluronic acid alone showed controversial results and partially constrained osteoblastic differentiation in combination with EP to a level as low as for pure EP at 0.005 g/L. Of particular interest is the osteoblast-typical mineralization, as an important indicator of bone formation, which was measured indirectly via the calcium concentration after cultivation over 4 weeks. The mineralization showed an increase by a factor of 286 during the cultivation of primary human osteoblasts with hyaluronic acid and EP. Meanwhile, cell cultures treated with EP (0.5 g/L) only showed an 80-fold increase in calcium concentration.The influence of EP (0.5 g/L) on primary human osteoblasts was investigated by gene expression after 2 weeks of cultivation. Microarray and qRT-PCR analysis showed a strongly increased expression of main important genes in bone formation, bone regeneration and the physiological bone remodelling processes. Namely, BMP 2, osteopontin and the matrix metalloproteinases 1 and 9, were present during in vitro osteoprogenitor culture with EP. By explicitly underlining the potential of eggshell peptides for stimulating osteogenesis, as well as emphasizing complex and controversial interaction with hyaluronan, this manuscript is relevant for developing new functionalized biomaterials for bone regeneration.


Assuntos
Ácido Hialurônico , Osteopontina , Animais , Bovinos , Humanos , Osteopontina/genética , Osteopontina/metabolismo , Osteopontina/farmacologia , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Cálcio/metabolismo , Cálcio/farmacologia , Putamen/química , Putamen/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Osteogênese , Diferenciação Celular , Osteocalcina/análise , Osteocalcina/genética , Osteocalcina/metabolismo , Osteoblastos , Células Cultivadas
3.
Neuroinformatics ; 20(4): 1121-1136, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35792992

RESUMO

Neuronal networks are regulated by three-dimensional spatial and structural properties. Despite robust evidence of functional implications in the modulation of cognition, little is known about the three-dimensional internal organization of cholinergic networks in the forebrain. Cholinergic networks in the forebrain primarily occur in subcortical nuclei, specifically the septum, nucleus basalis, globus pallidus, nucleus accumbens, and the caudate-putamen. Therefore, the present investigation analyzed the three-dimensional spatial organization of 14,000 cholinergic neurons that expressed choline acetyltransferase (ChAT) in these subcortical nuclei of the mouse forebrain. Point process theory and graph signal processing techniques identified three topological principles of organization. First, cholinergic interneuronal distance is not uniform across brain regions. Specifically, in the septum, globus pallidus, nucleus accumbens, and the caudate-putamen, the cholinergic neurons were clustered compared with a uniform random distribution. In contrast, in the nucleus basalis, the cholinergic neurons had a spatial distribution of greater regularity than a uniform random distribution. Second, a quarter of the caudate-putamen is composed of axonal bundles, yet the spatial distribution of cholinergic neurons remained clustered when axonal bundles were accounted for. However, comparison with an inhomogeneous Poisson distribution showed that the nucleus basalis and caudate-putamen findings could be explained by density gradients in those structures. Third, the number of cholinergic neurons varies as a function of the volume of a specific brain region but cell body volume is constant across regions. The results of the present investigation provide topographic descriptions of cholinergic somata distribution and axonal conduits, and demonstrate spatial differences in cognitive control networks. The study provides a comprehensive digital database of the total population of ChAT-positive neurons in the reported structures, with the x,y,z coordinates of each neuron at micrometer resolution. This information is important for future digital cellular atlases and computational models of the forebrain cholinergic system enabling models based on actual spatial geometry.


Assuntos
Colina O-Acetiltransferase , Globo Pálido , Animais , Camundongos , Colina O-Acetiltransferase/análise , Colina O-Acetiltransferase/metabolismo , Globo Pálido/química , Globo Pálido/metabolismo , Núcleo Accumbens/química , Núcleo Accumbens/metabolismo , Putamen/química , Putamen/metabolismo , Prosencéfalo/química , Prosencéfalo/metabolismo , Neurônios Colinérgicos/química , Neurônios Colinérgicos/metabolismo , Colinérgicos/análise , Análise Espacial
4.
J Comp Neurol ; 529(4): 786-801, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32632943

RESUMO

Sex steroid hormones such as 17ß-estradiol (estradiol) regulate neuronal function by binding to estrogen receptors (ERs), including ERα and GPER1, and through differential production via the enzyme aromatase. ERs and aromatase are expressed across the nervous system, including in the striatal brain regions. These regions, comprising the nucleus accumbens core, shell, and caudate-putamen, are instrumental for a wide-range of functions and disorders that show sex differences in phenotype and/or incidence. Sex-specific estrogen action is an integral component for generating these sex differences. A distinctive feature of the striatal regions is that in adulthood neurons exclusively express membrane but not nuclear ERs. This long-standing finding dominates models of estrogen action in striatal regions. However, the developmental etiology of ER and aromatase cellular expression in female and male striatum is unknown. This omission in knowledge is important to address, as developmental stage influences cellular estrogenic mechanisms. Thus, ERα, GPER1, and aromatase cellular immunoreactivity was assessed in perinatal, prepubertal, and adult female and male rats. We tested the hypothesis that ERα, GPER1, and aromatase exhibits sex, region, and age-specific differences, including nuclear expression. ERα exhibits nuclear expression in all three striatal regions before adulthood and disappears in a region- and sex-specific time-course. Cellular GPER1 expression decreases during development in a region- but not sex-specific time-course, resulting in extranuclear expression by adulthood. Somatic aromatase expression presents at prepuberty and increases by adulthood in a region- but not sex-specific time-course. These data indicate that developmental period exerts critical sex-specific influences on striatal cellular estrogenic mechanisms.


Assuntos
Núcleo Caudado/metabolismo , Receptor alfa de Estrogênio/biossíntese , Núcleo Accumbens/metabolismo , Putamen/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Caracteres Sexuais , Animais , Núcleo Caudado/química , Núcleo Caudado/crescimento & desenvolvimento , Receptor alfa de Estrogênio/análise , Feminino , Masculino , Núcleo Accumbens/química , Núcleo Accumbens/crescimento & desenvolvimento , Putamen/química , Putamen/crescimento & desenvolvimento , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/análise
5.
Sci Rep ; 10(1): 20314, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219259

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative illness caused by a mutation in the huntingtin gene (HTT) and subsequent protein (mhtt), to which the brain shows a region-specific vulnerability. Disturbances in neural cholesterol metabolism are established in HD human, murine and cell studies; however, cholesteryl esters (CE), which store and transport cholesterol in the brain, have not been investigated in human studies. This study aimed to identify region-specific alterations in the concentrations of CE in HD. The Victorian Brain Bank provided post-mortem tissue from 13 HD subjects and 13 age and sex-matched controls. Lipids were extracted from the caudate, putamen and cerebellum, and CE were quantified using targeted mass spectrometry. ACAT 1 protein expression was measured by western blot. CE concentrations were elevated in HD caudate and putamen compared to controls, with the elevation more pronounced in the caudate. No differences in the expression of ACAT1 were identified in the striatum. No remarkable differences in CE were detected in HD cerebellum. The striatal region-specific differences in CE profiles indicate functional subareas of lipid disturbance in HD. The increased CE concentration may have been induced as a compensatory mechanism to reduce cholesterol accumulation.


Assuntos
Núcleo Caudado/química , Ésteres do Colesterol/análise , Doença de Huntington/patologia , Putamen/química , Acetil-CoA C-Acetiltransferase/análise , Acetil-CoA C-Acetiltransferase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Casos e Controles , Núcleo Caudado/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Ésteres do Colesterol/metabolismo , Feminino , Humanos , Masculino , Espectrometria de Massas , Camundongos , Pessoa de Meia-Idade , Putamen/patologia
6.
Int J Legal Med ; 134(5): 1713-1718, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32524191

RESUMO

AIMS: Ethanol is a widespread substance that inherits desired effects, but also negative consequences with regard to DUI or battery. Where required, the ethanol concentration is usually determined in peripheral venous blood samples, while the brain is the target organ of the ethanol effects. The aim of this study with three participants was the determination of the ethanol concentration in functionally relevant regions of the brain and the comparison with serum ethanol concentrations. DESIGN: After the uptake of ethanol in a calculated amount, leading to a serum ethanol concentration of 0.99 g/L, the ethanol concentrations in the brain were directly analyzed by means of magnetic resonance spectroscopy on a 3 Tesla human MRI system and normalized to the water content. The measurement voxels were located in the occipital cortex, the cerebellum, the frontal cortex, and the putamen and successively examined. Intermittently blood samples were taken, and serum was analyzed for ethanol using HS-GC-FID. FINDINGS AND CONCLUSIONS: Ethanol concentrations in brain regions normalized to the water content were lower than the measured serum ethanol results and rather homogenous within the three participants and the various regions of the brain. The maximum ethanol concentration in the brain (normalized to water content) was 0.68 g/L. It was measured in the frontal cortex, in which the highest results were gained. The maximum serum concentration was 1.19 g/L. The course of the brain ethanol curve seems to be flatter than the one of the serum ethanol concentrations.


Assuntos
Concentração Alcoólica no Sangue , Encéfalo/diagnóstico por imagem , Cerebelo/química , Etanol/análise , Lobo Frontal/química , Lobo Occipital/química , Putamen/química , Química Encefálica , Humanos , Espectroscopia de Ressonância Magnética , Masculino
7.
J Neurochem ; 152(6): 623-626, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31917872

RESUMO

The dorsal striatum coordinates input-output processing of numerous functions including those related to motor activity, motivation, and learning. Considerable anatomical and biochemical heterogeneity across striatal subregions has long been known to result in distinct functional outcomes, and for imbalances in these pathways to contribute to many complex disorders. Here we highlight the study of Hörtnagl et al. (2019) who utilize precision dissection of human caudate nucleus and putamen for detailed measurement of major neurochemical markers to address the question of anatomical heterogeneity of neurotransmitter distribution and turnover in these regions. The findings identify gradients of neurotransmitter markers in rostro-caudal, dorso-lateral, and anterior-posterior directions with a precision that has not been previously determined in humans. Correlative analyses of the results also suggest tentative links between content of various neurotransmitters in specific subregions, raising the intriguing possibility that neurotransmitter quantity in one territory may correlate with the quantity of the same or different transmitter from another territory. This suggests the presence of a functional anatomy over extensive brain regions and networks that can be studied through multiple correlative analyses, and identify a possible basis for a new approach for postmortem analysis of neurotransmitter distribution and function.


Assuntos
Biomarcadores/análise , Núcleo Caudado/química , Neurotransmissores/análise , Putamen/química , Idoso , Feminino , Humanos , Masculino , Mudanças Depois da Morte
8.
J Comp Neurol ; 528(3): 453-467, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31483857

RESUMO

Continuing investigations of corticostriatal connections in rodents emphasize an intricate architecture where striatal projections originate from different combinations of cortical layers, include an inhibitory component, and form terminal arborizations which are cell-type dependent, extensive, or compact. Here, we report that in macaque monkeys, deep and superficial cortical white matter neurons (WMNs), peri-claustral WMNs, and the claustrum proper project to the putamen. WMNs retrogradely labeled by injections in the putamen (four injections in three macaques) were widely distributed, up to 10 mm antero-posterior from the injection site, mainly dorsal to the putamen in the external capsule, and below the premotor cortex. Striatally projecting labeled WMNs (WMNsST) were heterogeneous in size and shape, including a small GABAergic component. We compared the number of WMNsST with labeled claustral and cortical neurons and also estimated their proportion in relation to total WMNs. Since some WMNsST were located adjoining the claustrum, we wanted to compare results for density and distribution of striatally projecting claustral neurons (ClaST). ClaST neurons were morphologically heterogeneous and mainly located in the dorsal and anterior claustrum, in regions known to project to frontal, motor, and cingulate cortical areas. The ratio of ClaST to WMNsST was about 4:1 averaged across the four injections. These results provide new specifics on the connectional networks of WMNs in nonhuman primates, and delineate additional loops in the corticostriatal architecture, consisting of interconnections across cortex, claustralstriatal and striatally projecting WMNs.


Assuntos
Claustrum/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Putamen/fisiologia , Substância Branca/fisiologia , Animais , Claustrum/química , Feminino , Macaca , Macaca mulatta , Masculino , Rede Nervosa/química , Vias Neurais/química , Vias Neurais/fisiologia , Neurônios/química , Putamen/química , Substância Branca/química
9.
J Neurochem ; 152(6): 650-662, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31608979

RESUMO

The caudate nucleus (CN) and the putamen (PUT) as parts of the human striatum are distinguished by a marked heterogeneity in functional, anatomical, and neurochemical patterns. Our study aimed to document in detail the regional diversity in the distribution of dopamine (DA), serotonin, γ-aminobuturic acid, and choline acetyltransferase within the CN and PUT. For this purpose we dissected the CN as well as the PUT of 12 post-mortem brains of human subjects with no evidence of neurological and psychiatric disorders (38-81 years old) into about 80 tissue parts. We then investigated rostro-caudal, dorso-ventral, and medio-lateral gradients of these neurotransmitter markers. All parameters revealed higher levels, turnover rates, or activities in the PUT than in the CN. Within the PUT, DA levels increased continuously from rostral to caudal. In contrast, the lowest molar ratio of homovanillic acid to DA, a marker of DA turnover, coincided with highest DA levels in the caudal PUT, the part of the striatum with the highest loss of DA in Parkinson's disease (N. Engl. J. Med., 318, 1988, 876). Highest DA concentrations were found in the most central areas both in the PUT and CN. We observed an age-dependent loss of DA in the PUT and CN that did not correspond to the loss described for Parkinson's disease indicating different mechanisms inducing the deficit of DA. Our data demonstrate a marked heterogeneity in the anatomical distribution of neurotransmitter markers in the human dorsal striatum indicating anatomical and functional diversity within this brain structure.


Assuntos
Biomarcadores/análise , Núcleo Caudado/química , Neurotransmissores/análise , Putamen/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Núcleo Caudado/fisiologia , Colina O-Acetiltransferase/análise , Dopamina/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/metabolismo , Mudanças Depois da Morte , Putamen/fisiologia , Serotonina/análise , Ácido gama-Aminobutírico/análise
10.
Addict Biol ; 24(3): 438-446, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29441714

RESUMO

Opioid addiction is a serious public health concern with severe health and social implications; therefore, extensive therapeutic efforts are required to keep users drug free. The two main pharmacological interventions, in the treatment of addiction, involve management with methadone an mu (µ)-opioid agonist and treatment with naltrexone, µ-opioid, kappa (κ)-opioid and delta (δ)-opioid antagonist. MET and NAL are believed to help individuals to derive maximum benefit from treatment and undergo a full recovery. The aim of this study was to determine the localization and distribution of MET and NAL, over a 24-hour period in rodent brain, in order to investigate the differences in their respective regional brain distributions. This would provide a better understanding of the role of each individual drug in the treatment of addiction, especially NAL, whose efficacy is controversial. Tissue distribution was determined by using mass spectrometric imaging (MSI), in combination with quantification via liquid chromatography tandem mass spectrometry. MSI image analysis showed that MET was highly localized in the striatal and hippocampal regions, including the nucleus caudate, putamen and the upper cortex. NAL was distributed with high intensities in the mesocorticolimbic system including areas of the cortex, caudate putamen and ventral pallidum regions. Our results demonstrate that MET and NAL are highly localized in the brain regions with a high density of µ-receptors, the primary sites of heroin binding. These areas are strongly implicated in the development of addiction and are the major pathways that mediate brain stimulation during reward.


Assuntos
Encéfalo/metabolismo , Metadona/farmacologia , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Transtornos Relacionados ao Uso de Opioides/metabolismo , Animais , Núcleo Caudado/química , Córtex Cerebral/química , Hipocampo/química , Masculino , Metadona/farmacocinética , Naltrexona/farmacocinética , Antagonistas de Entorpecentes/farmacocinética , Transtornos Relacionados ao Uso de Opioides/prevenção & controle , Putamen/química , Ratos Sprague-Dawley
11.
PLoS One ; 12(7): e0181677, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28742811

RESUMO

In rodent and human brains, the small GTP-binding protein Rhes is highly expressed in virtually all dopaminoceptive striatal GABAergic medium spiny neurons, as well as in large aspiny cholinergic interneurons, where it is thought to modulate dopamine-dependent signaling. Consistent with this knowledge, and considering that dopaminergic neurotransmission is altered in neurological and psychiatric disorders, here we sought to investigate whether Rhes mRNA expression is altered in brain regions of patients with Parkinson's disease (PD), Schizophrenia (SCZ), and Bipolar Disorder (BD), when compared to healthy controls (about 200 post-mortem samples). Moreover, we performed the same analysis in the putamen of non-human primate Macaca Mulatta, lesioned with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Overall, our data indicated comparable Rhes mRNA levels in the brain of patients with SCZ and BD, and their respective healthy controls. In sharp contrast, the putamen of patients suffering from PD showed a significant 35% reduction of this transcript, compared to healthy subjects. Interestingly, in line with observations obtained in humans, we found 27% decrease in Rhes mRNA levels in the putamen of MPTP-treated primates. Based on the established inhibitory influence of Rhes on dopamine-related responses, we hypothesize that its striatal downregulation in PD patients and animal models of PD might represent an adaptive event of the dopaminergic system to functionally counteract the reduced nigrostriatal innervation.


Assuntos
Química Encefálica , Proteínas de Ligação ao GTP/metabolismo , Doença de Parkinson/metabolismo , RNA Mensageiro/análise , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Idoso , Idoso de 80 Anos ou mais , Animais , Transtorno Bipolar/metabolismo , Química Encefálica/efeitos dos fármacos , Estudos de Casos e Controles , Feminino , Humanos , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Putamen/química , Putamen/metabolismo , RNA Mensageiro/metabolismo , Esquizofrenia/metabolismo
12.
Parkinsonism Relat Disord ; 21(12): 1448-53, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26559130

RESUMO

PURPOSE: The young-onset subtype of Parkinson's disease (YOPD) differs from the late-onset subtype (LOPD) in drug responsiveness, incidence of motor complications, and prognosis. The pathophysiology underlying these differences remains largely unknown. This study investigated whether the two subtypes differ in the pattern of dysfunction in striatal (caudate and putamen) dopaminergic system and if the dopamine transporter (DAT) imaging patterns are associated with the clinical features of corresponding PD subtype. METHODS: We assessed the spatial pattern of striatal dopaminergic dysfunction in 40 YOPD and 47 LOPD with early to mid-stage PD with DAT imaging by positron emission tomography. Two sub-regional parameters (caudate/putamen ratio and asymmetry index) were calculated to measure the spatial pattern of striatal dopaminergic dysfunction. RESULTS: The caudate/anterior putamen ratios were significantly higher in YOPD than that in the LOPD (P = 0.03 contralateral to the most affected side of the body and P = 0.004 ipsilateral), which was supported by significantly inverse correlations between age of onset and caudate/anterior putamen ratios (r = -0.428, P < 0.001 for the contralateral and r = -0.576, P < 0.001 for the ipsilateral). Sub-regional DAT binding in caudate ipsilateral to affected limbs was significantly correlated with age, while DAT bindings in putamen were significantly inversely correlated with disease duration and UPDRS motor scores. CONCLUSION: The YOPD subtype suffers from an uneven pattern of dopaminergic dysfunction: more sparing of the caudate compared with the putamen, while the LOPD patients is with a relatively uniform pattern.


Assuntos
Núcleo Caudado/diagnóstico por imagem , Proteínas da Membrana Plasmática de Transporte de Dopamina/análise , Neurônios Dopaminérgicos/diagnóstico por imagem , Neuroimagem/métodos , Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Putamen/diagnóstico por imagem , Adulto , Idade de Início , Idoso , Radioisótopos de Carbono/análise , Radioisótopos de Carbono/farmacocinética , Núcleo Caudado/química , Núcleo Caudado/patologia , Cocaína/análogos & derivados , Cocaína/análise , Cocaína/farmacocinética , Neurônios Dopaminérgicos/química , Neurônios Dopaminérgicos/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Especificidade de Órgãos , Doença de Parkinson/classificação , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Putamen/química , Putamen/patologia , Compostos Radiofarmacêuticos/análise , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
13.
J Neurol Sci ; 357(1-2): 264-9, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26276514

RESUMO

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a 20kDa human protein which has both neuroprotective and neurorestorative activity on dopaminergic neurons and therefore may have application for the treatment of Parkinson's Disease. The aims of this study were to determine the translational potential of convection-enhanced delivery (CED) of MANF for the treatment of PD by studying its distribution in porcine putamen and substantia nigra and to correlate histological distribution with co-infused gadolinium-DTPA using real-time magnetic resonance imaging. We describe the distribution of MANF in porcine putamen and substantia nigra using an implantable CED catheter system using co-infused gadolinium-DTPA to allow real-time MRI tracking of infusate distribution. The distribution of gadolinium-DTPA on MRI correlated well with immunohistochemical analysis of MANF distribution. Volumetric analysis of MANF IHC staining indicated a volume of infusion (Vi) to volume of distribution (Vd) ratio of 3 in putamen and 2 in substantia nigra. This study confirms the translational potential of CED of MANF as a novel treatment strategy in PD and also supports the co-infusion of gadolinium as a proxy measure of MANF distribution in future clinical studies. Further study is required to determine the optimum infusion regime, flow rate and frequency of infusions in human trials.


Assuntos
Convecção , Sistemas de Liberação de Medicamentos/métodos , Fatores de Crescimento Neural/administração & dosagem , Putamen/química , Substância Negra/química , Animais , Humanos , Infusões Intraventriculares , Masculino , Putamen/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , Suínos
14.
Neuropathol Appl Neurobiol ; 40(3): 258-69, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23678850

RESUMO

INTRODUCTION: Magnetic resonance imaging (MRI) cerebral microbleeds (CMB) arise from ferromagnetic haemosiderin iron assumed to derive from extravasation of erythrocytes. Light microscopy of ageing brain frequently reveals foci of haemosiderin from single crystalloids to larger, predominantly perivascular, aggregates. The pathological and radiological relationship between these findings is not resolved. METHODS: Haemosiderin deposition and vascular pathology in the putamen were quantified in 200 brains donated to the population-representative Medical Research Council Cognitive Function and Ageing Study. Molecular markers of gliosis and tissue integrity were assessed by immunohistochemistry in brains with highest (n = 20) and lowest (n = 20) levels of putamen haemosiderin. The association between haemosiderin counts and degenerative and vascular brain pathology, clinical data, and the haemochromatosis (HFE) gene H63D genotype were analysed. The frequency of MRI CMB in 10 cases with highest and lowest burden of putamen haemosiderin, was compared using post mortem 3T MRI. RESULTS: Greater putamen haemosiderin was significantly associated with putaminal indices of small vessel ischaemia (microinfarcts, P < 0.05; arteriolosclerosis, P < 0.05; perivascular attenuation, P < 0.001) and with lacunes in any brain region (P < 0.023) but not large vessel disease, or whole brain measures of neurodegenerative pathology. Higher levels of putamen haemosiderin correlated with more CMB (P < 0.003). CONCLUSIONS: The MRI-CMB concept should take account of brain iron homeostasis, and small vessel ischaemic change in later life, rather than only as a marker for minor episodes of cerebrovascular extravasation. These data are of clinical relevance, suggesting that basal ganglia MRI microbleeds may be a surrogate for ischaemic small vessel disease rather than exclusively a haemorrhagic diathesis.


Assuntos
Isquemia Encefálica/patologia , Encéfalo/patologia , Hemossiderina/análise , Putamen/patologia , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Putamen/química
15.
Neurobiol Dis ; 62: 307-12, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24148855

RESUMO

A role for enhanced peptidergic transmission, either opioidergic or not, has been proposed for the generation of l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia (LID) on the basis of in situ hybridization studies showing that striatal peptidergic precursor expression consistently correlates with LID severity. Few studies, however, have focused on the actual peptides derived from these precursors. We used mass-spectrometry to study peptide profiles in the putamen and globus pallidus (internalis and externalis) collected from 1-methyl-4-phenyl-1,2,4,6-tetrahydropyridine treated macaque monkeys, acutely or chronically treated with l-DOPA. We identified that parkinsonian and dyskinetic states are associated with an abnormal production of proenkephalin-, prodynorphin- and protachykinin-1-derived peptides in both segments of the globus pallidus. Moreover, we report that peptidergic processing is dopamine-state dependent and highly structure-specific, possibly explaining the failure of previous clinical trials attempting to rectify abnormal peptidergic transmission.


Assuntos
Antiparkinsonianos/toxicidade , Discinesia Induzida por Medicamentos/metabolismo , Globo Pálido/metabolismo , Levodopa/toxicidade , Neuropeptídeos/metabolismo , Transtornos Parkinsonianos/metabolismo , Putamen/química , Animais , Encefalinas/análise , Encefalinas/metabolismo , Feminino , Globo Pálido/química , Macaca mulatta , Neuropeptídeos/análise , Precursores de Proteínas/análise , Precursores de Proteínas/metabolismo , Putamen/metabolismo , Taquicininas/análise , Taquicininas/metabolismo
16.
J Huntingtons Dis ; 3(4): 377-86, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25575959

RESUMO

BACKGROUND: Previous cross-sectional magnetic resonance spectroscopy (MRS) studies in Huntington's disease (HD) have demonstrated differences in metabolite concentrations in several regions of interest, especially the putamen and caudate nucleus. OBJECTIVE: To assess metabolite changes in both premanifest and early HD over a two year follow up period using MRS at 7 Tesla in several regions of interest. METHODS: In 13 HD gene carriers (10 premanifest and 3 manifest HD) proton MRS was performed at baseline and after 24 months. At follow up, four of the premanifest HD gene carriers had progressed into manifest HD, as assessed by clinical measures. 7T MR proton spectroscopy was performed in three regions of interest; the caudate nucleus, putamen and prefrontal cortex. Six metabolites were quantified for each region at each time point. Statistical analysis was performed using Wilcoxon signed rank tests. RESULTS: Across all subjects, a longitudinal decrease in the caudate nucleus in creatine (p = 0.038) and myo-inositol (p = 0.015) concentrations was found. A significant decrease in the putamen was seen in the total N-acetylaspartate (tNAA) (p = 0.028) and choline concentrations (p = 0.028). For premanifest HD converters, a non-significant high rate of tNAA decrease in the putamen was found compared to non-converting premanifest HD. CONCLUSION: Over a two year period we have demonstrated metabolite changes in the caudate nucleus and putamen of HD gene carriers around disease onset. This demonstrates the potential of MRS for providing a biomarker of disease progression and for evaluating future therapeutic interventions.


Assuntos
Doença de Huntington/metabolismo , Imagem Molecular/métodos , Adulto , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Núcleo Caudado/química , Núcleo Caudado/metabolismo , Creatinina/metabolismo , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/química , Córtex Pré-Frontal/metabolismo , Putamen/química , Putamen/metabolismo
17.
Neuromolecular Med ; 15(2): 295-309, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23385980

RESUMO

Adenosine A2A receptor (A2AR) is a G-protein-coupled receptor highly expressed in basal ganglia. Its expression levels are severely reduced in Huntington's disease (HD), and several pharmacological therapies have shown its implication in this neurodegenerative disorder. The main goal of this study was to gain insight into the molecular mechanisms that regulate A2AR gene (ADORA2A) expression in HD. Based on previous data reported by our group, we measured the methylcytosine (5mC) and hydroxymethylcytosine (5hmC) content in the 5'UTR region of ADORA2A in the putamen of HD patients and in the striatum of R6/1 and R6/2 mice at late stages of the disease. In this genomic region, 5mC and 5hmC remained unchanged in both mice strains, although low striatal A2AR levels were associated with reduced 5mC levels in 30-week-old R6/1 mice and reduced 5hmC levels in 12-week-old R6/2 mice in exon m2. In order to analyze when this mechanism appears during the progression of the disease, a time course for A2AR protein levels was carried out in R6/1 mice striatum (8, 12, and 20 weeks of age). A2AR levels were reduced from 12 weeks of age onwards, and this downregulation was concomitant with reduced 5hmC levels in the 5'UTR region of ADORA2A. Interestingly, increased 5mC levels and reduced 5hmC were found in the 5'UTR region of ADORA2A in the putamen of HD patients with respect to age-matched controls. Therefore, an altered DNA methylation pattern in ADORA2A seems to play a role in the pathologically decreased A2AR expression levels found in HD.


Assuntos
Regiões 5' não Traduzidas/genética , 5-Metilcitosina/análise , Corpo Estriado/metabolismo , Citosina/análogos & derivados , Metilação de DNA , Doença de Huntington/genética , Putamen/metabolismo , Receptor A2A de Adenosina/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Corpo Estriado/química , Citosina/análise , Modelos Animais de Doenças , Progressão da Doença , Regulação para Baixo , Feminino , Regulação da Expressão Gênica , Humanos , Proteína Huntingtina , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Putamen/química
18.
Neuroimage ; 70: 113-21, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23277110

RESUMO

Accumulation of non-heme iron in the brain has been proposed as a biomarker of the progressive neuroanatomical and cognitive declines in healthy adult aging. Postmortem studies indicate that iron content and lifespan differences therein are regionally specific, with a predilection for the basal ganglia. However, the reported in vivo estimates of adult age differences in iron content within subcortical nuclei are highly variable. We present a meta-analysis of 20 in vivo magnetic resonance imaging (MRI) studies that estimated iron content in the caudate nucleus, globus pallidus, putamen, red nucleus, and substantia nigra. The results of the analyses support a robust association between advanced age and high iron content in the substantia nigra and striatum, with a smaller effect noted in the globus pallidus. The magnitude of age differences in estimated iron content of the caudate nucleus and putamen partially depended on the method of estimation, but not on the type of design (continuous age vs. extreme age groups).


Assuntos
Química Encefálica , Ferro/análise , Imageamento por Ressonância Magnética , Fatores Etários , Gânglios da Base/química , Núcleo Caudado/química , Corpo Estriado/química , Globo Pálido/química , Humanos , Putamen/química , Núcleo Rubro/química , Substância Negra/química
19.
Biol Trace Elem Res ; 151(1): 18-29, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23111949

RESUMO

Trace elements and the relationships among them were investigated by direct chemical analysis in three basal ganglia regions in very old age individuals and age- and gender-related differences were assessed. After ordinary dissections at Nara Medical University were finished, the caudate nucleus, putamen, and globus pallidus belonging to the basal ganglia were removed from the identical cerebra of the subjects who consisted of 22 men and 23 women, ranging in age from 70 to 101 years (average age = 83.3 ± 7.5 years). After incineration with nitric acid and perchloric acid, the element contents were determined by inductively coupled plasma-atomic emission spectrometry. It was found that the Ca, P, and Mg contents increased significantly in the putamen with aging and the Mg content increased significantly in the globus pallidus with aging, but no elements increased significantly in the caudate nucleus with aging. Regarding the relationships among elements in the basal ganglia, extremely significant direct correlations were found among the Ca, P, and Mg contents in the putamen. These results suggested that slight calcification occurred in the putamen in very old age. With regard to seven elements of Ca, P, S, Mg, Zn, Fe, and Na, it was examined whether there were significant correlations among the caudate nucleus, putamen, and globus pallidus. It was found that there were extremely significant direct correlations among all of the three basal ganglia in the P content. Likewise, with regard to the Fe content, there were extremely or very significant direct correlations among all of the three basal ganglia. Regarding the gender difference in elements, it was found that the Ca content of the caudate nucleus was significantly higher in women than in men.


Assuntos
Envelhecimento , Gânglios da Base/química , Oligoelementos/análise , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Cadáver , Cálcio/análise , Núcleo Caudado/química , Feminino , Globo Pálido/química , Humanos , Ferro/análise , Magnésio/análise , Masculino , Fósforo/análise , Putamen/química , Fatores Sexuais , Sódio/análise , Espectrofotometria Atômica , Enxofre/análise , Zinco/análise
20.
Mol Cancer ; 11: 65, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22966858

RESUMO

BACKGROUND: The invasion of glioblastoma cells into regions of the normal brain is a critical factor that limits current therapies for malignant astrocytomas. Previous work has identified roles for the Rho family guanine nucleotide exchange factors Trio and Vav3 in glioblastoma invasion. Both Trio and Vav3 act on the small GTPase RhoG. We therefore examined the role of RhoG in the invasive behavior of glioblastoma cells. RESULTS: We found that siRNA-mediated depletion of RhoG strongly inhibits invasion of glioblastoma cells through brain slices ex vivo. In addition, depletion of RhoG has a marginal effect on glioblastoma cell proliferation, but significantly inhibits glioblastoma cell survival in colony formation assays. We also observed that RhoG is activated by both HGF and EGF, two factors that are thought to be clinically relevant drivers of glioblastoma invasive behavior, and that RhoG is overexpressed in human glioblastoma tumors versus non-neoplastic brain. In search of a mechanism for the contribution of RhoG to the malignant behavior of glioblastoma cells, we found that depletion of RhoG strongly inhibits activation of the Rac1 GTPase by both HGF and EGF. In line with this observation, we also show that RhoG contributes to the formation of lamellipodia and invadopodia, two functions that have been shown to be Rac1-dependent. CONCLUSIONS: Our functional analysis of RhoG in the context of glioblastoma revealed a critical role for RhoG in tumor cell invasion and survival. These results suggest that targeting RhoG-mediated signaling presents a novel avenue for glioblastoma therapy.


Assuntos
Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Glioblastoma/enzimologia , Glioblastoma/patologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Neoplasias Encefálicas/química , Neoplasias Encefálicas/metabolismo , Processos de Crescimento Celular/fisiologia , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Glioblastoma/química , Glioblastoma/metabolismo , Humanos , Camundongos , Invasividade Neoplásica , Neuropeptídeos/metabolismo , Pseudópodes/metabolismo , Pseudópodes/ultraestrutura , Putamen/química , Putamen/metabolismo , RNA Interferente Pequeno/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP , Proteínas rho de Ligação ao GTP/análise , Proteínas rho de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA