Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Mol Med Rep ; 22(6): 4716-4724, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33173955

RESUMO

Osteoporosis is a common disorder characterized by decreased bone mineral density (BMD) and increased fracture risk. The current techniques detect real­time BMD precisely but do not provide adequate information to predict early bone loss. If bone loss could be diagnosed and predicted early, severe osteoporosis and unexpected fractures could be prevented, allowing for an improved quality of life for individuals. In the present study, an ovariectomized rat model of bone loss was established and the serum levels of 78 potential cytokines were determined using a protein array. The BMD of ovariectomized rats was dynamically measured by micro­CT and the early stage of bone loss was defined at the fourth week after surgery. The expression of several serum protein cytokines was indicated to be altered in the ovariectomized rats during an 8­week time­course of bone loss. Linear regression analysis revealed that the serum levels of C­C motif chemokine ligand 2 (CCL2, also known as monocyte chemoattractant protein 1) and C­X­C motif chemokine ligand 1 (CXCL1) were significantly associated with a reduction in BMD. The significance of these two factors in indicating bone mass reduction was further verified by analyzing serum samples from 24 patients with BMD using ELISA and performing a linear regression analysis. The serum levels of CCL2 and CXCL1 were inversely correlated with the bone mass. Therefore, the cytokines CCL2 and CXCL1 may be potential novel predictors of early bone loss and may be clinically relevant for the early diagnosis and prevention of osteoporosis.


Assuntos
Quimiocina CCL2/metabolismo , Quimiocina CXCL1/metabolismo , Osteoporose/diagnóstico , Absorciometria de Fóton , Adolescente , Adulto , Idoso , Animais , Densidade Óssea/fisiologia , Quimiocina CCL2/sangue , Quimiocina CCL2/fisiologia , Quimiocina CXCL1/sangue , Quimiocina CXCL1/fisiologia , Citocinas , Modelos Animais de Doenças , Feminino , Fraturas Ósseas , Humanos , Masculino , Pessoa de Meia-Idade , Osteoporose/metabolismo , Ovariectomia , Ratos , Ratos Sprague-Dawley
2.
Arch Oral Biol ; 115: 104733, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32408131

RESUMO

OBJECTIVE: This study aimed to determine the expression of chemokine (C-X-C motif) ligand 14 (CXCL14) in pulpal and periodontal cells in vivo and in vitro, and investigate function of CXCL14 and its underlying mechanism in the proliferation and osteogenic differentiation of human periodontal ligament (hPDL) cells. METHODS: To determine the expression level of CXCL14 in adult rat oral tissues and in hPDL cells after application of biophysical forces, RT-PCR, western blot, and histological analyses were performed. The role of CXCL14 in proliferation and osteogenic differentiation of PDL cells was evaluated by measuring dehydrogenase activity and Alizarin red S staining. RESULTS: Strong immunoreactivity against CXCL14 was observed in the PDL tissues and pulpal cells of rat molar, and attenuated apparently by orthodontic biophysical forces. As seen in rat molar, highly expressed CXCL14 was observed in human dental pulp and hPDL cells, and attenuated obviously by biophysical tensile force. CXCL14 expression in hPDL cells was increased in incubation time-dependent manner. Proliferation of hPDL cells was inhibited dramatically by small interfering (si) RNA against CXCL14. Furthermore, dexamethasone-induced osteogenic mineralization was inhibited by recombinant human (rh) CXCL14, and augmented by CXCL14 siRNA. rhCXCL14 increased transforming growth factor-beta1 (TGF- ß1) in hPDL cells. Inhibition of the cell proliferation and osteogenic differentiation of hPDL cells by CXCL14 siRNA and rhCXCL14 were restored by rhTGF-ß1 and SB431542, respectively. CONCLUSION: These results suggest that CXCL14 may play roles as a growth factor and a negative regulator of osteogenic differentiation by increasing TGF-ß1 expression in hPDL cells.


Assuntos
Diferenciação Celular , Quimiocina CXCL1 , Osteogênese , Ligamento Periodontal , Fator de Crescimento Transformador beta1 , Animais , Células Cultivadas , Quimiocina CXCL1/fisiologia , Humanos , Ratos , Fator de Crescimento Transformador beta1/fisiologia , Fatores de Crescimento Transformadores
3.
J Clin Invest ; 130(1): 157-170, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31550239

RESUMO

Whether respiratory epithelial cells regulate the final transit of extravasated neutrophils into the inflamed airspace or are a passive barrier is poorly understood. Alveolar epithelial type 1 (AT1) cells, best known for solute transport and gas exchange, have few established immune roles. Epithelial membrane protein 2 (EMP2), a tetraspan protein that promotes recruitment of integrins to lipid rafts, is highly expressed in AT1 cells but has no known function in lung biology. Here, we show that Emp2-/- mice exhibit reduced neutrophil influx into the airspace after a wide range of inhaled exposures. During bacterial pneumonia, Emp2-/- mice had attenuated neutrophilic lung injury and improved survival. Bone marrow chimeras, intravital neutrophil labeling, and in vitro assays suggested that defective transepithelial migration of neutrophils into the alveolar lumen occurs in Emp2-/- lungs. Emp2-/- AT1 cells had dysregulated surface display of multiple adhesion molecules, associated with reduced raft abundance. Epithelial raft abundance was dependent upon putative cholesterol-binding motifs in EMP2, whereas EMP2 supported adhesion molecule display and neutrophil transmigration through suppression of caveolins. Taken together, we propose that EMP2-dependent membrane organization ensures proper display on AT1 cells of a suite of proteins required to instruct paracellular neutrophil traffic into the alveolus.


Assuntos
Células Epiteliais Alveolares/fisiologia , Glicoproteínas de Membrana/fisiologia , Neutrófilos/fisiologia , Animais , Linhagem Celular , Movimento Celular , Quimiocina CXCL1/fisiologia , Microdomínios da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia Bacteriana/mortalidade
4.
Front Immunol ; 10: 2621, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824481

RESUMO

Neutrophils are amongst the first cells to respond to inflammation and infection. Although they play a key role in limiting the dissemination of pathogens, the study of their dynamic behavior in immune organs remains elusive. In this work, we characterized in vivo the dynamic behavior of neutrophils in the mouse popliteal lymph node (PLN) after influenza vaccination with UV-inactivated virus. To achieve this, we used an image-based systems biology approach to detect the motility patterns of neutrophils and to associate them to distinct actions. We described a prominent and rapid recruitment of neutrophils to the PLN following vaccination, which was dependent on the secretion of the chemokine CXCL1 and the alarmin molecule IL-1α. In addition, we observed that the initial recruitment occurred mainly via high endothelial venules located in the paracortical and interfollicular regions of the PLN. The analysis of the spatial-temporal patterns of neutrophil migration demonstrated that, in the initial stage, the majority of neutrophils displayed a patrolling behavior, followed by the formation of swarms in the subcapsular sinus of the PLN, which were associated with macrophages in this compartment. Finally, we observed using multiple imaging techniques, that neutrophils phagocytize and transport influenza virus particles. These processes might have important implications in the capacity of these cells to present viral antigens.


Assuntos
Vacinas contra Influenza/imunologia , Neutrófilos/imunologia , Vacinação , Animais , Quimiocina CXCL1/fisiologia , Interleucina-1alfa/fisiologia , Linfonodos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose
5.
Hepatology ; 70(5): 1564-1581, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31021443

RESUMO

Receptor-interacting protein kinase 3 (RIP3) is the core regulator that switches cell death from apoptosis to necrosis. However, its role in tumor immunity is unknown. In this study, decreased RIP3 expression was observed in patients with hepatocellular carcinoma (HCC), which correlates with myeloid-derived suppressor cell (MDSC) accumulation. Moreover, RIP3 is a prognosis factor for patients with HCC. We further found that RIP3 knockdown results in an increase of MDSCs and a decrease of interferon gamma-positive (IFN-γ+ ) cluster of differentiation 8-positive (CD8+ ) tumor-infiltrating lymphocytes (IFN-γ+ CD8+ T cells) in hepatoma tissues, thus promoting immune escape and HCC growth in immunocompetent mice. By phosphorylating P65Ser536 and promoting phosphorylated P65Ser536 nuclear translocation, RIP3 knockdown increases the expression of chemokine (C-X-C motif) ligand 1 (CXCL1) in HCC cells. RIP3 knockdown induces MDSC recruitment through the CXCL1-chemokine (C-X-C motif) receptor 2 (CXCR2) axis. Furthermore, a CXCR2 antagonist substantially suppresses MDSC chemotaxis and HCC growth in RIP3 knockout mice. Conclusion: RIP3 deficiency is an essential factor directing MDSC homing to HCC and promoting CXCL1/CXCR2-induced MDSC chemotaxis to facilitate HCC immune escape and HCC progression; blocking the CXCL1-CXCR2 chemokine axis may provide an immunological therapeutic approach to suppress progression of RIP3 deficiency HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Quimiocina CXCL1/fisiologia , Neoplasias Hepáticas/patologia , Células Supressoras Mieloides/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Receptores de Interleucina-8B/fisiologia , Animais , Quimiotaxia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
6.
Blood ; 133(12): 1335-1345, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30723078

RESUMO

Neutrophil migration to the site of bacterial infection is a critical step in host defense. Exclusively produced in the bone marrow, neutrophil release into the blood is tightly controlled. Although the chemokine CXCL1 induces neutrophil influx during bacterial infections, its role in regulating neutrophil recruitment, granulopoiesis, and neutrophil mobilization in response to lung infection-induced sepsis is unclear. Here, we used a murine model of intrapulmonary Streptococcus pneumoniae infection to investigate the role of CXCL1 in host defense, granulopoiesis, and neutrophil mobilization. Our results demonstrate that CXCL1 augments neutrophil influx to control bacterial growth in the lungs, as well as bacterial dissemination, resulting in improved host survival. This was shown in Cxcl1 -/- mice, which exhibited defective amplification of early neutrophil precursors in granulocytic compartments, and CD62L- and CD49d-dependent neutrophil release from the marrow. Administration of recombinant CXCL2 and CXCL5 after infection rescues the impairments in neutrophil-dependent host defense in Cxcl1 -/- mice. Taken together, these findings identify CXCL1 as a central player in host defense, granulopoiesis, and mobilization of neutrophils during Gram-positive bacterial pneumonia-induced sepsis.


Assuntos
Quimiocina CXCL1/fisiologia , Homeostase , Pulmão/imunologia , Infiltração de Neutrófilos/imunologia , Infecções Pneumocócicas/complicações , Pneumonia Bacteriana/complicações , Sepse/imunologia , Animais , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Quimiocina CXCL5/genética , Quimiocina CXCL5/metabolismo , Feminino , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/patologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Sepse/metabolismo , Sepse/microbiologia , Sorogrupo , Streptococcus pneumoniae/fisiologia
7.
Adv Exp Med Biol ; 1099: 125-139, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30306520

RESUMO

Opioid analgesics remain the most effective and widely used analgesics for the management of moderate to severe pain, including cancer pain and chronic non-cancer pain. However, the efficacy of long-term opioid analgesics is attenuated by tolerance and/or hyperalgesia after long-term use, preventing adequate pain relief under stable opioid dosages for chronic pain patients. Classical neuron-centered concepts about tolerance, such as internalization of opioid receptors, upregulation of N-methyl-D-aspartate receptor function, or downregulation of glutamate transporter activity, can only partially explain the phenomenon of tolerance. Recent evidence revealing glial activation and upregulation of inflammatory mediators in the rodent central nervous system has confirmed the pivotal role of neuroinflammation in neuropathic pain or opioid tolerance, or both. However, human evidence is still sparse.Based on our clinical practice, we conducted translational research by investigating the cerebrospinal fluid (CSF) cytokine and chemokine profiles of opioid-tolerant patients after research ethic committee approval. CSF samples from opioid-tolerant patients and opioid-naive subjects were compared. We found CXCL1, CXCL12, and leukemia inhibitory factor (LIF) were significantly upregulated among the opioid-tolerant patients and positively correlated with the opioid dosage.We translated these findings back to lab animal experiment; after induction of tolerance by morphine infusion, the spinal cord expression of CXCL1, CXCL12, and LIF were all upregulated. Although CXCL1 and CXCL12 infusion alone did not affect baseline tail-flick latency, morphine analgesic efficacy dropped significantly after intrathecal infusion of CXCL1 and CXCL12. After establishing tolerance by intrathecal continuous infusion of morphine, tolerance development was accelerated by co-administration of CXCL1 and CXCL12. In parallel, the effect was attenuated by co-administration of CXCL1- or CXCL12-neutralizing antibody or concordant receptor antagonists.On the contrary, although chronic morphine administration still induced LIF upregulation in rat spinal cords, intrathecal injection of LIF potentiated the analgesic action of morphine and delayed the development of morphine tolerance. Upregulation of endogenously released LIF by long-term use of opioids might counterbalance the tolerance induction effects of other pro-inflammatory cytokines.CXCL1, CXCL12, and LIF are upregulated in both opioid-tolerant patients and rodents. The onset and extent of opioid tolerance were affected by modulating the intrathecal CXCL1/CXCR2, CXCL12/CXCR4, and LIF signaling and could be novel drug targets for the treatment of opioid tolerance.


Assuntos
Analgésicos Opioides/farmacologia , Quimiocina CXCL12/fisiologia , Quimiocina CXCL1/fisiologia , Tolerância a Medicamentos , Inflamação/fisiopatologia , Fator Inibidor de Leucemia/fisiologia , Animais , Humanos , Ratos , Medula Espinal/efeitos dos fármacos
8.
J Oral Pathol Med ; 47(9): 880-886, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30035347

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a common human malignancy and is usually preceded by the oral precancerous lesions. Oral submucous fibrosis (OSF) is one of the oral precancerous lesions with high incidence of malignant transformation. In addition to cancer cells, cancer-associated fibroblasts in the tumor microenvironment are correlated with cancer progression, but the role of fibroblasts from OSF in tumorigenesis and progression is still unknown. Growth-regulated oncogene-α (GRO-α), a member of CXC chemokine family, is related to tumorigenesis in several cancers. In this study, we would like to explore the role of GRO-α from OSF-associated fibroblasts in oral cancer progression. METHODS: We isolated primary culture fibroblasts of normal, precancerous, and tumor tissues from patients with OSCC accompanied with OSF. A cytokine array was used to screen cytokine secretions in the conditioned media of the fibroblasts. A wound healing migration assay, WST-1 cell proliferation assay, rhodamine-phalloidin staining, and soft agar colony formation assay were used to investigate the effects of GRO-α on a dysplastic oral keratinocyte cell line (DOK) cell migration, growth, and anchorage-independent growth. RESULTS: GRO-α was identified to be increased in conditioned media of OSF-associated fibroblasts. GRO-α promotes DOK cells proliferation, migration, and anchorage-independent growth through enhancing the EGFR/ERK signaling pathway, F-actin rearrangement, and stemness properties, respectively. Moreover, GRO-α neutralizing antibodies downregulated the conditioned medium-induced cell proliferation and migration of DOK. CONCLUSION: GRO-α from OSF-associated fibroblasts paracrinally promotes oral malignant transformation and significantly contributes to OSCC development.


Assuntos
Carcinoma de Células Escamosas/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Quimiocina CXCL1/fisiologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Neoplasias Bucais/patologia , Lesões Pré-Cancerosas/patologia , Células Cultivadas , Fibrose , Gengiva/citologia , Gengiva/patologia , Humanos , Mucosa Bucal/citologia , Mucosa Bucal/patologia
9.
Eur Heart J ; 39(20): 1818-1831, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29514257

RESUMO

Aims: Chemokine-mediated monocyte infiltration into the damaged heart represents an initial step in inflammation during cardiac remodelling. Our recent study demonstrates a central role for chemokine receptor CXCR2 in monocyte recruitment and hypertension; however, the role of chemokine CXCL1 and its receptor CXCR2 in angiotensin II (Ang II)-induced cardiac remodelling remain unknown. Methods and results: Angiotensin II (1000 ng kg-1 min-1) was administrated to wild-type (WT) mice treated with CXCL1 neutralizing antibody or CXCR2 inhibitor SB265610, knockout (CXCR2 KO) or bone marrow (BM) reconstituted chimeric mice for 14 days. Microarray revealed that CXCL1 was the most highly upregulated chemokine in the WT heart at Day 1 after Ang II infusion. The CXCR2 expression and the CXCR2+ immune cells were time-dependently increased in Ang II-infused hearts. Moreover, administration of CXCL1 neutralizing antibody markedly prevented Ang II-induced hypertension, cardiac dysfunction, hypertrophy, fibrosis, and macrophage accumulation compared with Immunoglobulin G (IgG) control. Furthermore, Ang II-induced cardiac remodelling and inflammatory response were also significantly attenuated in CXCR2 KO mice and in WT mice treated with SB265610 or transplanted with CXCR2-deficienct BM cells. Co-culture experiments in vitro further confirmed that CXCR2 deficiency inhibited macrophage migration and activation, and attenuated Ang II-induced cardiomyocyte hypertrophy and fibroblast differentiation through multiple signalling pathways. Notably, circulating CXCL1 level and CXCR2+ monocytes were higher in patients with heart failure compared with normotensive individuals. Conclusions: Angiotensin II-induced infiltration of monocytes in the heart is largely mediated by CXCL1-CXCR2 signalling which initiates and aggravates cardiac remodelling. Inhibition of CXCL1 and/or CXCR2 may represent new therapeutic targets for treating hypertensive heart diseases.


Assuntos
Cardiomegalia/metabolismo , Quimiocina CXCL1/fisiologia , Monócitos/fisiologia , Receptores de Interleucina-8B/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Angiotensina II , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Cardiomegalia/prevenção & controle , Movimento Celular/fisiologia , Quimiocina CXCL1/antagonistas & inibidores , Quimiocina CXCL1/sangue , Feminino , Fibrose , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Miocárdio/patologia , Receptores de Interleucina-8B/sangue , Receptores de Interleucina-8B/deficiência , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia
10.
Front Immunol ; 9: 111, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467755

RESUMO

Leptin directly activates macrophages and lymphocytes, but the role of leptin in neutrophil activation and migration is still controversial. Here, we investigate the in vivo mechanisms of neutrophil migration induced by leptin. The intraperitoneal injection of leptin (1 mg/kg) induces a time- and concentration-dependent neutrophil influx. We did not observe the enhancement of lipid bodies/droplets in neutrophils, after leptin treatment, as we had observed previously in peritoneal macrophages. The participation of leukotriene B4 (LTB4) in neutrophil recruitment triggered by leptin was investigated using different strategies. Leptin-induced neutrophil recruitment occurs both in the absence of 5-lipoxygenase activity in 5-lipoxygenase (5-LO)-/- mice and after the administration of either 5-LO inhibitor (Zileuton) or the LTB4 receptor antagonist (U-75302). Moreover, no direct induction of LTB4 by leptin could be observed. Neutrophil influx could not be prevented by the mammalian target of rapamycin (mTOR) inhibitor, rapamycin, contrasting with the leptin-induced signaling for lipid body formation in macrophage that is mTOR-dependent. Leptin administration led to tumor necrosis factor-alpha (TNFα) production by the peritoneal cells both in vivo and in vitro. In addition, neutrophil recruitment was inhibited in tumor necrosis factor receptor 1 (TNFR1-/-) mice, indicating a role for TNF in leptin-induced neutrophil recruitment to the peritoneal cavity. Leptin-induced neutrophil influx was PI3Kγ-dependent, as it was absent in PI3Kγ-/- mice. Accordingly, leptin induced the peritoneal cells to produce CXCL1, both in vivo and in vitro, and the neutrophil influx was ablated after using an antibody against CXCL1. Our results establish TNFα/TNFR1- and CXCL1-dependent signaling as important pathways for leptin-induced neutrophil migration in vivo.


Assuntos
Quimiocina CXCL1/fisiologia , Leptina/fisiologia , Neutrófilos/fisiologia , Receptores Tipo I de Fatores de Necrose Tumoral/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Araquidonato 5-Lipoxigenase/genética , Movimento Celular , Quimiocina CCL3/genética , Macrófagos Peritoneais/imunologia , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Fosfatidilinositol 3-Quinases/genética
11.
PLoS One ; 13(1): e0188847, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29360827

RESUMO

Cancer-associated fibroblasts (CAFs) have emerged as one of the main factors related to cancer progression, however, the conversion mechanism of normal fibroblasts (NOFs) to CAFs has not been well elucidated. The aim of this study was to investigate the underlying mechanism of CAF transformation from NOFs in oral squamous cell carcinoma (OSCC). This study found that NOFs exposed to OSCC cells transformed to senescent cells. The cytokine antibody array showed the highest secretion levels of IL-6 and CXCL1 in NOFs co-cultured with OSCC cells. Despite that both IL-6 and CXCL1 induced the senescent phenotype of CAFs, CXCL1 secretion showed a cancer-specific response to transform NOFs into CAFs in OSCC, whereas IL-6 secretion was eventuated by common co-culture condition. Further, CXCL1 was released from NOFs co-cultured with OSCC cells, however, CXCL1 was undetectable in mono-cultured NOFs or co-cultured OSCC cells with NOFs. Taken together, this study demonstrates that CXCL1 can transform NOFs into senescent CAFs via an autocrine mechanism. These data might contribute to further understanding of CAFs and to development of a potential therapeutic approach targeting cancer cells-CAFs interactions.


Assuntos
Carcinoma de Células Escamosas/patologia , Senescência Celular/fisiologia , Quimiocina CXCL1/fisiologia , Neoplasias Bucais/patologia , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Técnicas de Cocultura , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Fibroblastos/patologia , Humanos , Neoplasias Bucais/metabolismo , Invasividade Neoplásica , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Br J Pharmacol ; 175(8): 1329-1343, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28294304

RESUMO

BACKGROUND AND PURPOSE: The immune system plays an important role in driving the acute inflammatory response following myocardial ischaemia/reperfusion injury (MIRI). IL-21 is a pleiotropic cytokine with multiple immunomodulatory effects, but its role in MIRI is not known. EXPERIMENTAL APPROACH: Myocardial injury, neutrophil infiltration and the expression of neutrophil chemokines KC (CXCL1) and MIP-2 (CXCL2) were studied in a mouse model of MIRI. Effects of IL-21 on the expression of KC and MIP-2 in neonatal mouse cardiomyocytes (CMs) and cardiac fibroblasts (CFs) were determined by real-time PCR and ELISA. The signalling mechanisms underlying these effects were explored by western blot analysis. KEY RESULTS: IL-21 was elevated within the acute phase of murine MIRI. Neutralization of IL-21 attenuated myocardial injury, as illustrated by reduced infarct size, decreased cardiac troponin T levels and improved cardiac function, whereas exogenous IL-21 administration exerted opposite effects. IL-21 increased the infiltration of neutrophils and increased the expression of KC and MIP-2 in myocardial tissue following MIRI. Moreover, neutrophil depletion attenuated the IL-21-induced myocardial injury. Mechanistically, IL-21 increased the production of KC and MIP-2 in neonatal CMs and CFs, and enhanced neutrophil migration, as revealed by the migration assay. Furthermore, we demonstrated that this IL-21-mediated increase in chemokine expression involved the activation of Akt/NF-κB signalling in CMs and p38 MAPK/NF-κB signalling in CFs. CONCLUSIONS AND IMPLICATIONS: Our data provide novel evidence that IL-21 plays a pathogenic role in MIRI, most likely by promoting cardiac neutrophil infiltration. Therefore, targeting IL-21 may have therapeutic potential as a treatment for MIRI. LINKED ARTICLES: This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.


Assuntos
Interleucinas/fisiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Neutrófilos/fisiologia , Animais , Movimento Celular , Células Cultivadas , Quimiocina CXCL1/fisiologia , Quimiocina CXCL2/fisiologia , Fibroblastos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/fisiologia , Receptores de Interleucina-21/fisiologia , Troponina T/sangue
13.
Life Sci ; 193: 282-291, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28966134

RESUMO

AIMS: CXCL1 is a chemokine with pleiotropic effects, including pain and itch. Itch, an unpleasant sensation that elicits the desire or reflex to scratch, it is evoked mainly from the skin and implicates activation of a specific subset of IB4+, C-type primary afferents. In previous studies we showed that acute application of CXCL1 induced a Ca2+ influx of low amplitude and slow kinetics in a subpopulation of transient receptor potential vanilloid type 1 (TRPV1)+/isolectin B4 (IB4)+dorsal root ganglia neurons which also responded to other itch-inducing agents. In this study we explored the mechanism behind the Ca2+ influx to better understand how CXCL1 acts on primary sensitive neurons to induce itch. MATERIALS AND METHODS: Intracellular Ca2+ imaging and patch-clamp recordings on dorsal root ganglia neurons primary cultures and HEK293T cell transiently transfected with TRPV1 and CXCR2 plasmids were used to investigate the acute effect (12min application) of 4nM CXCL1. In primary cultures, the focus was on TRPV1+/IB4+ cells to which the itch-sensitive neurons belong. KEY FINDINGS: The results showed that the Ca2+ influx induced by the acute application of CXCL1 is mediated mainly by TRPV1 receptors and depends on extracellular Ca2+ not on intracellular stores. TRPV1 was activated, not sensitized by CXCL1, in a CXCR2 receptors- and actin filaments-dependent manner, since specific blockers and actin depolymerizing agents disrupted the CXCL1 effect. SIGNIFICANCE: This study brings additional data about the itch inducing mechanism of CXCL1 chemokine and about a new mechanism of TRPV1 activation via actin filaments.


Assuntos
Quimiocina CXCL1/metabolismo , Canais de Cátion TRPV/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Cálcio/metabolismo , Capsaicina/farmacologia , Quimiocina CXCL1/fisiologia , Gânglios Espinais/citologia , Células HEK293 , Humanos , Masculino , Neurônios/efeitos dos fármacos , Dor/metabolismo , Técnicas de Patch-Clamp , Cultura Primária de Células , Prurido/metabolismo , Ratos , Ratos Wistar , Sensação/efeitos dos fármacos
14.
J Physiol Pharmacol ; 68(3): 385-395, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28820395

RESUMO

CXCL1 and CXCL2 are two chemokines with 78% homology of their sequence. CXCL1 was associated with atopic dermatitis, a highly pruritic skin disease, but it is not clear what is its mechanism of action, while for CXCL2 there are no data about an association with itch sensitivity. CXCL1 and CXCL2 can modulate TRPV1 receptors, which are one of the most important downstream effectors for itch sensitivity, upon short-term (4 h) or long-term (24 h) incubation, but the data are incomplete. Therefore, the aims of this study were to better characterize the short-term effects of CXCL1 and CXCL2 on TRPV1+/IB4+ dorsal root ganglia neurons known to include nociceptor and itch-sensitive neurons, and to obtain new data about the acute application (12 min) of the two chemokines on the same population of neurons. The results showed that 4 nM CXCL1 and 3.6 nM CXCL2 significantly reduce TRPV1 desensitization in TRPV1+/IB4+ DRG +neurons after short-term incubation, but when acutely applied CXCL1 activated a sub-population of itch-sensitive TRPV1+/IB4+ cells in a slow, low amplitude manner, while CXCL2 had a similar effect but on non-itch TRPV1+/IB4+ DRG neurons. These data contribute to a better understanding of CXCL1 and CXCL2 mechanism of action for both pain and itch inducing effects.


Assuntos
Quimiocina CXCL1/fisiologia , Quimiocina CXCL2/fisiologia , Gânglios Espinais/fisiologia , Neurônios/fisiologia , Canais de Cátion TRPV/fisiologia , Animais , Cálcio/fisiologia , Capsaicina/farmacologia , Células Cultivadas , Gânglios Espinais/citologia , Células HEK293 , Humanos , Masculino , Neurônios/efeitos dos fármacos , Prurido/fisiopatologia , Ratos Wistar , Receptores de Interleucina-8B/genética , Canais de Cátion TRPV/antagonistas & inibidores
15.
J Leukoc Biol ; 100(5): 1125-1134, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27286792

RESUMO

During intraocular bacterial infections, the primary innate responders are neutrophils, which may cause bystander damage to the retina or perturb the clarity of the visual axis. We hypothesized that cytokine IL-6 and chemokine CXCL1 contributed to rapid neutrophil recruitment during Bacillus cereus endophthalmitis, a severe form of intraocular infection that is characterized by explosive inflammation and retinal damage that often leads to rapid vision loss. To test this hypothesis, we compared endophthalmitis pathogenesis in C57BL/6J, IL-6-/-, and CXCL1-/- mice. Bacterial growth in eyes of CXCL1-/-, IL-6-/-, and C67BL/6J mice was similar. Retinal function retention was greater in eyes of IL-6-/- and CXCL1-/- mice compared with that of C57BL/6J, despite these eyes having similar bacterial burdens. Neutrophil influx into eyes of CXCL1-/- mice was reduced to a greater degree compared with that of eyes of IL6-/- mice. Histology confirmed significantly less inflammation in eyes of CXCL1-/- mice, but similar degrees of inflammation in IL6-/- and C57BL/6J eyes. Because inflammation was reduced in eyes of infected CXCL1-/- mice, we tested the efficacy of anti-CXCL1 in B. cereus endophthalmitis. Retinal function was retained to a greater degree and there was less overall inflammation in eyes treated with anti-CXCL1, which suggested that anti-CXCL1 may have therapeutic efficacy in limiting inflammation during B. cereus endophthalmitis. Taken together, our results indicate that absence of IL-6 did not affect overall pathogenesis of endophthalmitis. In contrast, absence of CXCL1, in CXCL1-/- mice or after anti-CXCL1 treatment, led to an improved clinical outcome. Our findings suggest a potential benefit in targeting CXCL1 to control inflammation during B. cereus and perhaps other types of intraocular infections.


Assuntos
Bacillus cereus , Quimiocina CXCL1/fisiologia , Quimiotaxia de Leucócito/fisiologia , Endoftalmite/imunologia , Infecções Oculares Bacterianas/imunologia , Interleucina-6/fisiologia , Neutrófilos/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/isolamento & purificação , Carga Bacteriana , Quimiocina CXCL1/antagonistas & inibidores , Quimiocina CXCL1/deficiência , Quimiocina CXCL1/genética , Eletrorretinografia , Endoftalmite/microbiologia , Infecções Oculares Bacterianas/microbiologia , Mediadores da Inflamação/análise , Interleucina-6/deficiência , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peroxidase/análise , Retina/patologia
16.
J Leukoc Biol ; 100(6): 1311-1322, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27354411

RESUMO

Treatment with the TLR4 agonist MPLA augments innate resistance to common bacterial pathogens. However, the cellular and molecular mechanisms by which MPLA augments innate immunocyte functions are not well characterized. This study examined the importance of MyD88- and TRIF-dependent signaling for leukocyte mobilization, recruitment, and activation following administration of MPLA. MPLA potently induced MyD88- and TRIF-dependent signaling. A single injection of MPLA caused rapid mobilization and recruitment of neutrophils, a response that was largely mediated by the chemokines CXCL1 and -2 and the hemopoietic factor G-CSF. Rapid neutrophil recruitment and chemokine production were regulated by both pathways although the MyD88-dependent pathway showed some predominance. In further studies, multiple injections of MPLA potently induced mobilization and recruitment of neutrophils and monocytes. Neutrophil recruitment after multiple injections of MPLA was reliant on MyD88-dependent signaling, but effective monocyte recruitment required activation of both pathways. MPLA treatment induced expansion of myeloid progenitors in bone marrow and upregulation of CD11b and shedding of L-selectin by neutrophils, all of which were attenuated in MyD88- and TRIF-deficient mice. These results show that MPLA-induced neutrophil and monocyte recruitment, expansion of bone marrow progenitors and augmentation of neutrophil adhesion molecule expression are regulated by both the MyD88- and TRIF-dependent pathways.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Imunidade Inata , Lipídeo A/análogos & derivados , Monócitos/imunologia , Fator 88 de Diferenciação Mieloide/fisiologia , Neutrófilos/imunologia , Receptor 4 Toll-Like/agonistas , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Animais , Antígeno CD11b/biossíntese , Antígeno CD11b/genética , Quimiocina CXCL1/fisiologia , Quimiocina CXCL2/fisiologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/fisiologia , Selectina L/metabolismo , Lipídeo A/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fator 88 de Diferenciação Mieloide/deficiência , Mielopoese/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Receptores de Interleucina-8B/fisiologia , Transdução de Sinais , Receptor 4 Toll-Like/fisiologia
17.
J Zhejiang Univ Sci B ; 17(5): 342-51, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27143261

RESUMO

Lung cancer is the leading cause of cancer-related mortality around the world. Despite advancements in diagnosis, surgical techniques, and neoadjuvant chemoradiotherapy over the last decade, the mortality rate is still high and the 5-year survival is a dismal 15%. Fortunately, early detection by low-dose computed tomography (LDCT) scans has reduced mortality by 20%; yet, overall, 5-year-survival remains low at less than 20%. Therefore, in order to ameliorate this situation, a thorough understanding of the underlying molecular mechanisms is urgently needed. Chemokines and their receptors, crucial microenvironmental factors, play important roles in lung tumor genesis, progression, and metastasis, and exploring the mechanisms of this might bring new insights into early diagnosis and precisely targeted treatment. Consequently, this review will mainly focus on recent advancements on the axes of chemokines and their receptors of lung cancer.


Assuntos
Quimiocinas/fisiologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Quimiocina CCL19/fisiologia , Quimiocina CCL2/fisiologia , Quimiocina CCL4/fisiologia , Quimiocina CXCL1/fisiologia , Quimiocina CXCL12/fisiologia , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Ligantes , Metástase Neoplásica , Receptores CXCR4/fisiologia
18.
J Invest Dermatol ; 135(12): 2992-3000, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26203636

RESUMO

Generalized pustular psoriasis is a severe skin disease characterized by epidermal hyperplasia, neutrophil-rich abscesses within the epidermis, and a mixed inflammatory infiltrate in the dermis. The disease may be caused by missense mutations in the IL-36 receptor antagonist, IL-36Ra. Curiously, the related IL-1Ra has therapeutic effects in some of these latter patients. Here, using an experimental mouse model of psoriasiform skin inflammation, we demonstrate in vivo connections between IL-36 and IL-1 expression. After disease initiation, IL-36α-deficient mice exhibited dramatically diminished skin pathology, including absence of epidermal neutrophils, reduced keratinocyte acanthosis, and less dermal edema. In contrast, IL-36ß and IL-36γ knockout mice developed disease indistinguishable from that of wild-type mice. The endogenous IL-36α was not processed through proteolysis. Although IL-36α expression was strongly induced in an IL-1 signaling-dependent manner during disease, expression of IL-1α was also dependent upon IL-36α. Hence, after being upregulated by IL-1α, IL-36α acts through a feedback mechanism to boost IL-1α levels. Analyses of double knockout mice further revealed that IL-36α and IL-1α cooperate to promote psoriasis-like disease. In conclusion, IL-1α and IL-36α form a self-amplifying inflammatory loop in vivo that in patients with insufficient counter regulatory mechanisms may become hyper-engaged and/or chronic.


Assuntos
Dermatite/etiologia , Interleucina-1/fisiologia , Interleucina-1alfa/fisiologia , Psoríase/etiologia , Abscesso/etiologia , Animais , Movimento Celular , Células Cultivadas , Quimiocina CXCL1/fisiologia , Dermatite/imunologia , Epiderme/patologia , Humanos , Interleucina-17/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/fisiologia , Psoríase/imunologia
19.
Hepatology ; 62(4): 1070-85, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26033752

RESUMO

UNLABELLED: Obesity and alcohol consumption often coexist and work synergistically to promote steatohepatitis; however, the underlying mechanisms remain obscure. Here, we demonstrate that feeding mice a high-fat diet (HFD) for as little as 3 days markedly exacerbated acute ethanol binge-induced liver neutrophil infiltration and injury. Feeding mice with an HFD for 3 months plus a single binge of ethanol induced much more severe steatohepatitis. Moreover, 3-day or 3-month HFD-plus-ethanol binge (3d-HFD+ethanol or 3m-HFD+ethanol) treatment markedly up-regulated the hepatic expression of several chemokines, including chemokine (C-X-C motif) ligand 1 (Cxcl1), which showed the highest fold (approximately 20-fold and 35-fold, respectively) induction. Serum CXCL1 protein levels were also markedly elevated after the HFD+ethanol treatment. Blockade of CXCL1 with a CXCL1 neutralizing antibody or genetic deletion of the Cxcl1 gene reduced the HFD+ethanol-induced hepatic neutrophil infiltration and injury, whereas overexpression of Cxcl1 exacerbated steatohepatitis in HFD-fed mice. Furthermore, expression of Cxcl1 messenger RNA was up-regulated in hepatocytes, hepatic stellate cells, and endothelial cells isolated from HFD+ethanol-fed mice compared to mice that were only given the HFD, with the highest fold induction observed in hepatocytes. In vitro stimulation of hepatocytes with palmitic acid up-regulated the expression of Cxcl1 messenger RNA, and this up-regulation was attenuated after treatment with an inhibitor of extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase, or nuclear factor κB. In addition, hepatic or serum levels of free fatty acids were higher in HFD+ethanol-fed mice than in the control groups. CONCLUSION: An HFD combined with acute ethanol consumption synergistically induces acute liver inflammation and injury through the elevation of hepatic or serum free fatty acids and subsequent up-regulation of hepatic CXCL1 expression and promotion of hepatic neutrophil infiltration.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/complicações , Quimiocina CXCL1/fisiologia , Dieta Hiperlipídica/efeitos adversos , Etanol/administração & dosagem , Hepatopatias/etiologia , Doença Aguda , Animais , Fígado Gorduroso/etiologia , Hepatopatias/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Fatores de Tempo
20.
Vet Immunol Immunopathol ; 165(3-4): 107-18, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25977164

RESUMO

The immunomodulatory capacities of mesenchymal stem cells (MSCs) have made them the subject of increased clinical interest for tissue regeneration and repair. We have studied the immunomodulatory capacity of equine MSCs derived from bone marrow (BM-MSCs) and adipose tissue (AT-MSCs) in cocultures with allogeneic peripheral blood mononuclear cells (PBMCs). Different isoforms and concentrations of phytohaemaglutinin (PHA) were tested to determine the best stimulation conditions for PBMC proliferation and a proliferation assay was performed for 7 days to determine the optimal day of stimulation of PBMCs. The effect of the dose and source of MSCs was evaluated in cocultures of 10(5) PBMCs with different ratios of AT- and BM-MSCs (1:1, 1:10, 1:20 and 1:50). Proliferation rates of the PBMCs were evaluated using BrdU ELISA colorimetric assay. PHA stimulated equine PBMCs reached their peak of growth after 3 days of culture. The immunoassay showed a decrease of the PBMCs growth at high ratio cocultures (1:1 and 1:10). Equine BM-MSCs and AT-MSCs demonstrated an ability to suppress the proliferation of stimulated PBMCs. Although MSCs derived from both sources displayed immunosuppressive effects, AT-MSCs were slightly more potent than BM-MSCs. In addition, the expression of 26 genes coding for different molecules implicated in the immune response was analyzed in cocultures of BM-MSCs and PHA stimulated PBMSCs by reverse transcriptase real time quantitative PCR (RT-qPCR). An upregulation in genes associated with the production of interleukins and cytokines such as TNF-α and TGF-ß1 was observed except for IFN-γ whose expression significantly decreased. The variations of interleukins and cytokine receptors showed no clear patterns. COX-1 and COX-2 showed similar expression patterns while INOs expression significantly decreased in the two cell types present in the coculture. Cyclin D2 and IDO-1 showed an increased expression and CD90, ITG-ß1 and CD44 expression decreased significantly in BM-MSCs cocultured with PHA stimulated PBMCs. On the contrary, CD6 and VCAM1 expression increased in these cells. With regard to the expression of the five genes involved in antigen presentation, an upregulation was observed in both cocultured MSCs and stimulated PBMCs. This study contributes to the knowledge of the immunoregulatory properties of equine MSCs, which are notably important for the treatment of inflammation processes, such as tendinitis and osteoarthritis.


Assuntos
Cavalos/imunologia , Terapia de Imunossupressão/veterinária , Células-Tronco Mesenquimais/imunologia , Animais , Quimiocina CXCL1/fisiologia , Genes MHC da Classe II/genética , Cavalos/genética , Terapia de Imunossupressão/métodos , Técnicas In Vitro , Interferon gama/fisiologia , Interleucina-10/fisiologia , Interleucina-6/fisiologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/fisiologia , Células-Tronco Mesenquimais/fisiologia , Receptores CXCR3/fisiologia , Receptores CXCR4/fisiologia , Transcriptoma/imunologia , Fator de Crescimento Transformador beta1/fisiologia , Fator de Necrose Tumoral alfa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA