RESUMO
The rhizome concept proposed by Gilles Deleuze and Félix Guattari offers a novel perspective on the organization and interdependence of complex constellations of heterogeneous entities, their mapping and their ruptures. The emphasis of the present study is placed on the dynamics of contacts and communication among such entities that arise from experimentation, without any favored hierarchy or origin. When applied to biological evolution, the rhizome concept integrates all types of heterogeneity resulting from "symbiotic" relationships among living beings (or their genomic material), horizontal genetic transfer, recombination and mutation, and breaks away from the approach that gives rise to the phylogenetic tree of life. It has already been applied to describe the dynamics and evolution of RNA viruses. Thus, here we introduce a novel framework for the interpretation the viral quasispecies concept, which explains the evolution of RNA virus populations as the result of dynamic interconnections and multifaceted interdependence between highly heterogeneous viral sequences and its inherently heterogeneous host cells. The rhizome network perspective underlines even further the medical implications of the broad mutant spectra of viruses that are in constant flow, given the multiple pathways they have available for fitness loss and gain.
Assuntos
Evolução Molecular , Filogenia , Quase-Espécies , Rizoma , Rizoma/virologia , Quase-Espécies/genética , Vírus de RNA/genética , Vírus de RNA/classificação , Transferência Genética Horizontal , Mutação , Genoma ViralRESUMO
Although a combination of immunoprophylaxis and antiviral therapy can effectively prevent mother-to-child transmission (MTCT) of hepatitis B virus (HBV), a considerable number of infants born to highly viremic mothers still develop occult HBV infection (OBI). To uncover the virological factor and risk predictor for OBI in infants, we found that the diversity and complexity of maternal HBV quasispecies in the case group were lower than those in the control group. Mutations with significant differences between the two groups were most enriched in the NTCPbd and PreC regions. Genetic distance at the amino-acid level of the PreC region, especially the combination of three amino-acid mutations in the PreC region, could strongly predict the risk of OBI in infants. HBV quasispecies in OBI infants were highly complex, and the non-synonymous substitutions were mainly found in the RT and HBsAg regions. The sK47E (rtQ55R) and sP49L mutations in OBI infants might contribute to OBI through inhibiting the production of HBV DNA and HBsAg, respectively. This study found the potential virological factors and risk predictors for OBI in infants born to highly viremic mothers, which might be helpful for controlling OBI in infants.
Assuntos
DNA Viral , Vírus da Hepatite B , Hepatite B , Transmissão Vertical de Doenças Infecciosas , Mutação , Quase-Espécies , Viremia , Humanos , Vírus da Hepatite B/genética , Vírus da Hepatite B/classificação , Vírus da Hepatite B/isolamento & purificação , Feminino , Quase-Espécies/genética , Hepatite B/virologia , Hepatite B/transmissão , DNA Viral/genética , Lactente , Gravidez , Adulto , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/sangue , Recém-Nascido , Complicações Infecciosas na Gravidez/virologia , Masculino , Mães , GenótipoRESUMO
The evolution of SARS-CoV-2, the agent of COVID-19, has been remarkable for its high mutation potential, leading to the appearance of variants. Some mutations have never appeared in the published genomes, which represent consensus, or bona fide genomes. Here we tested the hypothesis that mutations that did not appear in consensus genomes were, in fact, as frequent as the mutations that appeared during the various epidemic episodes, but were not expressed because lethal. To identify these mutations, we analysed the genomes of 90 nasopharyngeal samples and the quasispecies determined by next-generation sequencing. Mutations observed in the quasispecies and not in the consensus genomes were considered to be lethal, what we called "outlaw" mutations. Among these mutations, we analysed the 21 most frequent. Eight of these "outlaws" were in the RNA polymerase and we were able to use a structural biology model and molecular dynamics simulations to demonstrate the functional incapacity of these mutated RNA polymerases. Three other mutations affected the spike, a major protein involved in the pathogenesis of COVID-19. Overall, by analysing the SARS-CoV-2 quasispecies obtained during sequencing, this method made it possible to identify "outlaws," showing areas that could potentially become the target of treatments.
Assuntos
COVID-19 , Genoma Viral , Mutação , Quase-Espécies , SARS-CoV-2 , Replicação Viral , SARS-CoV-2/genética , SARS-CoV-2/classificação , Humanos , COVID-19/virologia , Quase-Espécies/genética , Glicoproteína da Espícula de Coronavírus/genética , Sequenciamento de Nucleotídeos em Larga Escala , Nasofaringe/virologia , Simulação de Dinâmica MolecularRESUMO
In quasispecies diversity studies, the comparison of two samples of varying sizes is a common necessity. However, the sensitivity of certain diversity indices to sample size variations poses a challenge. To address this issue, rarefaction emerges as a crucial tool, serving to normalize and create fairly comparable samples. This study emphasizes the imperative nature of sample size normalization in quasispecies diversity studies using next-generation sequencing (NGS) data. We present a thorough examination of resampling schemes using various simple hypothetical cases of quasispecies showing different quasispecies structures in the sense of haplotype genomic composition, offering a comprehensive understanding of their implications in general cases. Despite the big numbers implied in this sort of study, often involving coverages exceeding 100,000 reads per sample and amplicon, the rarefaction process for normalization should be performed with repeated resampling without replacement, especially when rare haplotypes constitute a significant fraction of interest. However, it is noteworthy that different diversity indices exhibit distinct sensitivities to sample size. Consequently, some diversity indicators may be compared directly without normalization, or instead may be resampled safely with replacement.
Assuntos
Variação Genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Quase-Espécies , Vírus , Quase-Espécies/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Vírus/genética , Vírus/classificação , Vírus/isolamento & purificação , Genoma Viral , Humanos , Genômica/métodos , Filogenia , Tamanho da AmostraRESUMO
BACKGROUND: To analysis of quasispecies (QS) changes and high-frequency mutations in the BCP/PreC/C region of patients at different phases of hepatitis B virus (HBV) infection and provides novel biomarkers for the diagnosis of chronic hepatitis B (CHB) patients. METHODS: With the application of next-generation sequencing technology, we were able to sequence the HBV BCP/PreC/C regions in 40 patients, each at different phases of the HBV infection. The heterogeneity of QS and the frequency of mutations were calculated using MEGA 7 software. RESULTS: Our results show that the complexity and diversity of the BCP/PreC/C QS in HBeAg-positive CHB patients are significantly higher than those in HBeAg-positive chronic infection patients, while HBeAg-negative chronic infection patients had significantly higher QS complexity and diversity than HBeAg-negative CHB patients. In addition, HBeAg-negative patients showed reduced complexity but increased diversity compared with HBeAg-positive patients. Receiver operating characteristic curves showed that G1764A, C2102T, dN and complexity of QS could be used as potential biomarkers for diagnosing HBeAg-positive CHB, while the A2189C, dS and complexity of QS could be used as potential biomarkers for diagnosing HBeAg-negative chronic hepatitis. Finally, our study also found that G1896A and A2159G may be hotspot mutations affecting HBeAg seroconversion. CONCLUSION: Our research elucidates the evolution of HBV by analyzing QS heterogeneity and mutation patterns, offering novel serum biomarkers for enhancing clinical diagnosis and disease prognosis. This comprehensive approach sheds light on the intricate dynamics of HBV progression and paves the way for more precise medical interventions.
Assuntos
DNA Viral , Antígenos E da Hepatite B , Vírus da Hepatite B , Hepatite B Crônica , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Quase-Espécies , Humanos , Vírus da Hepatite B/genética , Vírus da Hepatite B/classificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hepatite B Crônica/virologia , Hepatite B Crônica/sangue , Quase-Espécies/genética , Masculino , Feminino , Antígenos E da Hepatite B/sangue , Adulto , DNA Viral/genética , DNA Viral/sangue , Pessoa de Meia-Idade , Adulto Jovem , Biomarcadores/sangue , GenótipoRESUMO
Here, we report the in-host hepatitis E virus (HEV) quasispecies evolution in a chronically infected patient who was treated with three different regimens of ribavirin (RBV) for nearly 6 years. Sequential plasma samples were collected at different time points and subjected to RNA extraction and deep sequencing using the MiSeq Illumina platforms. Specifically, we RT-PCR amplified a single amplicon from the core region located in the open-reading frame 2 (ORF2). At the nucleotide level (genotype), our analysis showed an increase in the number of rare haplotypes and a drastic reduction in the frequency of the master (most represented) sequence during the period when the virus was found to be insensitive to RBV treatment. Contrarily, at the amino acid level (phenotype), our study revealed conservation of the amino acids, which is represented by a high prevalence of the master sequence. Our findings suggest that using mutagenic antivirals concomitant with high viral loads can lead to the selection and proliferation of a rich set of synonymous haplotypes that express the same phenotype. This can also lead to the selection and proliferation of conservative substitutions that express fitness-enhanced phenotypes. These results have important clinical implications, as they suggest that using mutagenic agents as a monotherapy treatment regimen in the absence of sufficiently effective viral inhibitors can result in diversification and proliferation of a highly diverse quasispecies resistant to further treatment. Therefore, such approaches should be avoided whenever possible.
Assuntos
Antivirais , Vírus da Hepatite E , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Vírus da Hepatite E/genética , Mutagênicos , Quase-Espécies/genética , Ribavirina/farmacologia , Ribavirina/uso terapêuticoRESUMO
The selection pressure imposed by the host immune system impacts hepatitis B virus (HBV) quasispecies variability. This study evaluates HBV genetic diversity in different biological fluids. Twenty paired serum, oral fluid, and DBS samples from chronic HBV carriers were analyzed using both Sanger and next generation sequencing (NGS). The mean HBV viral load in serum was 5.19 ± 4.3 log IU/mL (median 5.29, IQR 3.01-7.93). Genotype distribution was: HBV/A1 55% (11/20), A2 15% (3/20), D3 10% (2/20), F2 15% (3/20), and F4 5% (1/20). Genotype agreement between serum and oral fluid was 100% (genetic distances 0.0-0.006), while that between serum and DBS was 80% (genetic distances 0.0-0.115). Two individuals presented discordant genotypes in serum and DBS. Minor population analysis revealed a mixed population. All samples displayed mutations in polymerase and/or surface genes. Major population analysis of the polymerase pointed to positions H122 and M129 as the most polymorphic (≥ 75% variability), followed by V163 (55%) and I253 (50%). Neither Sanger nor NGS detected any antiviral primary resistance mutations in the major populations. Minor population analysis, however, demonstrated the rtM204I resistance mutation in all individuals, ranging from 2.8 to 7.5% in serum, 2.5 to 6.3% in oral fluid, and 3.6 to 7.2% in DBS. This study demonstrated that different fluids can be used to assess HBV diversity, nonetheless, genotypic differences according to biological compartments can be observed.
Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Vírus da Hepatite B/genética , Quase-Espécies/genética , Mutação , Genótipo , DNA Viral/genéticaRESUMO
BACKGROUND: HIV infections often develop drug resistance mutations (DRMs), which can increase the risk of virological failure. However, it has been difficult to determine if minor mutations occur in the same genome or in different virions using Sanger sequencing and short-read sequencing methods. Oxford Nanopore Technologies (ONT) sequencing may improve antiretroviral resistance profiling by allowing for long-read clustering. METHODS: A new ONT sequencing-based method for profiling DRMs in HIV quasispecies was developed and validated. The method used hierarchical clustering of long amplicons that cover regions associated with different types of antiretroviral drugs. A gradient series of an HIV plasmid and 2 plasma samples was prepared to validate the clustering performance. The ONT results were compared to those obtained with Sanger sequencing and Illumina sequencing in 77 HIV-positive plasma samples to evaluate the diagnostic performance. RESULTS: In the validation study, the abundance of detected quasispecies was concordant with the predicted result with the R2 of > 0.99. During the diagnostic evaluation, 59/77 samples were successfully sequenced for DRMs. Among 18 failed samples, 17 were below the limit of detection of 303.9 copies/µL. Based on the receiver operating characteristic analysis, the ONT workflow achieved an F1 score of 0.96 with a cutoff of 0.4 variant allele frequency. Four cases were found to have quasispecies with DRMs, in which 2 harbored quasispecies with more than one class of DRMs. Treatment modifications were recommended for these cases. CONCLUSIONS: Long-read sequencing coupled with hierarchical clustering could differentiate the quasispecies resistance profiles in HIV-infected samples, providing a clearer picture for medical care.
Assuntos
Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/tratamento farmacológico , Quase-Espécies/genética , HIV-1/genética , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Mutação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise por ConglomeradosRESUMO
BACKGROUND: Elite controllers (EC) are human immunodeficiency virus (HIV)-positive individuals who can maintain low viral loads for extended periods without antiretroviral therapy due to multifactorial and individual characteristics. Most have a small HIV-1 reservoir composed of identical proviral sequences maintained by clonal expansion of infected CD4+ T cells. However, some have a more diverse peripheral blood mononuclear cell (PBMC)-associated HIV-1 reservoir with unique sequences. OBJECTIVES: To understand the turnover dynamics of the PBMC-associated viral quasispecies in ECs with relatively diverse circulating proviral reservoirs. METHODS: We performed single genome amplification of the env gene at three time points during six years in two EC with high intra-host HIV DNA diversity. FINDINGS: Both EC displayed quite diverse PBMCs-associated viral quasispecies (mean env diversity = 1.9-4.1%) across all time-points comprising both identical proviruses that are probably clonally expanded and unique proviruses with evidence of ongoing evolution. HIV-1 env glycosylation pattern suggests that ancestral and evolving proviruses may display different phenotypes of resistance to broadly neutralising antibodies consistent with persistent immune pressure. Evolving viruses may progressively replace the ancestral ones or may remain as minor variants in the circulating proviral population. MAIN CONCLUSIONS: These findings support that the high intra-host HIV-1 diversity of some EC resulted from long-term persistence of archival proviruses combined with the continuous reservoir's reseeding and low, but measurable, viral evolution despite undetectable viremia.
Assuntos
Infecções por HIV , HIV-1 , Humanos , Provírus/genética , HIV-1/genética , Quase-Espécies/genética , Leucócitos Mononucleares , Carga Viral , Linfócitos T CD4-PositivosRESUMO
What takes decades, centuries or millennia to happen with a natural ecosystem, it takes only days, weeks or months with a replicating viral quasispecies in a host, especially when under treatment. Some methods to quantify the evolution of a quasispecies are introduced and discussed, along with simple simulated examples to help in the interpretation and understanding of the results. The proposed methods treat the molecules in a quasispecies as individuals of competing species in an ecosystem, where the haplotypes are the competing species, and the ecosystem is the quasispecies in a host, and the evolution of the system is quantified by monitoring changes in haplotype frequencies. The correlation between the proposed indices is also discussed, and the R code used to generate the simulations, the data and the plots is provided. The virtues of the proposed indices are finally shown on a clinical case.
Assuntos
Ecossistema , Quase-Espécies , Humanos , Quase-Espécies/genética , Evolução MolecularRESUMO
During viral infection, intrahost mutation and recombination can lead to significant evolution, resulting in a population of viruses that harbor multiple haplotypes. The task of reconstructing these haplotypes from short-read sequencing data is called viral quasispecies assembly, and it can be categorized as a multiassembly problem. We consider the de novo version of the problem, where no reference is available. We present ViQUF, a de novo viral quasispecies assembler that addresses haplotype assembly and quantification. ViQUF obtains a first draft of the assembly graph from a de Bruijn graph. Then, solving a min-cost flow over a flow network built for each pair of adjacent vertices based on their paired-end information creates an approximate paired assembly graph with suggested frequency values as edge labels, which is the first frequency estimation. Then, original haplotypes are obtained through a greedy path reconstruction guided by a min-cost flow solution in the approximate paired assembly graph. ViQUF outputs the contigs with their frequency estimations. Results on real and simulated data show that ViQUF is at least four times faster using at most half of the memory than previous methods, while maintaining, and in some cases outperforming, the high quality of assembly and frequency estimation of overlap graph-based methodologies, which are known to be more accurate but slower than the de Bruijn graph-based approaches.
Assuntos
Quase-Espécies , Software , Quase-Espécies/genética , Sequenciamento de Nucleotídeos em Larga Escala , Haplótipos/genética , Análise de Sequência de DNA/métodos , AlgoritmosRESUMO
The changes occurring in viral quasispecies populations during infection have been monitored using diversity indices, nucleotide diversity, and several other indices to summarize the quasispecies structure in a single value. In this study, we present a method to partition quasispecies haplotypes into four fractions according to their fitness: the master haplotype, rare haplotypes at two levels (those present at <0.1%, and those at 0.1−1%), and a fourth fraction that we term emerging haplotypes, present at frequencies >1%, but less than that of the master haplotype. We propose that by determining the changes occurring in the volume of the four quasispecies fitness fractions together with those of the Hill number profile we will be able to visualize and analyze the molecular changes in the composition of a quasispecies with time. To develop this concept, we used three data sets: a technical clone of the complete SARS-CoV-2 spike gene, a subset of data previously used in a study of rare haplotypes, and data from a clinical follow-up study of a patient chronically infected with HEV and treated with ribavirin. The viral response to ribavirin mutagenic treatment was selection of a rich set of synonymous haplotypes. The mutation spectrum was very complex at the nucleotide level, but at the protein (phenotypic/functional) level the pattern differed, showing a highly prevalent master phenotype. We discuss the putative implications of this observation in relation to mutagenic antiviral treatment.
Assuntos
Vírus da Hepatite E , Hepatite E , Ribavirina , Humanos , Seguimentos , Mutagênicos , Nucleotídeos , Quase-Espécies/genética , Ribavirina/uso terapêutico , SARS-CoV-2/genética , Hepatite E/tratamento farmacológico , Vírus da Hepatite E/efeitos dos fármacos , Vírus da Hepatite E/genéticaRESUMO
Background: This study aimed to explore the molecular mechanism of the coexistence of hepatitis B surface antigen (HBsAg) and hepatitis B surface antibody (HBsAb) serological pattern via intensive characterization of HBV s gene in both chronic hepatitis B (CHB) and hepatocellular carcinoma (HCC) patients. Method: A total of 73 HBsAg+/HBsAb+ patients (CHB = 36, HCC = 37) and 96 HBsAg+/HBsAb- patients (CHB = 47, HCC = 49) were enrolled from 13 medical centers in China. The sequence features were elaborated based on the combination of next-generation sequencing (NGS) and multidimensional bioinformatics analysis. Results: The 16 high-frequency missense mutations, changes of stop codon mutation, clustering, and random forest models based on quasispecies features demonstrated the significant discrepancy power between HBsAg+/HBsAb+ and HBsAg+/HBsAb- in CHB and HCC, respectively. The immunogenicity for cytotoxic T lymphocyte (CTL) epitope Se and antigenicity for the major hydrophilic region (MHR) were both reduced in HBsAg+/HBsAb+ patients (CTL Se: p < 0.0001; MHR: p = 0.0216). Different mutation patterns were observed between HBsAg+/HBsAb+ patients with CHB and with HCC. Especially, mutations in antigenic epitopes, such as I126S in CHB and I126T in HCC, could impact the conformational structure and alter the antigenicity/immunogenicity of HBsAg. Conclusion: Based on NGS and bioinformatics analysis, this study indicates for the first time that point mutations and quasispecies diversities of HBV s gene could alter the MHR antigenicity and CTL Se immunogenicity and could contribute to the concurrent HBsAg+/HBsAb+ with different features in HCC and CHB. Our findings might renew the understanding of this special serological profile and benefit the clinical management in HBV-related diseases.
Assuntos
Carcinoma Hepatocelular/virologia , Anticorpos Anti-Hepatite B/sangue , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/genética , Hepatite B Crônica/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Hepáticas/virologia , Mutação Puntual , Quase-Espécies/genética , Adulto , Idoso , Biomarcadores/sangue , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/imunologia , China , Biologia Computacional , Feminino , Genótipo , Antígenos de Superfície da Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Hepatite B Crônica/sangue , Hepatite B Crônica/imunologia , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/imunologia , Masculino , Pessoa de Meia-IdadeRESUMO
RNA viruses replicate as complex mutant spectra termed viral quasispecies. The frequency of each individual genome in a mutant spectrum depends on its rate of generation and its relative fitness in the replicating population ensemble. The advent of deep sequencing methodologies allows for the first-time quantification of haplotype abundances within mutant spectra. There is no information on the haplotype profile of the resident genomes and how the landscape evolves when a virus replicates in a controlled cell culture environment. Here, we report the construction of intramutant spectrum haplotype landscapes of three amplicons of the NS5A-NS5B coding region of hepatitis C virus (HCV). Two-dimensional (2D) neural networks were constructed for 44 related HCV populations derived from a common clonal ancestor that was passaged up to 210 times in human hepatoma Huh-7.5 cells in the absence of external selective pressures. The haplotype profiles consisted of an extended dense basal platform, from which a lower number of protruding higher peaks emerged. As HCV increased its adaptation to the cells, the number of haplotype peaks within each mutant spectrum expanded, and their distribution shifted in the 2D network. The results show that extensive HCV replication in a monotonous cell culture environment does not limit HCV exploration of sequence space through haplotype peak movements. The landscapes reflect dynamic variation in the intramutant spectrum haplotype profile and may serve as a reference to interpret the modifications produced by external selective pressures or to compare with the landscapes of mutant spectra in complex in vivo environments. IMPORTANCE The study provides for the first time the haplotype profile and its variation in the course of virus adaptation to a cell culture environment in the absence of external selective constraints. The deep sequencing-based self-organized maps document a two-layer haplotype distribution with an ample basal platform and a lower number of protruding peaks. The results suggest an inferred intramutant spectrum fitness landscape structure that offers potential benefits for virus resilience to mutational inputs.
Assuntos
Adaptação Fisiológica/genética , Genoma Viral/genética , Haplótipos/genética , Hepacivirus/genética , RNA Polimerase Dependente de RNA/genética , Proteínas não Estruturais Virais/genética , Substituição de Aminoácidos/genética , Linhagem Celular Tumoral , Mapeamento Cromossômico , Evolução Molecular , Hepacivirus/crescimento & desenvolvimento , Hepatite C/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação/genética , Quase-Espécies/genética , RNA Viral/genética , Replicação ViralRESUMO
BACKGROUND: Telbivudine (LdT) - a synthetic thymidine ß-L-nucleoside analogue (NA) - is an effective inhibitor for hepatitis B virus (HBV) replication. The quasispecies spectra in the reverse transcriptase (RT) region of the HBV genome and their dynamic changes associated with LdT treatment remains largely unknown. METHODS: We prospectively recruited a total of 21 treatment-naive patients with chronic HBV infection and collected sequential serum samples at five time points (baseline, weeks 1, 3, 12, and 24 after LdT treatment). The HBV RT region was amplified and shotgun-sequenced by the Ion Torrent Personal Genome Machine (PGM)® system. We reconstructed full-length haplotypes of the RT region using an integrated bioinformatics framework, including de novo contig assembly and full-length haplotype reconstruction. In addition, we investigated the quasispecies' dynamic changes and evolution history and characterized potential NAs resistant mutations over the treatment course. RESULTS: Viral quasispecies differed obviously between patients with complete (n = 8) and incomplete/no response (n = 13) at 12 weeks after LdT treatment. A reduced dN/dS ratio in quasispecies demonstrated a selective constraint resulting from antiviral therapy. The temporal clustering of sequential quasispecies showed different patterns along with a 24-week observation, although its statistic did not differ significantly. Several patients harboring pre-existing resistant mutations showed different clinical responses, while NAs resistant mutations were rare within a short-term treatment. CONCLUSION: A complete profile of quasispecies reconstructed from in-depth shotgun sequencing may has important implications for enhancing clinical decision in adjusting antiviral therapy timely.
Assuntos
Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/tratamento farmacológico , Quase-Espécies/efeitos dos fármacos , DNA Polimerase Dirigida por RNA/efeitos dos fármacos , Telbivudina/uso terapêutico , Adulto , Antivirais/farmacologia , Farmacorresistência Viral , Feminino , Vírus da Hepatite B/classificação , Vírus da Hepatite B/genética , Hepatite B Crônica/virologia , Humanos , Masculino , Mutação/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico , Estudos Prospectivos , Quase-Espécies/genética , DNA Polimerase Dirigida por RNA/genética , Adulto JovemRESUMO
Viral quasispecies are dynamic distributions of nonidentical but closely related mutant and recombinant viral genomes subjected to a continuous process of genetic variation, competition, and selection that may act as a unit of selection. The quasispecies concept owes its theoretical origins to a model for the origin of life as a collection of mutant RNA replicators. Independently, experimental evidence for the quasispecies concept was obtained from sampling of bacteriophage clones, which revealed that the viral populations consisted of many mutant genomes whose frequency varied with time of replication. Similar findings were made in animal and plant RNA viruses. Quasispecies became a theoretical framework to understand viral population dynamics and adaptability. The evidence came at a time when mutations were considered rare events in genetics, a perception that was to change dramatically in subsequent decades. Indeed, viral quasispecies was the conceptual forefront of a remarkable degree of biological diversity, now evident for cell populations and organisms, not only for viruses. Quasispecies dynamics unveiled complexities in the behavior of viral populations,with consequences for disease mechanisms and control strategies. This review addresses the origin of the quasispecies concept, its major implications on both viral evolution and antiviral strategies, and current and future prospects.
Assuntos
Vírus de RNA , Vírus , Animais , Antivirais , Genoma Viral , Quase-Espécies/genética , Vírus de RNA/genética , Vírus/genéticaRESUMO
Vaccination is an effective method for the prevention of influenza virus infection. Many manufacturers use embryonated chicken eggs (ECE) for the propagation of vaccine strains. However, the adaptation of viral strains during subsequent passages can lead to additional virus evolution and lower effectiveness of the resulting vaccines. In our study, we analyzed the distribution of single nucleotide variants (SNVs) of equine influenza virus (EIV) during passaging in ECE. Viral RNA from passage 0 (nasal swabs), passage 2 and 5 was sequenced using next generation technology. In total, 50 SNVs with an occurrence frequency above 2% were observed, 29 of which resulted in amino acid changes. The highest variability was found in passage 2, with the most variable segment being IV encoding hemagglutinin (HA). Three variants, HA (W222G), PB2 (A377E) and PA (R531K), had clearly increased frequency with the subsequent passages, becoming dominant. None of the five nonsynonymous HA variants directly affected the major antigenic sites; however, S227P was previously reported to influence the antigenicity of EIV. Our results suggest that although host-specific adaptation was observed in low passages of EIV in ECE, it should not pose a significant risk to influenza vaccine efficacy.
Assuntos
Ovos/virologia , Vírus da Influenza A Subtipo H3N8/genética , Vírus da Influenza A Subtipo H3N8/fisiologia , Polimorfismo de Nucleotídeo Único , Quase-Espécies/genética , RNA Viral/genética , Adaptação Fisiológica/genética , Animais , Galinhas/imunologia , Cavalos/virologia , Filogenia , Análise de Sequência de DNA , Inoculações SeriadasRESUMO
BACKGROUND: HIV-1C has been shown to have a greater risk of virological failure and reduced susceptibility towards boosted protease inhibitors (bPIs), a component of second-line combination antiretroviral therapy (cART) in South Africa. This study entailed an evaluation of HIV-1 drug resistance-associated mutations (RAMs) among minor viral populations through high-throughput sequencing genotypic resistance testing (HTS-GRT) in patients on the South African national second-line cART regimen receiving bPIs. METHODS: During 2017 and 2018, 67 patient samples were sequenced using high-throughput sequencing (HTS), of which 56 samples were included in the final analysis because the patient's treatment regimen was available at the time of sampling. All patients were receiving bPIs as part of their cART. Viral RNA was extracted, and complete pol genes were amplified and sequenced using Illumina HiSeq2500, followed by bioinformatics analysis to quantify the RAMs according to the Stanford HIV Drug Resistance Database. RESULTS: Statistically significantly higher PI RAMs were observed in minor viral quasispecies (25%; 14/56) compared to non-nucleoside reverse transcriptase inhibitors (9%; 5/56; p = 0.042) and integrase inhibitor RAM (4%; 2/56; p = 0.002). The majority of the drug resistance mutations in the minor viral quasispecies were observed in the V82A mutation (n = 13) in protease and K65R (n = 5), K103N (n = 7) and M184V (n = 5) in reverse transcriptase. CONCLUSIONS: HTS-GRT improved the identification of PI and reverse transcriptase inhibitor (RTI) RAMs in second-line cART patients from South Africa compared to the conventional GRT with ≥20% used in Sanger-based sequencing. Several RTI RAMs, such as K65R, M184V or K103N and PI RAM V82A, were identified in < 20% of the population. Deep sequencing could be of greater value in detecting acquired resistance mutations early.
Assuntos
Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , Inibidores da Protease de HIV/uso terapêutico , HIV-1/efeitos dos fármacos , Quase-Espécies/efeitos dos fármacos , Antirretrovirais/uso terapêutico , Farmacorresistência Viral/efeitos dos fármacos , Genes pol/genética , Genótipo , Infecções por HIV/virologia , HIV-1/genética , HIV-1/isolamento & purificação , Humanos , Mutação , Quase-Espécies/genética , RNA Viral/genética , África do Sul/epidemiologiaRESUMO
Patients with HBeAg-negative chronic infection (CI) have not been extensively studied because of low viremia. The HBx protein, encoded by HBX, has a key role in viral replication. Here, we analyzed the viral quasispecies at the 5' end of HBX in CI patients and compared it with that of patients in other clinical stages. Fifty-eight HBeAg-negative patients were included: 16 CI, 19 chronic hepatitis B, 16 hepatocellular carcinoma and 6 liver cirrhosis. Quasispecies complexity and conservation were determined in the region between nucleotides 1255 and 1611. Amino acid changes detected were tested in vitro. CI patients showed higher complexity in terms of mutation frequency and nucleotide diversity and higher quasispecies conservation (p < 0.05). A genotype D-specific pattern of mutations (A12S/P33S/P46S/T36D-G) was identified in CI (median frequency, 81.7%), which determined a reduction in HBV DNA release of up to 1.5 log in vitro. CI patients showed a more complex and conserved viral quasispecies than the other groups. The genotype-specific pattern of mutations could partially explain the low viremia observed in these patients.
Assuntos
Genes Virais/genética , Antígenos E da Hepatite B/genética , Vírus da Hepatite B/genética , Mutação/genética , Quase-Espécies/genética , Adulto , Idoso , Carcinoma Hepatocelular/virologia , DNA Viral/genética , Feminino , Genótipo , Hepatite B Crônica/virologia , Humanos , Cirrose Hepática/virologia , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade , Replicação Viral/genéticaRESUMO
Since the identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the etiological agent of the current COVID-19 pandemic, a rapid and massive effort has been made to obtain the genomic sequences of this virus to monitor (in near real time) the phylodynamic and diversity of this new pathogen. However, less attention has been given to the assessment of intra-host diversity. RNA viruses such as SARS-CoV-2 inhabit the host as a population of variants called quasispecies. We studied the quasispecies diversity in four of the main SARS-CoV-2 genes (ORF1a, ORF1b, S and N genes), using a dataset consisting of 210 next-generation sequencing (NGS) samples collected between January and early April of 2020 in the State of Victoria, Australia. We found evidence of quasispecies diversity in 68% of the samples, 76% of which was nonsynonymous variants with a higher density in the spike (S) glycoprotein and ORF1a genes. About one-third of the nonsynonymous intra-host variants were shared among the samples, suggesting host-to-host transmission. Quasispecies diversity changed over time. Phylogenetic analysis showed that some of the intra-host single-nucleotide variants (iSNVs) were restricted to specific lineages, highlighting their potential importance in the epidemiology of this virus. A greater effort must be made to determine the magnitude of the genetic bottleneck during transmission and the epidemiological and/or evolutionary factors that may play a role in the changes in the diversity of quasispecies over time.