RESUMO
Extensive preclinical evidence demonstrates a causative link between insulin signaling dysfunction and the pathogenesis of Alzheimer's disease (AD), and diabetic drugs may represent a promising approach to fighting AD. However, it remains to be determined which antidiabetic drugs are more effective in preventing cognitive impairment. Thus, the present study investigated the effect of dipeptidyl peptidase-4 (DPP-4) inhibitor linagliptin on cognitive impairment in middle-aged mice by comparing it with the effect of metformin. We found that DPP-4 activity increased in the hippocampus of middle-aged mice, and DPP-4 was mainly expressed by microglia rather than astrocytes and oligodendrocytes. DPP-4 directly regulated M1/M2 microglia polarization following LPS or IL-4 stimulation, while DPP-4 inhibitor, linagliptin, suppressed M1-polarized activation and induced M2-polarized activation. Both linagliptin and metformin enhanced cognitive ability, increased hippocampal synaptic plasticity and neurogenesis, and decreased age-related oxidative stress and inflammation by regulating microglia polarization in the hippocampus of middle-aged mice. The combination of linagliptin and metformin showed a maximum protective effect compared to the individual drugs alone. Loss of macrophage inflammatory protein-1α (MIP-1α), a DPP-4 substrate, abrogated the cognitive protection and anti-inflammation effects of linagliptin. Therefore, the current investigation exhibits a potential utility for DPP-4 inhibition in attenuating microglia-mediated inflammation and preventing mild cognitive impairment (MCI) in middle-aged mice, and the effect was partly mediated by MIP-1α.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Inibidores da Dipeptidil Peptidase IV , Metformina , Camundongos , Animais , Linagliptina/farmacologia , Linagliptina/uso terapêutico , Quimiocina CCL3/farmacologia , Microglia , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Metformina/farmacologia , Metformina/uso terapêutico , InflamaçãoRESUMO
Chemokine C-C motif chemokine ligand 3 (CCL3) plays an important role in the invasion and metastasis of malignant tumors. For developing new therapeutic targets and antitumor drugs, the effect of chemokine CCL3 and the related cytokine network on colorectal cancer should be investigated. This study used cell, tissue, and animal experiments to prove that CCL3 is highly expressed in colorectal cancer and confirmed that CCL3 can promote the proliferation of cancer cells, and its expression is closely related to TRAF6/NF-κB molecular pathway. In addition, protein chip technology was used to examine colorectal cancer tissue samples and identify the key factors of chemokine CCL3 and the toll-like receptors/nuclear factor-κB (TLR/NF-κB) pathway in cancer and metastatic lymph nodes. Furthermore, the lentiviral vector technology was employed for transfection to construct interference and overexpression cell lines. The experimental results reveal the mechanism of CCL3 and TNF receptor-associated factor 6 (TRAF6)/NF-κB pathway-related factors and their effects on the proliferation of colon cancer cells. Finally, the expression and significance of CCL3 in colorectal cancer tissues and its correlation with clinical pathology were studied by immunohistochemistry. Also, the results confirmed that CCL3 and C-C motif chemokine receptor 5 (CCR5) were expressed in adjacent tissues, colorectal cancer tissues, and metastatic cancer. The expression level was correlated with the clinical stage and nerve invasion. The expression of chemokine CCL3 and receptor CCR5 was positively correlated with the expression of TRAF6 and NF-κB and could promote the proliferation, invasion, and migration of colorectal cancer cells through TRAF6 and NF-κB.
Assuntos
Neoplasias Colorretais , NF-kappa B , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Quimiocina CCL3/metabolismo , Quimiocina CCL3/farmacologia , Neoplasias Colorretais/patologia , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/farmacologiaRESUMO
BACKGROUND: Nonalcoholic steatohepatitis (NASH) has been linked to inflammation induced by intestinal microbiota. Poria cocos polysaccharides (PCP) possesses anti-inflammation and immunomodulation functions; however, its preventive effects against NASH and potential mechanisms need to be explored. METHODS: The composition of PCP was determined using ion chromatography. C57BL/6 mice were administered the methionine and choline deficient (MCD) diet for 4 weeks to establish the NASH model or methionine-choline-sufficient (MCS) diet to serve as the control. Mice were assigned to the MCS group, MCD group, low-dose PCP (LP) group, and high-dose PCP (HP) group, and were administered the corresponding medications via gavage. Serum biochemical index analysis and liver histopathology examination were performed to verify the successful establishment of NASH model and to evaluate the efficacy of PCP. The composition of intestinal bacteria was profiled through 16S rRNA gene sequencing. Hepatic RNA sequencing (RNA-Seq) was performed to explore the potential mechanisms, which were further confirmed using qPCR, western blot, and immunohistochemistry. RESULTS: PCP consists of glucose, galactose, mannose, D-glucosamine hydrochloride, xylose, arabinose, and fucose. PCP could significantly alleviate symptoms of NASH, including histological liver damage, impaired hepatic function, and increased oxidative stress. Meanwhile, HP could reshape the composition of intestinal bacteria by significantly increasing the relative abundance of Faecalibaculum and decreasing the level of endotoxin load derived from gut bacteria. PCP could also downregulate the expression of pathways associated with immunity and inflammation, including the chemokine signaling pathway, Toll-like receptor signaling pathway, and NF-kappa B signaling pathway. The expression levels of CCL3 and CCR1 (involved in the chemokine signaling pathway), Tlr4, Cd11b, and NF-κb (involved in the NF-kappa B signaling pathway), and Tnf-α (involved in the TNF signaling pathway) were significantly reduced in the HP group compared to the MCD group. CONCLUSIONS: PCP could prevent the development of NASH, which may be associated with the modulation of intestinal microbiota and the downregulation of the NF-κB/CCL3/CCR1 axis.
Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Wolfiporia , Animais , Quimiocina CCL3/farmacologia , Quimiocina CCL3/uso terapêutico , Quimiocinas , Colina/farmacologia , Colina/uso terapêutico , Microbioma Gastrointestinal/genética , Inflamação/metabolismo , Fígado , Metionina/farmacologia , Metionina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , RNA Ribossômico 16S , Receptores CCR1RESUMO
CCL3, a member of the CC-chemokine family, has been associated with macrophage recruitment to heart tissue and parasite control in the acute infection of mouse with Trypanosoma cruzi, the causative agent of Chagas disease. Here, we approached the participation of CCL3 in chronic chagasic cardiomyopathy (CCC), the main clinical form of Chagas disease. We induced CCC in C57BL/6 (ccl3+/+) and CCL3-deficient (ccl3-/-) mice by infection with the Colombian Type I strain. In ccl3+/+ mice, high levels of CCL3 mRNA and protein were detected in the heart tissue during the acute and chronic infection. Survival was not affected by CCL3 deficiency. In comparison with ccl3+/+, chronically infected ccl3-/- mice presented reduced cardiac parasitism and inflammation due to CD8+ cells and macrophages. Leukocytosis was decreased in infected ccl3-/- mice, paralleling the accumulation of CD8+ T cells devoid of activated CCR5+ LFA-1+ cells in the spleen. Further, T. cruzi-infected ccl3-/-mice presented reduced frequency of interferon-gamma (IFNγ)+ cells and numbers of parasite-specific IFNγ-producing cells, while the T. cruzi antigen-specific cytotoxic activity was increased. Stimulation of CCL3-deficient macrophages with IFNγ improved parasite control, in a milieu with reduced nitric oxide (NOx) and tumor necrosis factor (TNF), but similar interleukin-10 (IL-10), concentrations. In comparison with chronically T. cruzi-infected ccl3+/+ counterparts, ccl3-/- mice did not show enlarged heart, loss of left ventricular ejection fraction, QTc prolongation and elevated CK-MB activity. Compared with ccl3+/+, infected ccl3-/- mice showed reduced concentrations of TNF, while IL-10 levels were not affected, in the heart milieu. In spleen of ccl3+/+ NI controls, most of the CD8+ T-cells expressing the CCL3 receptors CCR1 or CCR5 were IL-10+, while in infected mice these cells were mainly TNF+. Lastly, selective blockage of CCR1/CCR5 (Met-RANTES therapy) in chronically infected ccl3+/+ mice reversed pivotal electrical abnormalities (bradycardia, prolonged PR, and QTc interval), in correlation with reduced TNF and, mainly, CCL3 levels in the heart tissue. Therefore, in the chronic T. cruzi infection CCL3 takes part in parasite persistence and contributes to form a CD8+ T-cell and macrophage-enriched cardiac inflammation. Further, increased levels of CCL3 create a scenario with abundant IFNγ and TNF, associated with cardiomyocyte injury, heart dysfunction and QTc prolongation, biomarkers of severity of Chagas' heart disease.
Assuntos
Cardiomiopatia Chagásica/fisiopatologia , Quimiocina CCL3/fisiologia , Interferon gama/fisiologia , Macrófagos Peritoneais/parasitologia , Parasitemia/fisiopatologia , Trypanosoma cruzi/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Cardiomiopatia Chagásica/parasitologia , Cardiomiopatia Chagásica/patologia , Quimiocina CCL3/deficiência , Quimiocina CCL3/farmacologia , Quimiocina CCL5/farmacologia , Quimiocina CCL5/uso terapêutico , Quimiotaxia de Leucócito/efeitos dos fármacos , Citocinas/biossíntese , Citocinas/genética , Citocinas/farmacologia , Eletrocardiografia/efeitos dos fármacos , Feminino , Interferon gama/farmacologia , Macrófagos Peritoneais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocardite/etiologia , Miocardite/patologia , Miocardite/fisiopatologia , RNA Mensageiro/biossíntese , Receptores de Quimiocinas/antagonistas & inibidores , Receptores de Quimiocinas/biossíntese , Receptores de Quimiocinas/genética , Organismos Livres de Patógenos Específicos , Baço/imunologia , Baço/metabolismo , Volume Sistólico , Trypanosoma cruzi/isolamento & purificação , Fator de Necrose Tumoral alfa/análiseRESUMO
Chemokines and some chemical analogs of chemokines prevent cellular HIV-1 entry when bound to the HIV-1 coreceptors C-C chemokine receptor 5 (CCR5) or C-X-C chemokine receptor 4 (CXCR4), which are G protein-coupled receptors (GPCRs). The ideal HIV-1 entry blocker targeting the coreceptors would display ligand bias and avoid activating G protein-mediated pathways that lead to inflammation. We compared CCR5-dependent activation of second messenger pathways in a single cell line. We studied two endogenous chemokines [RANTES (also known as CCL5) and MIP-1α (also known as CCL3)] and four chemokine analogs of RANTES (5P12-, 5P14-, 6P4-, and PSC-RANTES). We found that CCR5 signaled through both Gi/o and Gq/11 IP1 accumulation and Ca2+ flux arose from Gq/11 activation, rather than from Gßγ subunit release after Gi/o activation as had been previously proposed. The 6P4- and PSC-RANTES analogs were superagonists for Gq/11 activation, whereas the 5P12- and 5P14-RANTES analogs displayed a signaling bias for Gi/o These results demonstrate that RANTES analogs elicit G protein subtype-specific signaling bias and can cause CCR5 to couple preferentially to Gq/11 rather than to Gi/o signaling pathways. We propose that G protein subtype-specific signaling bias may be a general feature of GPCRs that can couple to more than one G protein family.
Assuntos
Quimiocinas/metabolismo , Receptores CCR5/metabolismo , Transdução de Sinais , Cálcio/metabolismo , Quimiocina CCL3/farmacologia , Quimiocina CCL5/farmacologia , AMP Cíclico/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , HIV-1/metabolismo , Humanos , Inflamação , Fosfatos de Inositol/metabolismo , Ligantes , Peptídeos Cíclicos/farmacologia , TransfecçãoRESUMO
Cell migration towards a chemotactic stimulus relies on the re-arrangement of the cytoskeleton, which is triggered by activation of small G proteins RhoA, Rac1 and Cdc42, and leads to formation of lamellopodia and actin polymerisation amongst other effects. Here we show that Rac1 is important for CXCR4 induced chemotaxis but not for CCR1/CCR5 induced chemotaxis. For CXCL12-induced migration via CXCR4, breast cancer MCF-7 cells are reliant on Rac1, similarly to THP-1 monocytes and Jurkat T-cells. For CCL3-induced migration via CCR1 and/or CCR5, Rac1 signalling does not regulate cell migration in either suspension or adherent cells. We have confirmed the involvement of Rac1 with the use of a specific Rac1 blocking peptide. We also used a Rac1 inhibitor EHT 1864 and a Rac1-GEF inhibitor NSC23766 to probe the importance of Rac1 in chemotaxis. Both inhibitors did not block CCL3-induced chemotaxis, but they were able to block CXCL12-induced chemotaxis. This confirms that Rac1 activation is not essential for CCL3-induced migration, however NSC23766 might have secondary effects on CXCR4. This small molecule exhibits agonistic features in internalisation and cAMP assays, whereas it acts as an antagonist for CXCR4 in migration and calcium release assays. Our findings strongly suggest that Rac1 activation is not necessary for CCL3 signalling, and reveal that NSC23766 could be a novel CXCR4 receptor ligand.
Assuntos
Quimiocina CXCL12/farmacologia , Quimiotaxia/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Proteínas rac1 de Ligação ao GTP/genética , Sequência de Aminoácidos , Aminoquinolinas/farmacologia , Quimiocina CCL3/farmacologia , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Humanos , Células Jurkat , Células MCF-7 , Peptídeos/síntese química , Peptídeos/farmacologia , Pirimidinas/farmacologia , Pironas/farmacologia , Quinolinas/farmacologia , Receptores CCR1/genética , Receptores CCR1/metabolismo , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transdução de Sinais , Células THP-1 , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismoRESUMO
Chemokines and ATP are among the mediators of inflammatory sites that can enter the circulation via damaged blood vessels. The main function of chemokines is leukocyte mobilization, and ATP typically triggers inflammasome assembly. IL-1ß, a potent inflammasome-dependent cytokine of innate immunity, is essential for pathogen defense. However, excessive IL-1ß may cause life-threatening systemic inflammation. Here, we hypothesize that chemokines control ATP-dependent secretion of monocytic IL-1ß. Lipopolysaccharide-primed human monocytic U937 cells were stimulated with the P2X7 agonist BzATP for 30 min to induce IL-1ß release. CCL3, CCL4, and CCL5 dose dependently inhibited BzATP-stimulated release of IL-1ß, whereas CXCL16 was ineffective. The effect of CCL3 was confirmed for primary mononuclear leukocytes. It was blunted after silencing CCR1 or calcium-independent phospholipase A2 (iPLA2) by siRNA and was sensitive to antagonists of nicotinic acetylcholine receptors containing subunits α7 and α9. U937 cells secreted small factors in response to CCL3 that mediated the inhibition of IL-1ß release. We suggest that CCL chemokines inhibit ATP-induced release of IL-1ß from U937 cells by a triple-membrane-passing mechanism involving CCR, iPLA2, release of small mediators, and nicotinic acetylcholine receptor subunits α7 and α9. We speculate that whenever chemokines and ATP enter the circulation concomitantly, systemic release of IL-1ß is minimized.
Assuntos
Trifosfato de Adenosina/farmacologia , Quimiocina CCL3/farmacologia , Quimiocina CCL4/farmacologia , Quimiocina CCL5/farmacologia , Quimiocinas/farmacologia , Interleucina-1beta/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Humanos , Células U937RESUMO
The modulation of immature dendritic cells (iDCs), which involves processes such as phagocytosis, migration, and maturation, is considered a beneficial research theme. Once activated by an antigen, iDCs turn to mature DCs (mDCs) and migrate towards secondary lymphoid organs, and initiate the progress of cellular immunity. Histone deacetylase inhibitors (HDACis) are also thought to be a major modulator of cellular immunity. Herein, we demonstrate that HDACis (trichostatin-A (TSA), sodium butylate (SB), scriptaid (ST)) play a central regulatory role in the migratory activity of iDCs. In our results, TSA, SB and ST showed the potent inhibitory effect on the migration of iDCs stimulated by MIP-1α. The inhibitory activities of HDACis were found to be caused by reduction of CCR1 expression on the cell surface, and by the inhibition of phosphorylation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases 1 and 2 (ERK 1/2), and c-Jun N-terminal kinase (JNK).
Assuntos
Movimento Celular/efeitos dos fármacos , Células Dendríticas , Inibidores de Histona Desacetilases/farmacologia , Animais , Ácido Butírico/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL3/farmacologia , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Regulação para Baixo , Ácidos Hidroxâmicos/farmacologia , Hidroxilaminas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Quinolinas/farmacologia , Receptores CCR1/biossínteseRESUMO
Leukemia often results in severe anemia, which may significantly contribute to patient mortality and morbidity. However, the mechanisms underlying defective erythropoiesis in leukemia have not been fully elucidated. In this study, we demonstrated that insufficient erythropoiesis in an immunocompetent acute myeloid leukemia (AML) murine model was due to reduced proliferation of megakaryocyte erythroid progenitors and increased apoptosis of erythroblasts. Colony-forming cell assays indicated that the leukemic bone marrow (BM) plasma inhibited erythroid colony formation, whereas they had no inhibitory effect on other types of colonies. Cytokine array analysis demonstrated that the chemokine CCL3 was elevated in the plasma of AML mice and patients. CCL3 inhibited erythroid differentiation of hematopoietic stem cells, common myeloid progenitors and especially megakaryocytic-erythroid progenitors. Administration of the CCR1 antagonist partially recovered the yield of erythroid colonies in the presence of CCL3 or leukemic BM plasma. Mechanistically, we observed an increase of p38 phosphorylation and subsequent downregulation of GATA1 after CCL3 treatment. Furthermore, knockdown of CCL3 attenuated leukemic progression and alleviated anemia. Therefore, our results demonstrate that elevated CCL3 in the leukemic environment suppresses erythropoiesis via CCR1-p38 activation, suggesting a novel mechanism for the erythroid defects observed in leukemia.
Assuntos
Quimiocina CCL3/farmacologia , Eritropoese , Leucemia Mieloide Aguda/patologia , Infiltração Leucêmica/patologia , Animais , Apoptose , Diferenciação Celular , Quimiocina CCL3/sangue , Modelos Animais de Doenças , Progressão da Doença , Eritroblastos , Eritropoese/efeitos dos fármacos , Humanos , Megacariócitos , Camundongos , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
BACKGROUND: The proinflammatory cytokine interleukin-1ß (IL-1ß) is overexpressed in Alzheimer disease (AD) as a key regulator of neuroinflammation. Amyloid-ß (Aß) peptide triggers activation of inflammasomes, protein complexes responsible for IL-1ß maturation in microglial cells. Downregulation of NALP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome has been shown to decrease amyloid load and rescue cognitive deficits in a mouse model of AD. Whereas activation of inflammasome in microglial cells has been described in AD, no data are currently available concerning activation of inflammasome in astrocytes, although they are involved in inflammatory response and phagocytosis. Here, by targeting the inflammasome adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD domain), we investigated the influence of activation of the inflammasome on the phagocytic activity of astrocytes. METHODS: We used an ASC knockout mouse model, as ASC is a central protein in the inflammasome, acting as an adaptor and stabilizer of the complex and thus critical for its activation. Lipopolysaccharide (LPS)-primed primary cultures of astrocytes from newborn mice were utilized to evaluate Aß-induced inflammasome activation by measuring IL-1ß release by ECLIA (electro-chemiluminescence immunoassay). Phagocytosis efficiency was measured by incorporation of bioparticles, and the release of the chemokine CCL3 (C-C motif ligand 3) was measured by ECLIA. ASC mice were crossbred with 5xFAD (familial Alzheimer disease) mice and tested for spatial reference memory using the Morris water maze (MWM) at 7-8 months of age. Amyloid load and CCL3 were quantified by thioflavine S staining and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. RESULTS: Cultured astrocytes primed with LPS and treated with Aß showed an ASC-dependent production of IL-1ß resulting from inflammasome activation mediated by Aß phagocytosis and cathepsin B enzymatic activity. ASC+/- astrocytes displayed a higher phagocytic activity as compared to ASC+/+ and ASC -/- cells, resulting from a higher release of the chemokine CCL3. A significant decrease in amyloid load was measured in the brain of 7-8-month-old 5xFAD mice carrying the ASC +/- genotype, correlated with an increase in CCL3 gene expression. In addition, the ASC +/- genotype rescued spatial reference memory deficits observed in 5xFAD mice. CONCLUSIONS: Our results demonstrate that Aß is able to activate astrocytic inflammasome. Downregulation of inflammasome activity increases phagocytosis in astrocytes due to the release of CCL3. This could explain why downregulation of inflammasome activity decreases amyloid load and rescues memory deficits in a mouse model of AD.
Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Proteínas Reguladoras de Apoptose/metabolismo , Astrócitos/metabolismo , Fagócitos/metabolismo , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Recém-Nascidos , Proteínas Reguladoras de Apoptose/genética , Astrócitos/efeitos dos fármacos , Proteínas Adaptadoras de Sinalização CARD , Estudos de Casos e Controles , Células Cultivadas , Quimiocina CCL3/metabolismo , Quimiocina CCL3/farmacologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Ionóforos/farmacologia , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Nigericina/farmacologia , Fragmentos de Peptídeos/farmacologia , Presenilina-1/genéticaRESUMO
Chemokines are signaling molecules playing an important role in immune regulations. They are also thought to regulate brain development, neurogenesis and neuroendocrine functions. While chemokine upsurge has been associated with conditions characterized with cognitive impairments, their ability to modulate synaptic plasticity remains ill-defined. In the present study, we specifically evaluated the effects of MIP1-α/CCL3 towards hippocampal synaptic transmission, plasticity and spatial memory. We found that CCL3 (50 ng/ml) significantly reduced basal synaptic transmission at the Schaffer collateral-CA1 synapse without affecting NMDAR-mediated field potentials. This effect was ascribed to post-synaptic regulations, as CCL3 did not impact paired-pulse facilitation. While CCL3 did not modulate long-term depression (LTD), it significantly impaired long-term potentiation (LTP), an effect abolished by Maraviroc, a CCR5 specific antagonist. In addition, sub-chronic intracerebroventricular (icv) injections of CCL3 also impair LTP. In accordance with these electrophysiological findings, we demonstrated that the icv injection of CCL3 in mouse significantly impaired spatial memory abilities and long-term memory measured using the two-step Y-maze and passive avoidance tasks. These effects of CCL3 on memory were inhibited by Maraviroc. Altogether, these data suggest that the chemokine CCL3 is an hippocampal neuromodulator able to regulate synaptic plasticity mechanisms involved in learning and memory functions.
Assuntos
Quimiocina CCL3/farmacologia , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Memória/efeitos dos fármacos , Neurotransmissores/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Quimiocina CCL3/metabolismo , Masculino , Camundongos , Neurotransmissores/metabolismoRESUMO
OBJECTIVE: To culture osteoblast in vitro and evaluate CCL3 receptor CCR1 expression in patients with multiple myeloma (MM). METHODS: Bone marrow osteoblasts from MM patients were cultured in vitro with dexamethasone, ß-sodium glycerophosphate and vitamin C, which were identified by alkaline phosphatase staining, Von Kossa's staining. The CCL3 receptor expression was evaluated by flow cytometry. The morphology and quantity of osteoblast were observed after exposure to CCL3. RESULTS: Bone marrow osteoblasts from MM patients could be cultured in vitro and be identified by positive staining of alkaline phosphatase and Von Kossa's. MM-derived osteoblasts expressed higher levels of CCR1 (74.48 ± 7.31)%, compared with normal controls (48.35 ± 8.81)%. Calcium deposition of osteoblasts after exposure to CCL3 was less than that of controls. CONCLUSION: Bone marrow osteoblasts could be cultured in vitro from MM Patients. CCL3 may contribute to the development of myeloma bone disease.
Assuntos
Quimiocina CCL3/farmacologia , Mieloma Múltiplo/patologia , Osteoblastos/efeitos dos fármacos , Adulto , Idoso , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoblastos/citologia , Osteoblastos/metabolismo , Receptores CCR1/metabolismo , Adulto JovemRESUMO
Radiotherapy can produce antitumor benefits beyond the local site of irradiation, an immune-based phenomenon known as the abscopal effect, but the mechanisms underlying these benefits are poorly understood. Preclinical studies of ECI301, a mutant derivative of macrophage inhibitory protein-1α, have shown that its administration can improve the antitumor effects of radiotherapy in a manner associated with a tumor-independent abscopal effect. In this article, we report that i.v. administration of ECI301 after intratumoral injection of tumor cell lysates can inhibit tumor growth, not only at the site of injection but also at nontreated sites. Effects of the tumor lysate were further recapitulated by intratumoral injection [corrected] of the alarmins HSP70 or HMGB1, but not HSP60, and i.v. administration [corrected] of ECI301 + HSP70 were sufficient to inhibit tumor growth. Although i.v. administration [corrected] of ECI301 + HMGB1 did not inhibit tumor growth, we found that administration of a neutralizing HMGB1 antibody neutralized the cooperative effects of ECI301 on tumor irradiation. Moreover, mice genetically deficient in TLR4, an immune pattern receptor that binds alarmins, including HMGB1 and HSP70, did not exhibit antitumor responses to irradiation with ECI301 administration. Although ECI301 was cleared rapidly from peripheral blood, it was found to bind avidly to HSP70 and HMGB1 in vitro. Our results suggest a model in which sequential release of the alarmins HSP70 and HMGB1 from a tumor by irradiation may trap circulating ECI301, thereby licensing or restoring tumor immunosurveillance capabilities of natural killer cells or CD4(+) and CD8(+) T cells against tumor cells that may evade irradiation. Cancer Res; 74(18); 5070-8. ©2014 AACR.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Quimiocina CCL3/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/radioterapia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/radioterapia , Animais , Bovinos , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Terapia Combinada , Sinergismo Farmacológico , Feminino , Proteína HMGB1/farmacologia , Proteínas de Choque Térmico HSP70/farmacologia , Humanos , Masculino , Neoplasias Mamárias Experimentais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Transdução de SinaisRESUMO
Eosinophil accumulation in health and disease is a hallmark characteristic of mucosal immunity and type 2 helper T cell (Th2) inflammation. Eotaxin-induced CCR3 (chemokine (C-C motif) receptor 3) signaling has a critical role in eosinophil chemotactic responses. Nevertheless, the expressions of immunoreceptor tyrosine-based inhibitory motif-bearing receptors such as CMRF35-like molecule-1 (CLM-1) and their ability to govern eosinophil migration are largely unknown. We now report that CLM-1 (but not CLM-8) is highly and distinctly expressed by colonic and adipose tissue eosinophils. Furthermore, Clm1â»/â» mice display elevated baseline tissue eosinophilia. CLM-1 negatively regulated eotaxin-induced eosinophil responses including eosinophil chemotaxis, actin polymerization, calcium influx, and extracellular signal-regulated kinase (ERK)-1/2, but not p38 phosphorylation. Addition of CLM-1 ligand (e.g., phosphatidylserine) rendered wild-type eosinophils hypochemotactic in vitro and blockade of CLM-1/ligand interactions rendered wild-type eosinophils hyperchemotactic in vitro and in vivo in a model of allergic airway disease. Interestingly, suppression of cellular recruitment via CLM-1 was specific to eosinophils and eotaxin, as leukotriene B4 (LTB4)- and macrophage inflammatory protein-1α (MIP-1α)-induced eosinophil and neutrophil migration were not negatively regulated by CLM-1. Finally, peripheral blood eosinophils obtained from allergic rhinitis patients displayed elevated CLM-1/CD300f levels. These data highlight CLM-1 as a novel regulator of eosinophil homeostasis and demonstrate that eosinophil accumulation is constantly governed by CLM-1, which negatively regulates eotaxin-induced eosinophil responses.
Assuntos
Quimiotaxia/fisiologia , Eosinófilos/imunologia , Eosinófilos/metabolismo , Homeostase , Receptores Imunológicos/metabolismo , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Quimiocina CCL11/farmacologia , Quimiocina CCL24/farmacologia , Quimiocina CCL3/farmacologia , Quimiotaxia/efeitos dos fármacos , Colo/imunologia , Colo/metabolismo , Eosinófilos/efeitos dos fármacos , Humanos , Leucotrieno B4/farmacologia , Ligantes , Camundongos , Camundongos Knockout , Ligação Proteica , Receptores Imunológicos/genética , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/metabolismoRESUMO
The HIV/AIDS pandemic remains an enormous global health concern. Despite effective prevention options, 2.6 million new infections occur annually, with women in developing countries accounting for more than half of these infections. New prevention strategies that can be used by women are urgently needed. Topical microbicides specific for HIV-1 represent a promising prevention strategy. Conceptually, using harmless bacteria to display peptides or proteins capable of blocking entry provides an inexpensive approach to microbicide development. To avoid the potential pitfalls of engineering commensal bacteria, our strategy is to genetically display infection inhibitors on a non-native bacterium and rely on topical application of stabilized bacteria before potential virus exposure. Due to the high density cell-surface display capabilities and the inherent low toxicity of the bacterium, the S-layer mediated protein display capabilities of the non-pathogenic bacterium Caulobacter crescentus has been exploited for this approach. We have demonstrated that C. crescentus displaying MIP1α or CD4 interfered with the virus entry pathway and provided significant protection from HIV-1 pseudovirus representing clade B in a standard single cycle infection assay. Here we have expanded our C. crescentus based microbicide approach with additional and diverse classes of natural and synthetic inhibitors of the HIV-1 entry pathway. All display constructs provided variable but significant protection from HIV-1 infection; some with protection as high as 70%. Further, we describe protection from infection with additional viral clades. These findings indicate the significant potential for engineering C. crescentus to be an effective and readily adaptable HIV-1 microbicide platform.
Assuntos
Antígenos CD4/farmacologia , Caulobacter crescentus/genética , Quimiocina CCL3/farmacologia , HIV-1/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Administração Tópica , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Anti-Infecciosos Locais/farmacologia , Anti-Infecciosos Locais/uso terapêutico , Antígenos CD4/genética , Antígenos CD4/uso terapêutico , Caulobacter crescentus/metabolismo , Quimiocina CCL3/genética , Quimiocina CCL3/uso terapêutico , Feminino , Engenharia Genética , Infecções por HIV/prevenção & controle , Infecções por HIV/terapia , HIV-1/genética , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismoRESUMO
In addition to the 7 transmembrane receptor (7TM)-conserved disulfide bridge between transmembrane (TM) helix 3 and extracellular loop (ECL)-2, chemokine receptors (CCR) contain a disulfide bridge between the N terminus and what previously was believed to be ECL-3. Recent crystal and NMR structures of the CXC chemokine receptors (CXCR) CXCR4 and CXCR1, combined with structural analysis of all endogenous chemokine receptors indicate that this chemokine receptor-conserved bridge in fact connects the N terminus to the top of TM-7. By employing chemokine ligands that mainly target extracellular receptor regions and small-molecule ligands that predominantly interact with residues in the main binding crevice, we show that the 7TM-conserved bridge is essential for all types of ligand-mediated activation, whereas the chemokine-conserved bridge is dispensable for small-molecule activation in CCR1. However, in striking contrast to previous studies in other chemokine receptors, high-affinity CCL3 chemokine binding was maintained in the absence of either bridge. In the highly related CCR5, a completely different dependency was observed as neither activation nor binding of the same chemokines was retained in the absence of either bridge. In contrast, both bridges were dispensable for activation by the same small molecules. This indicates that CCR5 activity is independent of extracellular regions, whereas in CCR1 the preserved folding of ECL-2 is necessary for activation. These results indicate that conserved structural features in a receptor subgroup do not necessarily provide specific traits for the whole subgroup but rather provide unique traits to the single receptors.
Assuntos
Dissulfetos/metabolismo , Receptores CCR1/metabolismo , Receptores CCR5/metabolismo , Regulação Alostérica , Animais , Arrestinas/metabolismo , Ligação Competitiva , Antagonistas dos Receptores CCR5 , Células COS , Quimiocina CCL1/farmacologia , Quimiocina CCL3/farmacologia , Quimiocina CCL5/farmacologia , Chlorocebus aethiops , Humanos , Ligantes , Mutagênese Sítio-Dirigida , Dobramento de Proteína , Receptores CCR1/agonistas , Receptores CCR1/antagonistas & inibidores , Receptores CCR5/agonistas , beta-ArrestinasRESUMO
BACKGROUND AND OBJECTIVE: Periodontitis is a chronic inflammatory disease that leads to bone resorption by osteoclasts (OCs). Several factors contribute to the differentiation of OCs from hematopoietic precursors. Cellular chemotactic factors are expressed in periodontitis tissue, but the effects of these chemoattractants on OCs are not well understood. Here we examined the effects of chemoattractants produced in inflamed periodontal tissue on OC chemotaxis. MATERIAL AND METHODS: Rat bone-marrow OCs were cultured in OC culture medium for 3 or 6 d. Using EZ-TAXIScan™, the chemotactic response of these OCs to several chemoattractants [monocyte chemotactic protein-1; macrophage inflammatory protein 1α; regulated on activation, normal T-cell expressed and secreted; stromal cell-derived factor-1α; and complement activation product 5a (C5a)] was measured. In addition, we measured the effect of C5a-specific inhibitors on chemotactic responses toward C5a. The recorded chemotactic responses were quantitatively analysed using ImageJ software. RESULTS: Chemoattractants associated with periodontal disease significantly increased the chemotactic activity of differentiated rat OCs in a concentration-dependent manner, with C5a inducing the highest chemotactic activity of OCs cultured for 3 or 6 d. The C5a-specific inhibitor significantly inhibited chemotaxis toward C5a in a concentration-dependent manner. CONCLUSION: We suggest that C5a plays an important role in pathologic bone resorption in periodontal disease by stimulating the chemotaxis of OCs. Therefore, C5a is a potential target for the treatment of periodontal disease.
Assuntos
Fatores Quimiotáticos/farmacologia , Quimiotaxia/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Periodontite/fisiopatologia , Animais , Células da Medula Óssea/fisiologia , Reabsorção Óssea/fisiopatologia , Técnicas de Cultura de Células , Diferenciação Celular , Quimiocina CCL2/farmacologia , Quimiocina CCL3/farmacologia , Quimiocina CCL5/farmacologia , Quimiocina CXCL12/farmacologia , Complemento C5a/farmacologia , Meios de Cultura , Relação Dose-Resposta a Droga , Ratos , Ratos Sprague-Dawley , Serina Endopeptidases/farmacologia , Fatores de TempoRESUMO
Chemokines and chemokine receptor-mediated effects are important mediators of the immunological response and cure in human leishmaniasis. However, in addition to their signalling properties for leukocytes, many chemokines have also been shown to act directly as antimicrobial peptides on bacteria and fungi. We screened ten human chemokines (CXCL2, CXCL6, CXCL8, CXCL9, CXCL10, CCL2, CCL3, CCL20, CCL27, CCL28) for antimicrobial effects on the promastigote form of the protozoan parasite Leishmania mexicana, and observed direct parasiticidal effects of several, CCL28 being the most potent. Damage to the plasma membrane integrity could be visualised by entrance of propidium iodide, as measured with flow cytometry, and by scanning electron microscopy, which showed morphological changes and aggregation of cells. The findings were in concordance with parasiticidal activity, measured by decreased mitochondrial activity in an MTT-assay. This is the first report of direct antimicrobial activity by chemokines on parasites. This component of immunity against Leishmania parasites identified here warrants further investigation that might lead to new insight in the mechanisms of human infection and/or new therapeutic approaches.
Assuntos
Anti-Infecciosos/farmacologia , Antiparasitários/farmacologia , Quimiocinas/farmacologia , Leishmania mexicana/efeitos dos fármacos , Peptídeos/farmacologia , Quimiocina CCL2/farmacologia , Quimiocina CCL20/farmacologia , Quimiocina CCL27/farmacologia , Quimiocina CCL3/farmacologia , Quimiocina CXCL10/farmacologia , Quimiocina CXCL2/farmacologia , Quimiocina CXCL6/farmacologia , Quimiocina CXCL9/farmacologia , Humanos , Interleucina-8/farmacologiaRESUMO
Here, we report on the successful programming of dendritic cells (DCs) using selectively applied mixtures of chemokines as a novel protocol for engineering vaccine efficiency. Antigen internalization by DCs is a pivotal step in antigen uptake/presentation for bridging innate and adaptive immunity and in exogenous gene delivery used in vaccine strategies. Contrary to most approaches to improve vaccine efficiency, active enhancement of antigen internalization by DCs as a vaccine strategy has been less studied because DCs naturally down-regulate antigen internalization upon maturation. Whereas chemokines are mainly known as signal proteins that induce leucocyte chemotaxis, very little research has been carried out to identify any additional effects of chemokines on DCs following maturation. Here, immature DCs are pre-treated with select chemokines before intentional maturation using lipopolysaccharide (LPS). When pre-treated with a mixture of CCL3 and CCL19 in a 7 : 3 ratio, then matured with LPS, chemokine pre-treated DCs exhibited 36% higher antigen uptake capacity than immature DCs and 27% higher antigen-processing capacity than immature DCs treated only with LPS. Further, CCL3 : CCL19 (7 : 3) pre-treatment of DCs modulated MHC molecule expression and secretion of various cytokines of DCs. Collectively, DC programming was feasible using a specific chemokine combination and these results provide a novel strategy for enhancing DC-based vaccine efficiency. In Part II, we report on the phenotype changes and antigen presentation capacity of chemokine pre-treated murine bone marrow-derived DCs examined in long-term co-culture with antigen-specific CD4(+) T cells.
Assuntos
Apresentação de Antígeno/imunologia , Quimiocina CCL19/imunologia , Quimiocina CCL3/imunologia , Células Dendríticas/imunologia , Animais , Apresentação de Antígeno/efeitos dos fármacos , Linhagem Celular , Quimiocina CCL19/farmacologia , Quimiocina CCL3/farmacologia , Camundongos , Vacinas/imunologiaRESUMO
CC and CXC chemokine receptor signalling networks are regulated in different ways. Here we show that intracellular calcium release and cell migration occur independent of Gßγ activation in response to CCL3, whereas CXCL11 induced migration of activated T-lymphocytes depends on Gßγ activation. Treatment of a range of cell types with gallein, a pharmacological inhibitor of Gßγ signalling, did not result in a reduction in CCL3 induced cellular migration, but resulted in enhanced calcium mobilisation following chemokine stimulation. Inhibition of PI3 kinase (PI3K) and AKT, which are activated downstream of Gßγ, equally had no effect on calcium release and a minor effect on cell migration. Similarly, inhibition of ERK1/2 did not prevent CCL3 induced migration. Interestingly, Gßγ as well as PI3K activation is necessary for CXCL11 induced migration of activated T-cells. These data not only confirm a role for Gßγ signalling in CXCL11 induced migration, but also demonstrate that targeting Gßγ as a therapeutic target to prevent migration in inflammatory disease may not be beneficial, at least not for CCL3 induced migration. This highlights the distinct differences in the mechanisms on how CC- and CXC-receptors activate cellular migration.