Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
Front Immunol ; 12: 711876, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659202

RESUMO

Cerebral malaria is a potentially lethal disease, which is caused by excessive inflammatory responses to Plasmodium parasites. Here we use a newly developed transgenic Plasmodium berghei ANKA (PbAAma1OVA) parasite that can be used to study parasite-specific T cell responses. Our present study demonstrates that Ifnar1-/- mice, which lack type I interferon receptor-dependent signaling, are protected from experimental cerebral malaria (ECM) when infected with this novel parasite. Although CD8+ T cell responses generated in the spleen are essential for the development of ECM, we measured comparable parasite-specific cytotoxic T cell responses in ECM-protected Ifnar1-/- mice and wild type mice suffering from ECM. Importantly, CD8+ T cells were increased in the spleens of ECM-protected Ifnar1-/- mice and the blood-brain-barrier remained intact. This was associated with elevated splenic levels of CCL5, a T cell and eosinophil chemotactic chemokine, which was mainly produced by eosinophils, and an increase in eosinophil numbers. Depletion of eosinophils enhanced CD8+ T cell infiltration into the brain and increased ECM induction in PbAAma1OVA-infected Ifnar1-/- mice. However, eosinophil-depletion did not reduce the CD8+ T cell population in the spleen or reduce splenic CCL5 concentrations. Our study demonstrates that eosinophils impact CD8+ T cell migration and proliferation during PbAAma1OVA-infection in Ifnar1-/- mice and thereby are contributing to the protection from ECM.


Assuntos
Encéfalo/imunologia , Eosinófilos/fisiologia , Malária Cerebral/imunologia , Parasitemia/imunologia , Plasmodium berghei , Linfócitos T/imunologia , Animais , Animais não Endogâmicos , Anopheles/parasitologia , Antígenos de Protozoários/imunologia , Movimento Celular , Quimiocina CCL5/análise , Quimiocina CCL5/fisiologia , Citotoxicidade Imunológica , Feminino , Contagem de Leucócitos , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mosquitos Vetores/parasitologia , Organismos Geneticamente Modificados , Ovalbumina , Parasitemia/parasitologia , Fragmentos de Peptídeos , Plasmodium berghei/genética , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Receptores CCR5/fisiologia , Baço/química , Baço/imunologia
2.
Front Endocrinol (Lausanne) ; 11: 572113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117286

RESUMO

Eosinophils are key regulators of adipose tissue homeostasis, thus characterization of adipose tissue-related molecular factors capable of regulating eosinophil activity is of great interest. Leptin is known to directly activate eosinophils in vitro, but leptin ability of inducing in vivo eosinophilic inflammatory response remains elusive. Here, we show that leptin elicits eosinophil influx as well as its activation, characterized by increased lipid body biogenesis and LTC4 synthesis. Such leptin-triggered eosinophilic inflammatory response was shown to be dependent on activation of the mTOR signaling pathway, since it was (i) inhibited by rapamycin pre-treatment and (ii) reduced in PI3K-deficient mice. Local infiltration of activated eosinophils within leptin-driven inflammatory site was preceded by increased levels of classical mast cell-derived molecules, including TNFα, CCL5 (RANTES), and PGD2. Thus, mice were pre-treated with a mast cell degranulating agent compound 48/80 which was capable to impair leptin-induced PGD2 release, as well as eosinophil recruitment and activation. In agreement with an indirect mast cell-driven phenomenon, eosinophil accumulation induced by leptin was abolished in TNFR-1 deficient and also in HQL-79-pretreated mice, but not in mice pretreated with neutralizing antibodies against CCL5, indicating that both typical mast cell-driven signals TNFα and PGD2, but not CCL5, contribute to leptin-induced eosinophil influx. Distinctly, leptin-induced eosinophil lipid body (lipid droplet) assembly and LTC4 synthesis appears to depend on both PGD2 and CCL5, since both HQL-79 and anti-CCL5 treatments were able to inhibit these eosinophil activation markers. Altogether, our data show that leptin triggers eosinophilic inflammation in vivo via an indirect mechanism dependent on activation of resident mast cell secretory activity and mediation by TNFα, CCL5, and specially PGD2.


Assuntos
Eosinófilos/efeitos dos fármacos , Leptina/farmacologia , Mastócitos/fisiologia , Prostaglandina D2/fisiologia , Animais , Movimento Celular/efeitos dos fármacos , Quimiocina CCL5/fisiologia , Eosinófilos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
3.
Cancer Lett ; 491: 132-145, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-32829009

RESUMO

Young women represent a target of E-cigarette (E-cig) companies, raising concern for potential connections with breast cancer (BC) that have not yet been elucidated. We hypothesized that E-cig promotes BC development and lung metastasis possibly through BC-monocyte/tumor-associated macrophage (TAM) crosstalk via CCL5 and V-CAM-1 axes. We demonstrated that E-cig promoted the infiltration of circulating monocytes in mammary fat pad (MFP) model. Furthermore, E-cig exposure significantly enhanced BC cell growth in MFP tumor and metastatic lung colonization; immunohistochemical stains illustrated the increase of TAMs infiltration, reduced BC cell apoptosis and increased proliferation index after E-cig exposure. In vitro studies show E-cig vapor condensate (EVC) treatment upregulated protein expressions of CCL5, V-CAM-1, and other pro-tumorigenic factors in BC cells. Mechanistically, co-culture system demonstrated both EVC and macrophages independently stimulated BC cell growth and the migration via CCL5/CCR1/CCR5 axis. During metastasis, E-Cig exposure stimulated BC cell survival via direct interaction with infiltrated macrophages, regulated by VCAM-1 and integrin α4ß1. Our findings, for the first time, showed that E-cig promotes BC growth and metastasis. This study highlights the critical role of TAMs via CCL5 and VCAM-1 pathways in E-cig promoted BC tumor development.


Assuntos
Neoplasias da Mama/patologia , Quimiocina CCL5/fisiologia , Sistemas Eletrônicos de Liberação de Nicotina , Neoplasias Pulmonares/secundário , Macrófagos Associados a Tumor/fisiologia , Molécula 1 de Adesão de Célula Vascular/fisiologia , Animais , Apoptose , Comunicação Celular , Movimento Celular , Células Cultivadas , Progressão da Doença , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microambiente Tumoral
4.
Front Immunol ; 11: 705, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425934

RESUMO

Essential thrombocythemia (ET) is comprised among chronic myeloproliferative neoplasms (MPN) and is caused by driver mutations in JAK2, CALR, and MPL, which lead to megakaryocyte proliferation and prominent thrombocytosis. Thrombosis remains the main cause of morbidity in ET and is driven by the interplay between blood cells, the endothelium, the clotting cascade, and host-derived inflammatory mediators. Platelet activation plays a key role in the thrombotic predisposition, although the underlying mechanisms remain poorly defined. In addition to their role in hemostasis, platelets participate in innate immunity and inflammation owing to the expression of toll-like receptors (TLR), which recognize inflammatory signals, triggering platelet functional responses. Considering the impact of inflammation on ET procoagulant state, we assessed the contribution of TLR2 and TLR4 to platelet hemostatic and inflammatory properties in ET patients, by using Pam3CSK4 and lipopolysaccharide (LPS) as specific TLR2 and TLR4 ligands, respectively. TLR2 ligation induced increased surface translocation of α-granule-derived P-selectin and CD40L, which mediate platelet interaction with leukocytes and endothelial cells, respectively, and higher levels of dense granule-derived CD63 in patients, whereas PAC-1 binding was not increased and LPS had no effect on these platelet responses. Platelet-neutrophil aggregate formation was elevated in ET at baseline and after stimulation of both TLR2 and TLR4. In addition, ET patients displayed higher TLR2- and TLR4-triggered platelet secretion of the chemokine RANTES (CCL5), whereas von Willebrand factor release was not enhanced, revealing a differential releasate pattern for α-granule-stored inflammatory molecules. TLR-mediated hyperresponsiveness contrasted with impaired or preserved responses to classic platelet hemostatic agonists, such as TRAP-6 and thrombin. TLR2 and TLR4 expression on the platelet surface was normal, whereas phosphorylation of downstream effector ERK1/2 was higher in patients at baseline and after incubation with Pam3CSK4, which may partly explain the enhanced TLR2 response. In conclusion, exacerbated response to TLR stimulation may promote platelet activation in ET, boosting platelet/leukocyte/endothelial interactions and secretion of inflammatory mediators, overall reinforcing the thromboinflammatory state. These findings highlight the role of platelets as inflammatory sentinels in MPN prothrombotic scenario and provide additional evidence for the close intertwining between thrombosis and inflammation in this setting.


Assuntos
Plaquetas/fisiologia , Inflamação/etiologia , Trombocitemia Essencial/complicações , Trombose/etiologia , Receptores Toll-Like/fisiologia , Adulto , Idoso , Quimiocina CCL5/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neutrófilos/fisiologia , Fosforilação , Ativação Plaquetária , Trombocitemia Essencial/imunologia
5.
Genes Dev ; 32(7-8): 491-496, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29632086

RESUMO

Pediatric low-grade gliomas (LGGs) frequently do not engraft in immunocompromised mice, limiting their use as an experimental platform. In contrast, murine Neurofibromatosis-1 (Nf1) optic LGG stem cells (o-GSCs) form glioma-like lesions in wild-type, but not athymic, mice following transplantation. Here, we show that the inability of athymic mice to support o-GSC engraftment results from impaired microglia/macrophage function, including reduced expression of Ccr2 and Ccl5, both of which are required for o-GSC engraftment and Nf1 optic glioma growth. Impaired Ccr2 and Ccl5 expression in athymic microglia/macrophages was restored by T-cell exposure, establishing T-cell-microglia/macrophage interactions as critical stromal determinants that support NF1 LGG growth.


Assuntos
Glioma/imunologia , Microglia/imunologia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Animais , Células Cultivadas , Quimiocina CCL5/biossíntese , Quimiocina CCL5/genética , Quimiocina CCL5/fisiologia , Expressão Gênica , Genes da Neurofibromatose 1 , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Microglia/metabolismo , Microglia/patologia , Receptores CCR2/genética , Receptores CCR2/metabolismo
6.
Cytokine ; 108: 17-23, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29558694

RESUMO

Skeletal muscle is an endocrine organ that secretes several proteins, which are collectively termed myokines. Although many studies suggest that exercise regulates myokine secretion, the underlying mechanisms remain unclear and all the exercise-dependent myokines have not yet been identified. Therefore, in this study, we attempted to identify novel exercise-dependent myokines by using our recently developed in vitro contractile model. Differentiated C2C12 myotubes were cultured with or without electrical pulse stimulation (EPS) for 24 h to induce cell contraction, and the myokines secreted in conditioned medium were analyzed using a cytokine array. Although most myokine secretions were not affected by EPS, the secretion of Chemokine (C-C motif) ligand 5 (CCL5) (regulated on activation, normal T cell expressed and secreted (RANTES)) was significantly reduced by EPS. This was further confirmed by ELISA and quantitative PCR. Contraction-dependent calcium transients and activation of 5'-AMP activating protein kinase (AMPK) appears to be involved in this decrease, as the chelating Ca2+ by EGTA blocked contraction-dependent CCL5 reduction, whereas the pharmacological activation of AMPK significantly reduced it. However, Ccl5 gene expression was increased by AMPK activation, suggesting that AMPK-dependent CCL5 decrease occurred via post-transcriptional regulation. Finally, mouse experiments revealed that voluntary wheel-running exercise reduced serum CCL5 levels and Ccl5 gene expression in the fast-twitch muscles. Overall, our study provides the first evidence of an exercise-reducible myokine, CCL5, in the mouse skeletal muscle. Although further studies are required to understand the precise roles of the skeletal muscle cell contraction-induced decrease in CCL5, this decrease may explain some exercise-dependent physiological changes such as those in immune responses.


Assuntos
Quimiocina CCL5/fisiologia , Contração Muscular , Músculo Esquelético/fisiologia , Condicionamento Físico Animal , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células Cultivadas , Quimiocina CCL5/genética , Citocinas/genética , Citocinas/metabolismo , Estimulação Elétrica , Expressão Gênica , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real
7.
Cancer Sci ; 109(5): 1710-1722, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29569795

RESUMO

Nasopharyngeal carcinoma (NPC) is etiologically associated with Epstein-Barr virus (EBV) infection and is known to be highly vascularized. Previous studies have suggested that EBV oncoproteins contribute to NPC angiogenesis. However, the regulatory network of EBV in angiogenesis still remains elusive. Herein, we reveal a novel mechanism of EBV-induced angiogenesis in NPC. First, we showed that EBV-infected NPC cell lines generated larger tumors with more microvessels in mouse xenograft models. Subsequent proteomic analysis revealed that EBV infection increased the expression of a series of angiogenic factors, including chemokine (C-C motif) ligand 5 (CCL5). We then proved that CCL5 was a target of EBV in inducing tumor angiogenesis and growth. Further investigation through transcriptome analysis indicated that the pro-angiogenic function of CCL5 might be mediated by the PI3K/AKT pathway. Furthermore, we confirmed that activation of the PI3K/AKT and hypoxia-inducible factor-1α pathways was essential for CCL5-promoted angiogenesis. Finally, the immunohistochemical analysis of human NPC specimens also showed that CCL5 was correlated with angiogenesis. Taken together, our study identifies CCL5 as a key EBV-regulated molecular driver that promotes NPC angiogenesis, suggesting it as a potential therapeutic target.


Assuntos
Carcinoma/irrigação sanguínea , Quimiocina CCL5/fisiologia , Infecções por Vírus Epstein-Barr/complicações , Neoplasias Nasofaríngeas/irrigação sanguínea , Neovascularização Patológica/etiologia , Carcinoma/imunologia , Linhagem Celular Tumoral , Infecções por Vírus Epstein-Barr/imunologia , Perfilação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/imunologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia
8.
Vet Res ; 48(1): 14, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28241864

RESUMO

Equine herpesvirus type 1 (EHV-1) causes respiratory disease, abortion and neurological disorders in horses. Besides epithelial cells, CD172a+ monocytic cells become infected with EHV-1 in the respiratory mucosa and transport the virus from the apical side of the epithelium to the lamina propria en route to the lymph and blood circulation. Whether CD172a+ monocytic cells are specifically recruited to the infection sites in order to pick up virus is unknown. In our study, equine nasal mucosa explants were inoculated with EHV-1 neurological strains 03P37 and 95P105 or the non-neurological strains 97P70 and 94P247 and the migration of monocytic cells was examined by immunofluorescence. Further, the role of monokines CCL2 and CCL5 was determined and the effect of migration inhibitors rosiglitazone (RSG) or quinacrine was analyzed. It was shown that with neurological strains but not with the non-neurological strains, CD172a+ cells specifically migrated towards EHV-1 infected regions and that CCL2 and CCL5 were involved. CCL2 started to be expressed in infected epithelial cells at 24 h post-incubation (hpi) and CCL5 at 48 hpi, which corresponded with the CD172a+ migration. RSG treatment of EHV-1-inoculated equine nasal mucosa had no effect on the virus replication in the epithelium, but decreased the migration of CD172a+ cells in the lamina propria. Overall, these findings bring new insights in the early pathogenesis of EHV-1 infections, illustrate differences between neurological and non-neurological strains and show the way for EHV-1 treatment.


Assuntos
Quimiocina CCL2/fisiologia , Quimiocina CCL5/fisiologia , Infecções por Herpesviridae/veterinária , Herpesvirus Equídeo 1 , Doenças dos Cavalos/virologia , Monócitos/fisiologia , Mucosa Nasal/virologia , Quinacrina/farmacologia , Receptores Imunológicos/fisiologia , Tiazolidinedionas/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Imunofluorescência/veterinária , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Doenças dos Cavalos/imunologia , Cavalos/virologia , Monócitos/efeitos dos fármacos , Mucosa Nasal/imunologia , Rosiglitazona
9.
PLoS One ; 11(12): e0168973, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28006034

RESUMO

Dengue disease is an acute viral illness caused by dengue virus (DENV) that can progress to hemorrhagic stages leading to about 20000 deaths every year worldwide. Despite many clinical investigations regarding dengue, the immunopathogenic process by which infected patients evolve to the severe forms is not fully understood. Apart from differences in virulence and the antibody cross reactivity that can potentially augment virus replication, imbalanced cellular immunity is also seen as a major concern in the establishment of severe dengue. In this context, the investigation of cellular immunity and its products in dengue fatal cases may provide valuable data to help revealing dengue immunopathogenesis. Here, based in four dengue fatal cases infected by the serotype 3 in Brazil, different peripheral organs (livers, lungs and kidneys) were studied to evaluate the presence of cell infiltrates and the patterns of local cytokine response. The overall scenario of the studied cases revealed a considerable systemic involvement of infection with mononuclear cells targeted to all of the evaluated organs, as measured by immunohistochemistry (IHC). Quantification of cytokine-expressing cells in peripheral tissues was also performed to characterize the ongoing inflammatory process by the severe stage of the disease. Increased levels of IFN-γ- and TNF-α-expressing cells in liver, lung and kidney samples of post-mortem subjects evidenced a strong pro-inflammatory induction in these tissues. The presence of increased RANTES-producing cell numbers in all analyzed organs suggested a possible link between the clinical status and altered vascular permeability. Co-staining of DENV RNA and IFN-γ or TNF-α using in situ hibridization and IHC confirmed the virus-specific trigger of the pro-inflammatory response. Taken together, this work provided additional evidences that corroborated with the traditional theories regarding the "cytokine storm" and the occurrence of uneven cellular immunity in response to DENV as major reasons for progress to severe disease.


Assuntos
Quimiocina CCL5/fisiologia , Dengue/complicações , Interferon gama/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Adulto , Quimiocina CCL5/metabolismo , Citocinas/metabolismo , Citocinas/fisiologia , Dengue/imunologia , Dengue/mortalidade , Feminino , Humanos , Imunidade Celular , Interferon gama/metabolismo , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/metabolismo
10.
Sci Rep ; 6: 18424, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26725683

RESUMO

RANTES (Regulated on activation, normal T-cell expressed and secreted), recruits circulating leukocytes and augments inflammatory responses in many clinical conditions. Inflammatory responses in ischemia-reperfusion injury (IRI) significantly affect the unfavorable outcomes of acute kidney injury (AKI), and that infiltrating immune cells are important mediators of AKI. However, the significance of RANTES in AKI and whether hypoxia-induced LncRNAs are involved in the regulatory process of AKI are not known. Here we show that, in the kidney IRI mice model, significant RANTES expression was observed in renal tubular cells of wild type mice. RANTES deficient (RANTES(-/-)) mice showed better renal function by reducing the acute tubular necrosis, serum creatinine levels, infiltration of inflammatory cells and cytokine expressions compared to wild type. In vitro, we found that RANTES expression was regulated by NF-κB. Further, renal tubular cells showed deregulated LncRNA expression under hypoxia. Among HIF-1α dependent LncRNAs, PRINS (Psoriasis susceptibility-related RNA Gene Induced by Stress) was significantly up regulated in hypoxic conditions and had specific interaction with RANTES as confirmed through reporter assay. These observations show first evidence for RANTES produced by renal tubular cells act as a key chemokine in AKI and HIF-1α regulated LncRNA-PRINS might be involved in RANTES production.


Assuntos
Quimiocina CCL5/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Rim/irrigação sanguínea , RNA Longo não Codificante/genética , Traumatismo por Reperfusão/metabolismo , Animais , Hipóxia Celular , Expressão Gênica , Isquemia , Rim/metabolismo , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Infiltração de Neutrófilos , RNA Longo não Codificante/metabolismo
11.
Hepatology ; 63(5): 1576-91, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26799785

RESUMO

UNLABELLED: The hypoxia-inducible factor (HIF), HIF-1, is a central regulator of the response to low oxygen or inflammatory stress and plays an essential role in survival and function of immune cells. However, the mechanisms regulating nonhypoxic induction of HIF-1 remain unclear. Here, we assess the impact of germline heterozygosity of a novel, oxygen-independent ubiquitin ligase for HIF-1α: hypoxia-associated factor (HAF; encoded by SART1). SART1(-/-) mice were embryonic lethal, whereas male SART1(+/-) mice spontaneously recapitulated key features of nonalcoholic steatohepatitis (NASH)-driven hepatocellular carcinoma (HCC), including steatosis, fibrosis, and inflammatory cytokine production. Male, but not female, SART1(+/-) mice showed significant up-regulation of HIF-1α in circulating and liver-infiltrating immune cells, but not in hepatocytes, before development of malignancy. Additionally, Kupffer cells derived from male, but not female, SART1(+/-) mice produced increased levels of the HIF-1-dependent chemokine, regulated on activation, normal T-cell expressed and secreted (RANTES), compared to wild type. This was associated with increased liver-neutrophilic infiltration, whereas infiltration of lymphocytes and macrophages were not significantly different. Neutralization of circulating RANTES decreased liver neutrophilic infiltration and attenuated HCC tumor initiation/growth in SART1(+/-) mice. CONCLUSION: This work establishes a new tumor-suppressor role for HAF in immune cell function by preventing inappropriate HIF-1 activation in male mice and identifies RANTES as a novel therapeutic target for NASH and NASH-driven HCC.


Assuntos
Carcinoma Hepatocelular/etiologia , Quimiocina CCL5/fisiologia , Haploinsuficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Neoplasias Hepáticas/etiologia , Transativadores/genética , Animais , Ácidos Graxos/metabolismo , Fígado Gorduroso/etiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Ribonucleoproteínas Nucleares Pequenas
12.
J Gastroenterol Hepatol ; 31(3): 676-84, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26430807

RESUMO

BACKGROUND AND AIM: Most studies focus on gut-derived factors like microbiota and its products and how they contribute to non-alcoholic fatty liver disease (NAFLD) progression. This study investigated whether the gut-derived lymphocytes could migrate to the liver and induce liver injury in NAFLD. METHODS: A high-fat diet induced an NAFLD mouse model, and lymphocytes were labeled with 1,1-dioctadecyl-3,3,3,3 tetramethylindotricarbocyanine iodide and carboxy-fluorescein succinimidyl ester, respectively, and intravenously injected to mice to monitor lymphocyte migration. RESULTS: Adoptive transfer model results indicated that compared with lymphocytes from the spleen, bone marrow and thymus of NAFLD donor mice, mesenteric lymph nodes (MLN) cells from NAFLD donor mice predominately accumulated in the livers of NAFLD recipient mice. The frequencies of central memory CD4(+) T and CD8(+) T cells in livers of NAFLD mice were significantly increased; however, the activated T cells were not significantly altered. After adoptively transferred MLN cells, the frequencies of the activated CD4(+) T and CD8(+) T cells increased in livers of NAFLD recipient mice. By contrast, the frequencies of central memory and naïve CD4(+) T and CD8(+) T cells decreased. MLN cells also induced liver injury in NAFLD recipient mice, as reflected by elevated serum alanine aminotransferase and glutamic oxaloacetic transaminase serums. Moreover, the chemotaxis assay showed that CCL5 mediated the MLN cell migration to the liver. Also, blocking the CCL5 inhibited MLN cell migration to the liver in vitro. CONCLUSIONS: Gut-derived lymphocytes from NAFLD mice could migrate to the liver and induce liver injury and hepatic CD4(+) T and CD8(+) T cells activation. The migration was associated with the upregulation of CCL5 in the liver.


Assuntos
Fígado/citologia , Fígado/patologia , Linfócitos/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Movimento Celular , Quimiocina CCL5/fisiologia , Modelos Animais de Doenças , Ativação Linfocitária , Masculino , Camundongos Endogâmicos C57BL , Regulação para Cima
13.
Cardiovasc Res ; 109(1): 9-23, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26410367

RESUMO

Anti-inflammatory add-on therapy to conventional cardiovascular prophylaxis has been proposed as a novel therapeutic approach to potentially reduce residual cardiovascular risk. This hypothesis has been challenged by a series of unsuccessful Phase III studies testing the impact on clinical outcomes of novel agents with immunomodulatory actions. Specifically, the apparent ability of phospholipase A2 (PLA2) inhibitors and of antioxidants to ameliorate inflammation and to reduce coronary disease in Phase II trials did not translate into improved secondary cardiovascular prevention in larger population-based studies. Other anti-inflammatory agents are still under scrutiny. However, studies to date have lacked information on the inflammatory profile of the participants, both at baseline and at follow-up, thereby limiting the possibility of identifying subgroups of patients in whom 'residual inflammation' can be detected despite optimal conventional therapy, and who could therefore benefit from a cardiovascular prevention strategy specifically targeting inflammation. This has also rendered it difficult to interpret the results as a conclusive demonstration of inefficacy of the tested anti-inflammatory strategies in the treatment of atherosclerosis. We here discuss the importance of better patient characterization to minimize heterogeneity of the study population, so that effectiveness of different anti-inflammatory strategies can be evaluated in targeted subgroups of patients. We also illustrate how specific inflammatory biomarkers could assist in this process, with particular emphasis on the roles of high-sensitivity C-reactive protein and circulating monocyte phenotype.


Assuntos
Anti-Inflamatórios/uso terapêutico , Proteína C-Reativa/análise , Doenças Cardiovasculares/tratamento farmacológico , Monócitos/fisiologia , Aterosclerose/etiologia , Biomarcadores , Doenças Cardiovasculares/etiologia , Quimiocina CCL5/fisiologia , Humanos , Lipoproteínas LDL , Inibidores de Fosfolipase A2/farmacologia , Prognóstico , Receptores de IgG/análise , Fator de Necrose Tumoral alfa/antagonistas & inibidores
14.
J Dent Res ; 94(11): 1601-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26377571

RESUMO

The present study aimed to investigate the therapeutic effect of injections of local bone marrow mesenchymal stem cells (BMSCs) on osteoarthritis (OA) of the temporomandibular joint (TMJ) and to explore the role of stromal cell-derived factor 1 (SDF-1) and regulated on activation, normal T-cell expressed and secreted (RANTES) in this effect. Fundamentally, OA of the TMJ was induced by unilateral anterior crossbite in mice. Exogenous green fluorescent protein-labeled BMSCs (GFP-BMSCs) were weekly injected into the TMJ region for 4, 8, and 12 wk. The reparative effects of exogenous GFP-BMSCs were investigated by morphological observation and micro-computed tomography. The differentiation of GFP-BMSCs in the cartilage was examined by double immunofluorescence of GFPs with type II collagen, and the expression of related factors in the condylar cartilage was quantified by real-time polymerase chain reaction. The role of RANTES and SDF-1 in the therapeutic effect of exogenous BMSCs was examined by both in vitro and in vivo studies. The OA cartilage of the TMJ displays a synchronous increase in SDF-1 and RANTES expression and a higher capability of attracting the migration of GFP-BMSCs. The implanted GFP-BMSCs differentiated into type II collagen-positive cells and reversed cartilage degradation and subchondral bone loss in mice with OA of the TMJ. The migration of GFP-BMSCs towards OA cartilage and the rescuing effect of GFP-BMSC injections were impaired by the inhibitors of C-X-C chemokine receptor type 4 (CXCR4) and C-C chemokine receptor type 1 (CCR1), which are the receptors of SDF-1 and RANTES, respectively. Our data indicated that SDF-1/CXCR4 and RANTES/CCR1 signals are pivotal and function synergistically in the recruitment of GFP-BMSCs towards degraded cartilage in mice OA of the TMJ.


Assuntos
Quimiocina CCL5/fisiologia , Quimiocina CXCL12/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Osteoartrite/terapia , Transtornos da Articulação Temporomandibular/terapia , Animais , Quimiocina CCL5/metabolismo , Quimiocina CXCL12/metabolismo , Colágeno Tipo II/fisiologia , Modelos Animais de Doenças , Feminino , Imunofluorescência , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Resultado do Tratamento , Microtomografia por Raio-X
15.
Cancer Res ; 75(19): 4063-73, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26238785

RESUMO

Triple-negative breast cancer (TNBC) patients have the highest risk of recurrence and metastasis. Because they cannot be treated with targeted therapies, and many do not respond to chemotherapy, they represent a clinically underserved group. TNBC is characterized by reduced expression of metastasis suppressors such as Raf kinase inhibitory protein (RKIP), which inhibits tumor invasiveness. Mechanisms by which metastasis suppressors alter tumor cells are well characterized; however, their ability to regulate the tumor microenvironment and the importance of such regulation to metastasis suppression are incompletely understood. Here, we use species-specific RNA sequencing to show that RKIP expression in tumors markedly reduces the number and metastatic potential of infiltrating tumor-associated macrophages (TAM). TAMs isolated from nonmetastatic RKIP(+) tumors, relative to metastatic RKIP(-) tumors, exhibit a reduced ability to drive tumor cell invasion and decreased secretion of prometastatic factors, including PRGN, and shed TNFR2. RKIP regulates TAM recruitment by blocking HMGA2, resulting in reduced expression of numerous macrophage chemotactic factors, including CCL5. CCL5 overexpression in RKIP(+) tumors restores recruitment of prometastatic TAMs and intravasation, whereas treatment with the CCL5 receptor antagonist Maraviroc reduces TAM infiltration. These results highlight the importance of RKIP as a regulator of TAM recruitment through chemokines such as CCL5. The clinical significance of these interactions is underscored by our demonstration that a signature comprised of RKIP signaling and prometastatic TAM factors strikingly separates TNBC patients based on survival outcome. Collectively, our findings identify TAMs as a previously unsuspected mechanism by which the metastasis-suppressor RKIP regulates tumor invasiveness, and further suggest that TNBC patients with decreased RKIP activity and increased TAM infiltration may respond to macrophage-based therapeutics.


Assuntos
Quimiocinas/fisiologia , Quimiotaxia , Macrófagos/imunologia , Neoplasias Mamárias Experimentais/imunologia , Metástase Neoplásica/imunologia , Proteínas de Neoplasias/fisiologia , Proteína de Ligação a Fosfatidiletanolamina/fisiologia , Neoplasias de Mama Triplo Negativas/imunologia , Microambiente Tumoral/imunologia , Animais , Linhagem Celular Tumoral/transplante , Quimiocina CCL5/biossíntese , Quimiocina CCL5/genética , Quimiocina CCL5/fisiologia , Cicloexanos/farmacologia , Cicloexanos/uso terapêutico , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteína HMGA2/fisiologia , Xenoenxertos/imunologia , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Maraviroc , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Receptores CCR5/efeitos dos fármacos , Análise de Sequência de RNA , Triazóis/farmacologia , Triazóis/uso terapêutico , Neoplasias de Mama Triplo Negativas/mortalidade
16.
Biochim Biophys Acta ; 1850(9): 1862-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25986989

RESUMO

BACKGROUND: Asthma is a chronic inflammatory disease characterized by narrowed airways, bronchial hyper-responsiveness, mucus hyper-secretion, and airway remodeling. Mast cell (MC) infiltration into airway smooth muscle (ASM) is a defining feature of asthma, and ASM regulates the inflammatory response by secreting chemokines, including CXCL10 and CCL5. Single cell analysis offers a unique approach to study specific cellular signaling interactions within large and complex signaling networks such as the inflammatory microenvironment in asthma. METHODS: Carbon-fiber microelectrode amperometry was used to study the effects of ASM-secreted chemokines on mouse peritoneal MC degranulation. RESULTS: MC degranulation in response to CXCL10 and CCL5 was monitored at the single cell level. Relative to IgE-mediated degranulation, CXCL10- and CCL5-stimulated MCs released a decreased amount of serotonin per granule with fewer release events per cell. Decreased serotonin release per granule was correlated with increased spike half-width and rise-time values. CONCLUSIONS: MCs are directly activated by ASM-associated chemokines. CXCL10 and CCL5 induce less robust MC degranulation compared to IgE- and A23187-stimulation. The kinetics of MC degranulation are signaling pathway-dependent, suggesting a biophysical mechanism of regulated degranulation that incorporates control over granule trafficking, transport, and docking machinery. GENERAL SIGNIFICANCE: The biophysical mechanisms, including variations in number of exocytotic release events, serotonin released per granule, and the membrane kinetics of exocytosis that underlie MC degranulation in response to CXCL10 and CCL5 were characterized at the single cell level. These findings clarify the function of ASM-derived chemokines as instigators of MC degranulation relative to classical mechanisms of MC stimulation.


Assuntos
Brônquios/imunologia , Degranulação Celular , Quimiocinas/fisiologia , Mastócitos/fisiologia , Músculo Liso/imunologia , Análise de Célula Única/métodos , Animais , Carbono , Fibra de Carbono , Células Cultivadas , Quimiocina CCL5/fisiologia , Quimiocina CXCL10/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos , Serotonina/metabolismo
17.
Circ Res ; 116(5): 827-35, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25520364

RESUMO

RATIONALE: Chemokine-controlled arterial leukocyte recruitment is a crucial process in atherosclerosis. Formyl peptide receptor 2 (FPR2) is a chemoattractant receptor that recognizes proinflammatory and proresolving ligands. The contribution of FPR2 and its proresolving ligand annexin A1 to atherosclerotic lesion formation is largely undefined. OBJECTIVE: Because of the ambivalence of FPR2 ligands, we here investigate the role of FPR2 and its resolving ligand annexin A1 in atherogenesis. METHODS AND RESULTS: Deletion of FPR2 or its ligand annexin A1 enhances atherosclerotic lesion formation, arterial myeloid cell adhesion, and recruitment. Mechanistically, we identify annexin A1 as an endogenous inhibitor of integrin activation evoked by the chemokines CCL5, CCL2, and CXCL1. Specifically, the annexin A1 fragment Ac2-26 counteracts conformational activation and clustering of integrins on myeloid cells evoked by CCL5, CCL2, and CXCL1 through inhibiting activation of the small GTPase Rap1. In vivo administration of Ac2-26 largely diminishes arterial recruitment of myeloid cells in a FPR2-dependent fashion. This effect is also observed in the presence of selective antagonists to CCR5, CCR2, or CXCR2, whereas Ac2-26 was without effect when all 3 chemokine receptors were antagonized simultaneously. Finally, repeated treatment with Ac2-26 reduces atherosclerotic lesion sizes and lesional macrophage accumulation. CONCLUSIONS: Instructing the annexin A1-FPR2 axis harbors a novel approach to target arterial leukocyte recruitment. With the ability of Ac2-26 to counteract integrin activation exerted by various chemokines, delivery of Ac2-26 may be superior in inhibition of arterial leukocyte recruitment when compared with blocking individual chemokine receptors.


Assuntos
Anexina A1/fisiologia , Doenças da Aorta/etiologia , Aterosclerose/etiologia , Animais , Anexina A1/deficiência , Anexina A1/genética , Anexina A1/farmacologia , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Doenças da Aorta/prevenção & controle , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Quimiocina CCL2/fisiologia , Quimiocina CCL5/fisiologia , Quimiocina CXCL1/fisiologia , Quimiotaxia/efeitos dos fármacos , Gorduras na Dieta/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/fisiologia , Peptídeos/farmacologia , Receptores CCR2/antagonistas & inibidores , Receptores CCR5/fisiologia , Receptores de Formil Peptídeo/deficiência , Receptores de Formil Peptídeo/fisiologia , Receptores de Interleucina-8B/antagonistas & inibidores , Proteínas rap1 de Ligação ao GTP/fisiologia
18.
AIDS Res Hum Retroviruses ; 30(12): 1243-50, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25275490

RESUMO

Maraviroc (MVC) is licensed in clinical practice for patients with R5 virus and virological failure; however, in anecdotal reports, dual/mixed viruses were also inhibited. We retrospectively evaluated the evolution of HIV-1 coreceptor tropism in plasma and peripheral blood mononuclear cells (PBMCs) of an infected adolescent with a CCR5/CXCR4 Trofile profile who experienced an important but temporary immunological and virological response during a 16-month period of MVC-based therapy. Coreceptor usage of biological viral clones isolated from PBMCs was investigated in U87.CD4 cells expressing wild-type or chimeric CCR5 and CXCR4. Plasma and PBMC-derived viral clones were sequenced to predict coreceptor tropism using the geno2pheno algorithm from the V3 envelope sequence and pol gene-resistant mutations. From start to 8.5 months of MVC treatment only R5X4 viral clones were observed, whereas at 16 months the phenotype enlarged to also include R5 and X4 clones. Chimeric receptor usage suggested the preferential usage of the CXCR4 coreceptor by the R5X4 biological clones. According to phenotypic data, R5 viruses were susceptible, whereas R5X4 and X4 viruses were resistant to RANTES and MVC in vitro. Clones at 16 months, but not at baseline, showed an amino acidic resistance pattern in protease and reverse transcription genes, which, however, did not drive their tropisms. The geno2pheno algorithm predicted at baseline R5 viruses in plasma, and from 5.5 months throughout follow-up only CXCR4-using viruses. An extended methodological approach is needed to unravel the complexity of the phenotype and variation of viruses resident in the different compartments of an infected individual. The accurate evaluation of the proportion of residual R5 viruses may guide therapeutic intervention in highly experienced patients with limited therapeutic options.


Assuntos
Fármacos Anti-HIV/uso terapêutico , HIV-1/efeitos dos fármacos , Adolescente , Terapia Antirretroviral de Alta Atividade/métodos , Contagem de Linfócito CD4 , Quimiocina CCL5/fisiologia , Cicloexanos/uso terapêutico , Darunavir , Farmacorresistência Viral Múltipla , Proteína gp120 do Envelope de HIV/genética , Transcriptase Reversa do HIV/genética , HIV-1/fisiologia , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Maraviroc , Oxazinas , Fragmentos de Peptídeos/genética , Filogenia , Piperazinas , Piridonas , Receptores CCR5/fisiologia , Receptores CXCR4/fisiologia , Ritonavir/administração & dosagem , Ritonavir/uso terapêutico , Sulfonamidas/administração & dosagem , Sulfonamidas/uso terapêutico , Triazóis/uso terapêutico , Carga Viral/efeitos dos fármacos , Tropismo Viral/efeitos dos fármacos
19.
Dis Markers ; 2014: 126954, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24591756

RESUMO

Solid tumors are embedded in a stromal microenvironment consisting of immune cells, such as macrophages and lymphocytes, as well as nonimmune cells, such as endothelial cells and fibroblasts. Chemokines are a type of small secreted chemotactic cytokine and together with their receptors play key roles in the immune defense. Critically, they regulate cancer cellular migration and also contribute to their proliferation and survival. The CCR5 chemokine receptor is involved in leucocytes chemotaxis to sites of inflammation and plays an important role in the macrophages, T cells, and monocytes recruitment. Additionally, CCR5 may have an indirect effect on cancer progression by controlling the antitumor immune response, since it has been demonstrated that its expression could promote tumor growth and contribute to tumor metastasis, in different types of malignant tumors. Furthermore, it was demonstrated that a CCR5 antagonist may inhibit tumor growth, consisting of a possible therapeutic target. In this context, the present review focuses on the establishment of CCR5 within the interface of host immunity, tumor microenvironment, and its potential as a targeting to immunotherapy.


Assuntos
Neoplasias/metabolismo , Receptores CCR5/fisiologia , Animais , Quimiocina CCL5/fisiologia , Humanos , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA