Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.017
Filtrar
1.
Zool Res ; 45(3): 535-550, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38747058

RESUMO

Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function. Synaptic abnormalities, such as defects in the density and morphology of postsynaptic dendritic spines, underlie the pathology of various neuropsychiatric disorders. Protocadherin 17 (PCDH17) is associated with major mood disorders, including bipolar disorder and depression. However, the molecular mechanisms by which PCDH17 regulates spine number, morphology, and behavior remain elusive. In this study, we found that PCDH17 functions at postsynaptic sites, restricting the number and size of dendritic spines in excitatory neurons. Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety- and depression-like behaviors in mice. Mechanistically, PCDH17 interacts with actin-relevant proteins and regulates actin filament (F-actin) organization. Specifically, PCDH17 binds to ROCK2, increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3 (Ser3). Inhibition of ROCK2 activity with belumosudil (KD025) ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression, suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development. Hence, these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior, providing pathological insights into the neurobiological basis of mood disorders.


Assuntos
Citoesqueleto de Actina , Caderinas , Espinhas Dendríticas , Quinases Associadas a rho , Animais , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/fisiologia , Camundongos , Citoesqueleto de Actina/metabolismo , Caderinas/metabolismo , Caderinas/genética , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Regulação da Expressão Gênica
2.
Epigenetics ; 19(1): 2348840, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38716769

RESUMO

To explore the role of lncRNA m6A methylation modification in aqueous humour (AH) of patients with pseudoexfoliation glaucoma (PXG). Patients with open-angle PXG under surgery from June 2021 to December 2021 were selected. Age- and gender-matched patients with age-related cataract (ARC) were chosen as control. Patients underwent detailed ophthalmic examinations. 0.05-0.1 ml AH were extracted during surgery for MeRIP-Seq and RNA-Seq. Joint analysis was used to screen lncRNAs with differential m6A methylation modification and expression. Online software tools were used to draw lncRNA-miRNA-mRNA network (ceRNA). Expression of lncRNAs and mRNAs was confirmed using quantitative real-time PCR. A total of 4151 lncRNAs and 4386 associated m6A methylation modified peaks were identified in the PXG group. Similarly, 2490 lncRNAs and 2595 associated m6A methylation modified peaks were detected in the control. Compared to the ARC group, the PXG group had 234 hypermethylated and 402 hypomethylated m6A peaks, with statistically significant differences (| Fold Change (FC) |≥2, p < 0.05). Bioinformatic analysis revealed that these differentially methylated lncRNA enriched in extracellular matrix formation, tight adhesion, TGF- ß signalling pathway, AMPK signalling pathway, and MAPK signalling pathway. Joint analysis identified 10 lncRNAs with differential m6A methylation and expression simultaneously. Among them, the expression of ENST000000485383 and ROCK1 were confirmed downregulated in the PXG group by RT-qPCR. m6A methylation modification may affect the expression of lncRNA and participate in the pathogenesis of PXG through the ceRNA network. ENST000000485383-hsa miR592-ROCK1 May be a potential target pathway for further investigation in PXG m6A methylation.


Assuntos
Adenosina , Síndrome de Exfoliação , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Feminino , Síndrome de Exfoliação/genética , Síndrome de Exfoliação/metabolismo , Masculino , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Idoso , Humor Aquoso/metabolismo , Redes Reguladoras de Genes , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metilação de DNA , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/metabolismo
3.
J Clin Invest ; 134(10)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38747285

RESUMO

Transforming growth factor ß (TGF-ß) signaling is a core pathway of fibrosis, but the molecular regulation of the activation of latent TGF-ß remains incompletely understood. Here, we demonstrate a crucial role of WNT5A/JNK/ROCK signaling that rapidly coordinates the activation of latent TGF-ß in fibrotic diseases. WNT5A was identified as a predominant noncanonical WNT ligand in fibrotic diseases such as systemic sclerosis, sclerodermatous chronic graft-versus-host disease, and idiopathic pulmonary fibrosis, stimulating fibroblast-to-myofibroblast transition and tissue fibrosis by activation of latent TGF-ß. The activation of latent TGF-ß requires rapid JNK- and ROCK-dependent cytoskeletal rearrangements and integrin αV (ITGAV). Conditional ablation of WNT5A or its downstream targets prevented activation of latent TGF-ß, rebalanced TGF-ß signaling, and ameliorated experimental fibrosis. We thus uncovered what we believe to be a novel mechanism for the aberrant activation of latent TGF-ß in fibrotic diseases and provided evidence for targeting WNT5A/JNK/ROCK signaling in fibrotic diseases as a new therapeutic approach.


Assuntos
Fibroblastos , Fibrose , Fator de Crescimento Transformador beta , Proteína Wnt-5a , Quinases Associadas a rho , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Animais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Camundongos , Humanos , Fibroblastos/metabolismo , Fibroblastos/patologia , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/genética , Camundongos Knockout , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Sistema de Sinalização das MAP Quinases , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Transdução de Sinais , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/genética
4.
J Neuroimmune Pharmacol ; 19(1): 19, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753217

RESUMO

Ischemic stroke is the leading cause of death and disability worldwide. Nevertheless, there still lacks the effective therapies for ischemic stroke. Microglia are resident macrophages of the central nervous system (CNS) and can initiate immune responses and monitor the microenvironment. Microglia are activated and polarize into proinflammatory or anti­inflammatory phenotype in response to various brain injuries, including ischemic stroke. Proinflammatory microglia could generate immunomodulatory mediators, containing cytokines and chemokines, these mediators are closely associated with secondary brain damage following ischemic stroke. On the contrary, anti-inflammatory microglia facilitate recovery following stroke. Regulating the activation and the function of microglia is crucial in exploring the novel treatments for ischemic stroke patients. Accumulating studies have revealed that RhoA/ROCK pathway and NF-κB are famous modulators in the process of microglia activation and polarization. Inhibiting these key modulators can promote the polarization of microglia to anti-inflammatory phenotype. In this review, we aimed to provide a comprehensive overview on the role of RhoA/ROCK pathway and NF-κB in the microglia activation and polarization, reveal the relationship between RhoA/ROCK pathway and NF-κB in the pathological process of ischemic stroke. In addition, we likewise discussed the drug modulators targeting microglia polarization.


Assuntos
AVC Isquêmico , Microglia , NF-kappa B , Transdução de Sinais , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP , Microglia/metabolismo , NF-kappa B/metabolismo , Humanos , Quinases Associadas a rho/metabolismo , Animais , Proteína rhoA de Ligação ao GTP/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/imunologia , AVC Isquêmico/patologia , Transdução de Sinais/fisiologia , Polaridade Celular/fisiologia , Polaridade Celular/efeitos dos fármacos
5.
Sci Rep ; 14(1): 10393, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710741

RESUMO

The transforming growth factor (TGF)-ß3 is a well-known inducer for tenogenic differentiation, signaling via the Smad2/3 pathway. Furthermore, other factors like extracellular matrix or mechanical force can induce tenogenic differentiation and possibly alter the response to TGF-ß3 by signaling via the Rho/ROCK pathway. The aim of this study was to investigate the interplay of Rho/ROCK and TGF-ß3/Smad signaling in tenogenic differentiation, with the Smad2/3 molecule hypothesized as a possible interface. Cultured as monolayers or on collagen I matrices, mesenchymal stromal cells (MSC) were treated with the ROCK inhibitor Y-27632 (10 µM), TGF-ß3 (10 ng/ml) or both combined. Control cells were cultured accordingly, without Y-27632 and/or without TGF-ß3. At different time points, MSC were analyzed by real-time RT-PCR, immunofluorescence, and Western blot. Cultivation of MSC on collagen matrices and ROCK inhibition supported tenogenic differentiation and fostered the effect of TGF-ß3. The phosphorylation of the linker region of Smad2 was reduced by cultivation on collagen matrices, but not by ROCK inhibition. The latter, however, led to increased phosphorylation of the linker region of Smad3. In conclusion, collagen matrices and the Rho/ROCK signaling pathway influence the TGF-ß3/Smad2/3 pathway by regulating different phosphorylation sites of the Smad linker region.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais , Transdução de Sinais , Proteína Smad2 , Proteína Smad3 , Fator de Crescimento Transformador beta3 , Quinases Associadas a rho , Quinases Associadas a rho/metabolismo , Fosforilação , Diferenciação Celular/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fator de Crescimento Transformador beta3/metabolismo , Células Cultivadas , Piridinas/farmacologia , Amidas/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo
6.
Cell Commun Signal ; 22(1): 257, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711089

RESUMO

Benign prostatic hyperplasia (BPH) is a multifactorial disease in which abnormal growth factor activation and embryonic reawakening are considered important factors. Here we demonstrated that the aberrant activation of transforming growth factor ß (TGF-ß)/Rho kinase 1 (ROCK1) increased the stemness of BPH tissue by recruiting mesenchymal stem cells (MSCs), indicating the important role of embryonic reawakening in BPH. When TGF-ß/ROCK1 is abnormally activated, MSCs are recruited and differentiate into fibroblasts/myofibroblasts, leading to prostate stromal hyperplasia. Further research showed that inhibition of ROCK1 activation suppressed MSC migration and their potential for stromal differentiation. Collectively, our findings suggest that abnormal activation of TGF-ß/ROCK1 regulates stem cell lineage specificity, and the small molecule inhibitor GSK269962A could target ROCK1 and may be a potential treatment for BPH.


Assuntos
Células-Tronco Mesenquimais , Hiperplasia Prostática , Fator de Crescimento Transformador beta , Quinases Associadas a rho , Quinases Associadas a rho/metabolismo , Masculino , Hiperplasia Prostática/patologia , Hiperplasia Prostática/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular , Próstata/patologia , Próstata/metabolismo , Movimento Celular , Camundongos , Células Estromais/metabolismo , Células Estromais/patologia
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 411-419, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597431

RESUMO

OBJECTIVE: To investigate the role of Rho/ROCK signaling pathway in mediating restraint stress-induced blood-brain barrier (BBB) injury in the amygdala of rats. METHODS: Sixty male SD rats were randomized equally into control group (with food and water deprivation for 6 h per day), restraint stress group (with restraint for 6 h per day), stress + fasudil treatment (administered by intraperitoneal injection at 1 mg/100 g 30 min before the 6-h restraint) group, and fasudil treatment alone group. The elevated plus-maze test was used to detect behavioral changes of the rats, serum corticosterone and S100B levels were determined with ELISA, and Evans Blue leakage in the brain tissue was examined to evaluate the changes in BBB permeability. The changes in expression levels of tight junction proteins in the amygdala were detected using immunofluorescence assay and Western blotting, and Rho/ROCK pathway activation was detected by Pull-down test and Western blotting. Ultrastructural changes of the cerebral microvascular endothelial cells were observed using transmission electron microscopy. RESULTS: Compared with those in the control group, the rats in restrain stress group and stress+fasudil group showed obvious anxiety-like behavior with significantly increased serum corticosterone level (P<0.001). Compared with those in the control group and stress+fasudil group, the rat models of restrain stress showed more obvious Evans Blue leakage and higher S100B expression (P<0.01) but lower expressions of tight junction proteins in the amygdala. Pull-down test and Western blotting confirmed that the expression levels of RhoA-GTP, ROCK2 and P-MLC 2 were significantly higher in stress group than in the control group and stress + fasudil group (P<0.05). Transmission electron microscopy revealed obvious ultrastructural changes in the cerebral microvascular endothelial cells in the rat models of restrain stress. CONCLUSION: Restraint stress induces BBB injury in the amygdala of rats by activating the Rho/ROCK signaling pathway.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Barreira Hematoencefálica , Células Endoteliais , Ratos , Masculino , Animais , Barreira Hematoencefálica/metabolismo , Ratos Sprague-Dawley , Azul Evans/metabolismo , Corticosterona/metabolismo , Proteínas de Junções Íntimas/metabolismo , Transdução de Sinais , Quinases Associadas a rho/metabolismo
8.
ACS Biomater Sci Eng ; 10(5): 3069-3085, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38578110

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide. Drug delivery to the brain through the blood-brain barrier (BBB) is a significant challenge in PD treatment. Exosomes, which can efficiently traverse the BBB, which many drugs cannot penetrate, are ideal natural carriers for drug delivery. In this study, the BBB shuttle peptide was modified on the exosome surfaces. Three types of exosomes were constructed, each modified with a distinct peptide (RVG29, TAT, or Ang2) and loaded with miR-133b. The safety and brain-targeting capabilities of these peptide-modified exosomes were then evaluated. Finally, the mechanism by which RVG29-Exo-133b regulates the RhoA-ROCK signaling pathway was investigated. The findings indicate that the three peptide-modified exosomes were adequately tolerated, safe, and effectively assimilated in vivo and ex vivo, with RVG29 exhibiting superior targeting to the brain. Furthermore, RVG29-Exo-133b decreased the phosphorylation level of the Tau protein by targeting the RhoA-ROCK signaling pathway. It also enhanced the motor function in mice with PD, thereby reducing the degree of depression, improving dopaminergic neuron function, and attenuating 6-OHDA-induced nerve damage. In this study, we developed a stable drug delivery mechanism that targets the intracerebral region using exosomes. Furthermore, a novel strategy was developed to manage PD and can potentially serve as a preclinical basis for utilizing exosomes in the diagnosis and treatment of neurodegenerative conditions.


Assuntos
Exossomos , MicroRNAs , Doença de Parkinson , Transdução de Sinais , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP , Exossomos/metabolismo , Animais , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Humanos , Peptídeos/metabolismo , Barreira Hematoencefálica/metabolismo
9.
Environ Int ; 187: 108700, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38678936

RESUMO

The significant correlation between particulate matter with aerodynamic diameters of ≤ 2.5 µm (PM2.5) and the high morbidity and mortality of respiratory diseases has become the consensus of the research. Epidemiological studies have clearly pointed out that there is no safe concentration of PM2.5, and mechanism studies have also shown that exposure to PM2.5 will first cause pulmonary inflammation. Therefore, the purpose of this study is to explore the mechanism of early lung injury induced by low-level PM2.5 from the perspective of epigenetics. Based on the previous results of population samples, combined with an in vitro/vivo exposure model of PM2.5, it was found that low-level PM2.5 promoted the transport of circ_0092363 from intracellular to extracellular spaces. The decreased expression of intracellular circ_0092363 resulted in reduced absorption of miR-31-5p, leading to inhibition of Rho associated coiled-coil containing protein kinase 1 (ROCK1) and the subsequent abnormal expression of tight junction proteins such as Zonula occludens protein 1 (ZO-1) and Claudin-1, ultimately inducing the occurrence of early pulmonary injury. Furthermore, this study innovatively introduced organoid technology and conducted a preliminary exploration for a study of the relationship among environmental exposure genomics, epigenetics and disease genomics in organoids. The role of circ_0092363 in early pulmonary injury induced by low-level PM2.5 was elucidated, and its value as a potential diagnostic biomarker was confirmed.


Assuntos
Lesão Pulmonar , Material Particulado , Lesão Pulmonar/induzido quimicamente , Humanos , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Animais , MicroRNAs/genética , Poluentes Atmosféricos/toxicidade , Exposição Ambiental/efeitos adversos
10.
Sci Rep ; 14(1): 9012, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641671

RESUMO

To better understand molecular aspects of equine endometrial function, there is a need for advanced in vitro culture systems that more closely imitate the intricate 3-dimensional (3D) in vivo endometrial structure than current techniques. However, development of a 3D in vitro model of this complex tissue is challenging. This study aimed to develop an in vitro 3D endometrial tissue (3D-ET) with an epithelial cell phenotype optimized by treatment with a Rho-associated protein kinase (ROCK) inhibitor. Equine endometrial epithelial (eECs) and mesenchymal stromal (eMSCs) cells were isolated separately, and eECs cultured in various concentrations of Rock inhibitor (0, 5, 10 µmol) in epithelial medium (EC-medium) containing 10% knock-out serum replacement (KSR). The optimal concentration of Rock inhibitor for enhancing eEC proliferation and viability was 10 µM. However, 10 µM Rock inhibitor in the 10% KSR EC-medium was able to maintain mucin1 (Muc1) gene expression for only a short period. In contrast, fetal bovine serum (FBS) was able to maintain Muc1 gene expression for longer culture durations. An in vitro 3D-ET was successfully constructed using a collagen-based scaffold to support the eECs and eMSCs. The 3D-ET closely mimicked in vivo endometrium by displaying gland-like eEC-derived structures positive for the endometrial gland marker, Fork headbox A2 (FOXA2), and by mimicking the 3D morphology of the stromal compartment. In addition, the 3D-ET expressed the secretory protein MUC1 on its glandular epithelial surface and responded to LPS challenge by upregulating the expression of the interleukin-6 (IL6) and prostaglandin F synthase (PGFS) genes (P < 0.01), along with an increase in their secretory products, IL-6 (P < 0.01) and prostaglandin F2alpha (PGF2α) (P < 0.001) respectively. In the future, this culture system can be used to study both normal physiology and pathological processes of the equine endometrium.


Assuntos
Engenharia Tecidual , Quinases Associadas a rho , Feminino , Animais , Cavalos , Células Cultivadas , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Endométrio/metabolismo , Células Epiteliais/metabolismo , Colágeno/metabolismo , Dinoprosta/metabolismo
11.
Zhen Ci Yan Jiu ; 49(4): 367-375, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38649204

RESUMO

OBJECTIVES: To investigate the effect of electroacupuncture (EA) on Rho/Rho-associated coiled-coil-forming kinases (ROCK) signaling pathway of uterus tissue in rats with dysmenorrhea, so as to explore the underlying mechanism of EA treating primary dysmenorrhea (PD) and uterine smooth muscle spasm, and to observe whether there is a difference in the effect of meridian acupoints in Conception Vessel (CV) and Governer Vessel (GV). METHODS: Sixty female SD rats were randomly divided into saline, model, CV, GV, and non-acupoint groups, with 12 rats in each group. The dysmenorrhea model was established by subcutaneous injection of estradiol diphenhydrate combined with intraperitoneal injection of oxytocin (OT). EA (2 Hz) was applied to "Qihai" (CV6) and "Zhongji" (CV3) for CV group, "Mingmen" (GV4) and "Yaoshu" (GV2) for GV group, "non-acupoint 1" and "non-acupoint 3" on the left side for non-acupoint group, and manual acupuncture was applied to "Guanyuan" (CV4) for CV group, "Yaoyangguan" (GV3) for GV group, "non-acupoint 2" on the left side for non-acupoint group. The treatment was conducted for 20 min each time, once daily for 10 days. The writhing score was evaluated. The smooth myoelectric signals of rats' uterus in vivo were recorded by multi-channel physiological recorder. The uterine histopathological changes were observed by HE staining. The contents of prostaglandin F2α (PGF2α), OT and calcium ion (Ca2+) in uterine tissue of rats were detected by ELISA. The protein and mRNA expression levels of smooth muscle 22-α (SM22-α), RhoA and ROCKⅡ in uterine tissue were detected by Western blot and fluorescence quantitative PCR, respectively. RESULTS: Compared with the saline group, the writhing score of rats in the model group was increased (P<0.01), the amplitude voltage of uterine smooth muscle in vivo was elevated (P<0.01), the contents of PGF2α, OT and Ca2+, the protein and mRNA expression of SM22-α, RhoA and ROCK Ⅱ in uterine tissue were all increased (P<0.01). Compared with the model and the non-acupoint groups, the writhing scores of the CV and the GV groups were decreased (P<0.01, P<0.05), the amplitude voltage of uterine smooth muscle was decreased (P<0.01), the contents of PGF2α, OT and Ca2+ in uterine tissue were decreased (P<0.01, P<0.05), and the protein expression and mRNA expression of SM22-α, RhoA and ROCKⅡ in uterine tissue were decreased (P<0.01, P<0.05). HE staining showed extensive exfoliation of uterine intima with severe edema and increased glandular secretion in the model group, which was alleviated in the CV and GV groups. CONCLUSIONS: EA at acupoints of CV and GV can significantly reduce the writhing score, uterine smooth muscle amplitude voltage, pathological injury degree of uterus, and relieve spasm of uterine smooth muscle in dysmenorrhea rats, which may be related to its effect in regulating PGF2α and OT contents, inhibiting the Rho/ROCK signaling pathway, and reducing the SM22-α, RhoA, ROCKⅡ protein and mRNA expression, and Ca2+ content in uterine tissue.


Assuntos
Pontos de Acupuntura , Dismenorreia , Eletroacupuntura , Ratos Sprague-Dawley , Transdução de Sinais , Útero , Quinases Associadas a rho , Animais , Feminino , Dismenorreia/terapia , Dismenorreia/metabolismo , Dismenorreia/genética , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Ratos , Humanos , Útero/metabolismo , Músculo Liso/metabolismo , Espasmo/terapia , Espasmo/genética , Espasmo/metabolismo , Espasmo/fisiopatologia
12.
Life Sci ; 347: 122609, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38580197

RESUMO

LIM domains kinase 2 (LIMK2) is a 72 kDa protein that regulates actin and cytoskeleton reorganization. Once phosphorylated by its upstream activator (ROCK1), LIMK2 can phosphorylate cofilin to inactivate it. This relieves the levering stress on actin and allows polymerization to occur. Actin rearrangement is essential in regulating cell cycle progression, apoptosis, and migration. Dysregulation of the ROCK1/LIMK2/cofilin pathway has been reported to link to the development of various solid cancers such as breast, lung, and prostate cancer and liquid cancer like leukemia. This review aims to assess the findings from multiple reported in vitro, in vivo, and clinical studies on the potential tumour-regulatory role of LIMK2 in different human cancers. The findings of the selected literature unraveled that activated AKT, EGF, and TGF-ß pathways can upregulate the activities of the ROCK1/LIMK2/cofilin pathway. Besides cofilin, LIMK2 can modulate the cellular levels of other proteins, such as TPPP1, to promote microtubule polymerization. The tumour suppressor protein p53 can transactivate LIMK2b, a splice variant of LIMK2, to induce cell cycle arrest and allow DNA repair to occur before the cell enters the next phase of the cell cycle. Additionally, several non-coding RNAs, such as miR-135a and miR-939-5p, could also epigenetically regulate the expression of LIMK2. Since the expression of LIMK2 is dysregulated in several human cancers, measuring the tissue expression of LIMK2 could potentially help diagnose cancer and predict patient prognosis. As LIMK2 could play tumour-promoting and tumour-inhibiting roles in cancer development, more investigation should be conducted to carefully evaluate whether introducing a LIMK2 inhibitor in cancer patients could slow cancer progression without posing clinical harms.


Assuntos
Quinases Lim , Neoplasias , Humanos , Quinases Lim/metabolismo , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/genética , Animais , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Quinases Associadas a rho/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
13.
Sci Rep ; 14(1): 9763, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684719

RESUMO

Autoimmune myocarditis is the limited or diffuse inflammation of the myocardium due to dysfunctional cellular and humoral immunity mechanisms. We constructed mouse models of experimental autoimmune myocarditis (EAM) using peptide MyHC-α614-629. On the day after secondary immunization, the mice were intraperitoneally injected with Rho kinase (ROCK) inhibitor Y-27632. On day 21, the cardiac tissues were harvested and weighed. The hearts of EAM mice were significantly enlarged and whitened. Furthermore, body weight (BW) slowly increased during the treatment period, the heart weight (HW) and the ratio of HW/eventual BW were increased, and inflammatory infiltration and fibrosis were aggravated in the myocardial tissue. Y-27632 treatment improved the aforementioned phenotypic and pathological features of EAM mice. Mechanistic analysis revealed a significant increase in Notch1, Hes1, Jag2, Dil1, Toll-like receptor (Tlr) 2, and interleukin (IL)-1ß expression in the myocardial tissue of EAM mice. Notably, IL-1ß expression was correlated with that of Notch1 and Tlr2. Following Y-27632 treatment, the expression of key target genes of the Notch signaling pathway (Notch1, Hes1, Dil1, and Jag2) and Tlr2 were obviously decreased. Y-27632 treatment also decreased the number of monocytes in the spleen of EAM mice. Thus, ROCK inhibitor Y-27632 exerted a protective effect in EAM mice by downregulating IL-1ß expression. This study aimed to provide a reference point for the future treatment of myocarditis in clinical settings.


Assuntos
Amidas , Doenças Autoimunes , Modelos Animais de Doenças , Interleucina-1beta , Miocardite , Piridinas , Quinases Associadas a rho , Animais , Miocardite/tratamento farmacológico , Miocardite/metabolismo , Miocardite/patologia , Piridinas/farmacologia , Piridinas/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Camundongos , Amidas/farmacologia , Amidas/uso terapêutico , Interleucina-1beta/metabolismo , Regulação para Baixo/efeitos dos fármacos , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos BALB C
14.
Dis Model Mech ; 17(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616733

RESUMO

Apoptosis is characterized by membrane blebbing and apoptotic body formation. Caspase cleavage of ROCK1 generates an active fragment that promotes actin-myosin-mediated contraction and membrane blebbing during apoptosis. Expression of caspase-resistant non-cleavable ROCK1 (Rock1 NC) prolonged survival of mice that rapidly develop B cell lymphomas due to Eµ-Myc transgene expression. Eµ-Myc; Rock1 NC mice had significantly fewer bone marrow cells relative to those in Eµ-Myc mice expressing wild-type ROCK1 (Rock1 WT), which was associated with altered cell cycle profiles. Circulating macrophage numbers were lower in Eµ-Myc; Rock1 NC mice, but there were higher levels of bone marrow macrophages, consistent with spontaneous cell death in Eµ-Myc; Rock1 NC mouse bone marrows being more inflammatory. Rock1 WT recipient mice transplanted with pre-neoplastic Eµ-Myc; Rock1 NC bone marrow cells survived longer than mice transplanted with Eµ-Myc; Rock1 WT cells, indicating that the survival benefit was intrinsic to the Eµ-Myc; Rock1 NC bone marrow cells. The results suggest that the apoptotic death of Eµ-Myc; Rock1 NC cells generates a proliferation-suppressive microenvironment in bone marrows that reduces cell numbers and prolongs B cell lymphoma mouse survival.


Assuntos
Caspases , Linfoma de Células B , Proteínas Proto-Oncogênicas c-myc , Quinases Associadas a rho , Animais , Quinases Associadas a rho/metabolismo , Linfoma de Células B/patologia , Linfoma de Células B/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Caspases/metabolismo , Macrófagos/metabolismo , Apoptose , Camundongos , Análise de Sobrevida , Camundongos Transgênicos , Células da Medula Óssea/metabolismo , Camundongos Endogâmicos C57BL , Ciclo Celular
15.
J Ethnopharmacol ; 328: 118114, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552993

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Alcohol misuse persists as a prevalent societal concern and precipitates diverse deleterious consequences, entailing significant associated health hazards including acute alcohol intoxication (AAI). Binge drinking, a commonplace pattern of alcohol consumption, may incite neurodegeneration and neuronal dysfunction. Clinicians tasked with managing AAI confront a dearth of pharmaceutical intervention alternatives. In contrast, natural products have garnered interest due to their compatibility with the human body and fewer side effects. Lingjiao Gouteng decoction (LGD), a classical traditional Chinese medicine decoction, represents a frequently employed prescription in cases of encephalopathy, although its efficacy in addressing acute alcoholism and alcohol-induced brain injury remains inadequately investigated. AIM OF THE STUDY: To investigate the conceivable therapeutic benefits of LGD in AAI and alcohol-induced brain injury, while delving into the underlying fundamental mechanisms involved. MATERIALS AND METHODS: We established an AAI mouse model through alcohol gavage, and LGD was administered to the mice twice at the 2 h preceding and 30 min subsequent to alcohol exposure. The study encompassed the utilization of the loss of righting reflex assay, histopathological analysis, enzyme-linked immunosorbent assays, and cerebral tissue biochemical assays to investigate the impact of LGD on AAI and alcohol-induced brain injury. These assessments included a comprehensive evaluation of various biomarkers associated with the inflammatory response and oxidative stress. Finally, RT-qPCR, Western blot, and immunofluorescence staining were carried out to explore the underlying mechanisms through which LGD exerts its therapeutic influence, potentially through the regulation of the RhoA/ROCK2/NF-κB signaling pathway. RESULTS: Our investigation underscores the therapeutic efficacy of LGD in ameliorating AAI, as evidenced by discernible alterations in the loss of righting reflex assay, pathological analysis, and assessment of inflammatory and oxidative stress biomarkers. Furthermore, the results of RT-qPCR, Western blot, and immunofluorescence staining manifest a noteworthy regulatory effect of LGD on the RhoA/ROCK2/NF-κB signaling pathway. CONCLUSIONS: The present study confirmed the therapeutic potential of LGD in AAI and alcohol-induced brain injury, and the protective effects of LGD against alcohol-induced brain injury may be intricately linked to the RhoA/ROCK2/NF-κB signaling pathway.


Assuntos
Intoxicação Alcoólica , Alcoolismo , Lesões Encefálicas , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Intoxicação Alcoólica/tratamento farmacológico , Transdução de Sinais , Etanol/farmacologia , Lesões Encefálicas/tratamento farmacológico , Biomarcadores , Quinases Associadas a rho/metabolismo
16.
Biomed Pharmacother ; 174: 116435, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513591

RESUMO

The global shortage of corneal endothelial graft tissue necessitates the exploration of alternative therapeutic strategies. Rho-associated protein kinase inhibitors (ROCKi), recognized for their regenerative potential in cardiology, oncology, and neurology, have shown promise in corneal endothelial regeneration. This study investigates the repurposing potential of additional ROCKi compounds. Through screening a self-assembled library of ROCKi on B4G12 corneal endothelial cells, we evaluated their dose-dependent effects on proliferation, migration, and toxicity using live-cell imaging. Nine ROCKi candidates significantly enhanced B4G12 proliferation compared to the basal growth rate. These candidates were further assessed for their potential to accelerate wound closure as another indicator for tissue regeneration capacity, with most demonstrating notable efficacy. To assess the potential impact of candidate ROCKi on key corneal endothelial cell markers related to cell proliferation, leaky tight junctions and ion efflux capacity, we analyzed the protein expression of cyclin E1, CDK2, p16, ZO-1 and Na+/K+-ATPase, respectively. Immunocytochemistry and western blot analysis confirmed the preservation of corneal endothelial markers post-treatment with ROCKi hits. However, notable cytoplasm enlargement and nuclear fragmentation were detected after the treatment with SR-3677 and Thiazovivin, indicating possible cellular stress. In compared parameters, Chroman-1 at a concentration of 10 nM outperformed other ROCKi, requiring significantly 1000-fold lower effective concentration than established ROCKi Y-27632 and Fasudil. Altogether, this study underscores the potential of repurposing ROCKi for treating corneal endothelial dysfunctions, offering a viable alternative to conventional grafting methods, and highlights Chroman-1 as a promising candidate structure for hit-to-lead development.


Assuntos
Proliferação de Células , Endotélio Corneano , Inibidores de Proteínas Quinases , Regeneração , Quinases Associadas a rho , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Proliferação de Células/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Endotélio Corneano/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Animais , Reposicionamento de Medicamentos , Movimento Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Células Endoteliais/efeitos dos fármacos
17.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474263

RESUMO

Dexmedetomidine is widely used to induce sedation in the perioperative period. This study examined the effect of hypothermia (33 and 25 °C) on dexmedetomidine-induced contraction in an endothelium-intact aorta with or without the nitric oxide synthase inhibitor NW-nitro-L-arginine methyl ester (L-NAME). In addition, the effect of hypothermia on the contraction induced by dexmedetomidine in an endothelium-denuded aorta with or without a calcium-free Krebs solution was examined. The effects of hypothermia on the protein kinase C (PKC), myosin light chain (MLC20) phosphorylation, and Rho-kinase membrane translocation induced by dexmedetomidine were examined. Hypothermia inhibited dexmedetomidine-induced contraction in the endothelium-intact aorta with L-NAME or endothelium-denuded aorta. Hypothermia had almost no effect on the dexmedetomidine-induced contraction in the endothelium-denuded aorta with the calcium-free Krebs solution; however, the subsequent contraction induced by the addition of calcium was inhibited by hypothermia. Conversely, the transition from profound hypothermia back to normothermia reversed the hypothermia-induced inhibition of subsequent calcium-induced contractions. Hypothermia inhibited any contraction induced by KCl, PDBu, and NaF, as well as PKC and MLC20 phosphorylation and Rho-kinase membrane translocation induced by dexmedetomidine. These results suggest that hypothermia inhibits dexmedetomidine-induced contraction, which is mediated mainly by the impediment of calcium influx and partially by the attenuation of pathways involving PKC and Rho-kinase activation.


Assuntos
Dexmedetomidina , Hipotermia , Ratos , Animais , Dexmedetomidina/farmacologia , Quinases Associadas a rho/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Cálcio/metabolismo , Hipotermia/metabolismo , Proteína Quinase C/metabolismo , Endotélio Vascular/metabolismo , Contração Muscular
18.
Sci Rep ; 14(1): 3596, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351286

RESUMO

Abuse of amphetamine-type stimulants is linked to cardiovascular adverse effects like arrhythmias, accelerated atherosclerosis, acute coronary syndromes and sudden cardiac death. Excessive catecholamine release following amphetamine use causes vasoconstriction and vasospasms, over time leading to hypertension, endothelial dysfunction or even cardiotoxicity. However, immediate vascular pathomechanisms related to amphetamine exposure, especially endothelial function, remain incompletely understood and were analyzed in this study. Pharmaco-pathological effects of acute d-amphetamine-sulfate (DAM) were investigated ex vivo using contraction-force measurements of rat carotid artery rings and in vitro using label-free, real-time electrochemical impedance spectroscopy (EIS) on endothelial and smooth muscle cells. Specific receptor and target blocking was used to identify molecular targets and to characterize intracellular signaling. DAM induced vasodilation represented by 29.3±2.5% decrease in vascular tone (p<0.001) involving vascular endothelial growth factor receptor (VEGF-R) and protease activated receptor 1 (PAR-1). EIS revealed that DAM induces endothelial barrier disruption (-75.9±1.1% of initial cellular impedance, p<0.001) also involving VEGF-R and PAR-1. Further, in response to DAM, Rho-associated protein kinase (ROCK) mediated reversible contraction of actin cytoskeleton resulting in endothelial barrier disruption. Dephosphorylation of Serine1177 (-50.8±3.7%, p<0.001) and Threonine495 (-44.8±6.5%, p=0.0103) of the endothelial NO synthase (eNOS) were also observed. Blocking of VEGF-R and PAR-1 restored baseline eNOS Threonine495 phosphorylation. DAM induced vasodilation, enhanced vascular permeability and actin cytoskeleton contraction and induced eNOS hypophosphorylation involving VEGF-R, PAR-1 and ROCK. These results may contribute to a better understanding of severe adverse cardiovascular effects in amphetamine abuse.


Assuntos
Receptor PAR-1 , Doenças Vasculares , Ratos , Animais , Receptor PAR-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Anfetamina/farmacologia , Permeabilidade Capilar , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Quinases Associadas a rho/metabolismo , Doenças Vasculares/metabolismo , Endotélio Vascular/metabolismo , Citoesqueleto de Actina/metabolismo , Células Cultivadas
19.
Zhongguo Zhong Yao Za Zhi ; 49(1): 185-196, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403351

RESUMO

This study investigated the effect of trametenolic acid(TA) on the migration and invasion of human hepatocellular carcinoma HepG2.2.15 cells by using Ras homolog gene family member C(RhoC) as the target and probed into the mechanism, aiming to provide a basis for the utilization of TA. The methyl thiazolyl tetrazolium(MTT) assay was employed to examine the proliferation of HepG2.2.15 cells exposed to TA, and scratch and Transwell assays to examine the cell migration and invasion. The pull down assay was employed to determine the impact of TA on RhoC GTPase activity. Western blot was employed to measure the effect of TA on the transport of RhoC from cytoplasm to cell membrane and the expression of RhoC/Rho-associated kinase 1(ROCK1)/myosin light chain(MLC)/matrix metalloprotease 2(MMP2)/MMP9 pathway-related proteins. RhoC was over-expressed by transient transfection of pcDNA3.1-RhoC. The changes of F-actin in the cytoskeleton were detected by Laser confocal microscopy. In addition, the changes of cell migration and invasion, expression of proteins in the RhoC/ROCK1/MLC/MMP2/MMP9 pathway, and RhoC GTPase activity were detected. The subcutaneously transplanted tumor model of BALB/c nude mice and the low-, medium-, and high-dose(40, 80, and 120 mg·kg~(-1), respectively) TA groups were established and sorafenib(20 mg·kg~(-1)) was used as the positive control. The tumor volume and weight in each group were measured, and the expression of related proteins in the tumor tissue was determined by Western blot. The results showed that TA inhibited the proliferation of HepG2.2.15 cells in a concentration-dependent manner, with the IC_(50) of 66.65 and 23.09 µmol·L~(-1) at the time points of 24 and 48 h, respectively. The drug administration groups had small tumors with low mass. The tumor inhibition rates of sorafenib and low-, medium-and high-dose TA were 62.23%, 26.48%, 55.45%, and 62.36%, respectively. TA reduced migrating and invading cells and inhibited RhoC protein expression and RhoC GTPase activity in a concentration-dependent manner, dramatically reducing RhoC and membrane-bound RhoC GTPase. The expression of ROCK1, MLC, p-MLC, MMP2, and MMP9 downstream of RhoC can be significantly inhibited by TA, as confirmed in both in vitro and in vivo experiments. After HepG2.2.15 cells were transfected with pcDNA3.1-RhoC to overexpress RhoC, TA down-regulated the protein levels of RhoC, ROCK1, MLC, p-MLC, MMP2, and MMP9 and decreased the activity of RhoC GTPase, with the inhibition level comparable to that before overexpression. In summary, TA can inhibit the migration and invasion of HepG2.2.15 cells. It can inhibit the RhoC/ROCK1/MLC/MMP2/MMP9 signaling pathway by suppressing RhoC GTPase activity and down-regulating RhoC expression. This study provides a new idea for the development of autophagy modulators targeting HSP90α to block the proliferation and inhibit the invasion and migration of hepatocellular carcinoma cells via multiple targets of active components in traditional Chinese medicines.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Proteína de Ligação a GTP rhoC/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Metaloproteinase 9 da Matriz/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Sorafenibe , Camundongos Nus , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Movimento Celular , Proliferação de Células
20.
Cardiovasc Toxicol ; 24(3): 280-290, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38376771

RESUMO

In our previous studies, the results have revealed that circRNA_102046 is significantly upregulated in plasma of patients with ischemic stroke, which closely related to NIHSS score. Human neural stem cells (hNSCs) were used for characterization and subcellular localization of circRNA_102046, and hNSCs OGD/R model was generated. The proliferation of cells was examined by CCK-8 assay. The expression levels of associated molecules were evaluated using RT-qPCR, immunofluorescence staining or western blotting. The binding and co-localization of associated molecules were also evaluated by RIP and FISH assay. Furthermore, MCAO mouse model was established to examine the effects of circRNA_102046 on the progression of ischemic stroke. Expression of circRNA_102046 was detected in the cytoplasma of hNSCs. Then OGD/R cell model was established, where the levels of circRNA_102046 was significantly up-regulated. Furthermore, knockdown of circRNA_102046 was able to enhance the proliferation and differentiation of OGD/R hNSCs. In further downstream molecular studies, the results indicated that circRNA_102046 could participate in the occurrence and development of ischemic stroke through targeting miR-493-5p. In addition, ROCK1 was identified as the putative target of miR-493-5p, and circRNA_102046 regulates the proliferation and differentiation of hNSCs via the miR-493-5p/ROCK1 signaling. More importantly, the infarct volumes of MCAO mice were remarkably reduced after the treatment with sh-circRNA_102046, which also up- and down-regulate the expression of miR-493-5p and ROCK1, respectively. Elucidating this novel pathway provides a theoretical basis for the development of new diagnostic approach and targeted treatment for ischemic stroke.


Assuntos
AVC Isquêmico , MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/metabolismo , RNA Circular , Transdução de Sinais , Diferenciação Celular , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA