Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 610(7932): 575-581, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224386

RESUMO

RNA-guided systems, such as CRISPR-Cas, combine programmable substrate recognition with enzymatic function, a combination that has been used advantageously to develop powerful molecular technologies1,2. Structural studies of these systems have illuminated how the RNA and protein jointly recognize and cleave their substrates, guiding rational engineering for further technology development3. Recent work identified a new class of RNA-guided systems, termed OMEGA, which include IscB, the likely ancestor of Cas9, and the nickase IsrB, a homologue of IscB lacking the HNH nuclease domain4. IsrB consists of only around 350 amino acids, but its small size is counterbalanced by a relatively large RNA guide (roughly 300-nt ωRNA). Here, we report the cryogenic-electron microscopy structure of Desulfovirgula thermocuniculi IsrB (DtIsrB) in complex with its cognate ωRNA and a target DNA. We find the overall structure of the IsrB protein shares a common scaffold with Cas9. In contrast to Cas9, however, which uses a recognition (REC) lobe to facilitate target selection, IsrB relies on its ωRNA, part of which forms an intricate ternary structure positioned analogously to REC. Structural analyses of IsrB and its ωRNA as well as comparisons to other RNA-guided systems highlight the functional interplay between protein and RNA, advancing our understanding of the biology and evolution of these diverse systems.


Assuntos
DNA , Desoxirribonuclease I , RNA Guia de Cinetoplastídeos , Sistemas CRISPR-Cas , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Desoxirribonuclease I/ultraestrutura , DNA/química , DNA/metabolismo , DNA/ultraestrutura , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/metabolismo , RNA Guia de Cinetoplastídeos/ultraestrutura , Microscopia Crioeletrônica , Proteínas Associadas a CRISPR/química
2.
FEBS Lett ; 595(7): 892-912, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33523494

RESUMO

Cas12a is an RNA-guided DNA endonuclease of the type V-A CRISPR-Cas system that has evolved convergently with the type II Cas9 protein. We previously showed that proline substitutions in the bridge helix (BH) impart target DNA cleavage selectivity in Streptococcus pyogenes (Spy) Cas9. Here, we examined a BH variant of Cas12a from Francisella novicida (FnoCas12aKD2P ) to test mechanistic conservation. Our results show that for RNA-guided DNA cleavage (cis-activity), FnoCas12aKD2P accumulates nicked products while cleaving supercoiled DNA substrates with mismatches, with certain mismatch positions being more detrimental for linearization. FnoCas12aKD2P also possess reduced trans-single-stranded DNA cleavage activity. These results implicate the BH in substrate selectivity in both cis- and trans-cleavages and show its conserved role in target discrimination among Cas nucleases.


Assuntos
Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Desoxirribonuclease I/genética , Endodesoxirribonucleases/genética , RNA Guia de Cinetoplastídeos/ultraestrutura , Proteína 9 Associada à CRISPR/genética , Clivagem do DNA , DNA de Cadeia Simples/genética , Francisella/genética , Edição de Genes , Conformação de Ácido Nucleico , RNA Guia de Cinetoplastídeos/genética
3.
Nat Chem Biol ; 17(4): 387-393, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33495647

RESUMO

Cas12g, the type V-G CRISPR-Cas effector, is an RNA-guided ribonuclease that targets single-stranded RNA substrate. The CRISPR-Cas12g system offers a potential platform for transcriptome engineering and diagnostic applications. We determined the structures of Cas12g-guide RNA complexes in the absence and presence of target RNA by cryo-EM to a resolution of 3.1 Å and 4.8 Å, respectively. Cas12g adopts a bilobed structure with miniature REC2 and Nuc domains, whereas the guide RNAs fold into a flipped 'F' shape, which is primarily recognized by the REC lobe. Target RNA and the CRISPR RNA (crRNA) guide form a duplex that inserts into the central cavity between the REC and NUC lobes, inducing conformational changes in both lobes to activate Cas12g. The structural insights would facilitate the development of Cas12g-based applications.


Assuntos
Proteínas Associadas a CRISPR/ultraestrutura , RNA Guia de Cinetoplastídeos/ultraestrutura , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Microscopia Crioeletrônica/métodos , RNA Bacteriano/química , RNA Guia de Cinetoplastídeos/genética , Ribonucleases/genética , Ribonucleases/metabolismo , Ribonucleases/ultraestrutura
4.
Mol Cell ; 81(3): 558-570.e3, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33333018

RESUMO

RNA-guided DNA endonucleases derived from CRISPR-Cas adaptive immune systems are widely used as powerful genome-engineering tools. Among the diverse CRISPR-Cas nucleases, the type V-F Cas12f (also known as Cas14) proteins are exceptionally compact and associate with a guide RNA to cleave single- and double-stranded DNA targets. Here, we report the cryo-electron microscopy structure of Cas12f1 (also known as Cas14a) in complex with a guide RNA and its target DNA. Unexpectedly, the structure revealed that two Cas12f1 molecules assemble with the single guide RNA to recognize the double-stranded DNA target. Each Cas12f1 protomer adopts a different conformation and plays distinct roles in nucleic acid recognition and DNA cleavage, thereby explaining how the miniature Cas12f1 enzyme achieves RNA-guided DNA cleavage as an "asymmetric homodimer." Our findings augment the mechanistic understanding of diverse CRISPR-Cas nucleases and provide a framework for the development of compact genome-engineering tools critical for therapeutic genome editing.


Assuntos
Proteínas Associadas a CRISPR/ultraestrutura , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/ultraestrutura , Edição de Genes , RNA Guia de Cinetoplastídeos/ultraestrutura , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Microscopia Crioeletrônica , DNA/genética , DNA/metabolismo , Modelos Moleculares , Motivos de Nucleotídeos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Relação Estrutura-Atividade
5.
Sci Rep ; 10(1): 11610, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665590

RESUMO

Cas13 endonuclease activity depends on the RNA local secondary structure with strong preference for single-stranded (SS) regions. Hence, it becomes indispensable to identify the SS regions for effective Cas13 mediated RNA knockdown. We herein present rational gRNA design by integrating experimental structure-seq data and predicted structural models. Utilizing structure-seq data for XIST transcript, we observed that gRNAs targeting the SS regions significantly induce transcript knockdown and cleavage than those targeting double-stranded (DS) regions. Further, we identified the "central seed region" in the gRNA that upon targeting the SS regions efficiently facilitates Cas13 mediated cleavage. In our following pursuits, we considered the scenario wherein experimental structure-seq data is not available, hence we used SS18-SSX2 fusion transcript indicated in synovial sarcomas and computationally predicted its structure. We observed that gRNAs targeting the SS regions predicted from the structure, efficiently induced necrosis compared to gRNAs that target the DS regions. In conclusion, for the effective RNA knockdown, the Cas13 mediated targeting strategy presented herein emphasizes the designing of gRNAs specifically targeting SS regions by utilizing structural information. Further, this strategy, in turn, can be anticipated to narrow the search space for gRNA design (by exclusively targeting SS regions) especially when lncRNAs are the targets.


Assuntos
Endonucleases/genética , Conformação de Ácido Nucleico , RNA Guia de Cinetoplastídeos/ultraestrutura , Sistemas CRISPR-Cas/genética , Endonucleases/ultraestrutura , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , RNA/genética , RNA/ultraestrutura , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/ultraestrutura , RNA Guia de Cinetoplastídeos/genética , Proteínas Repressoras/química , Proteínas Repressoras/genética
6.
Nucleic Acids Res ; 48(12): 6811-6823, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32496535

RESUMO

A key aim in exploiting CRISPR-Cas is gRNA engineering to introduce additional functionalities, ranging from individual nucleotide changes that increase efficiency of on-target binding to the inclusion of larger functional RNA aptamers or ribonucleoproteins (RNPs). Cas9-gRNA interactions are crucial for complex assembly, but several distinct regions of the gRNA are amenable to modification. We used in vitro ensemble and single-molecule assays to assess the impact of gRNA structural alterations on RNP complex formation, R-loop dynamics, and endonuclease activity. Our results indicate that RNP formation was unaffected by any of our modifications. R-loop formation and DNA cleavage activity were also essentially unaffected by modification of the Upper Stem, first Hairpin and 3' end. In contrast, we found that 5' additions of only two or three nucleotides could reduce R-loop formation and cleavage activity of the RuvC domain relative to a single nucleotide addition. Such modifications are a common by-product of in vitro transcribed gRNA. We also observed that addition of a 20 nt RNA hairpin to the 5' end of a gRNA still supported RNP formation but produced a stable ∼9 bp R-loop that could not activate DNA cleavage. Consideration of these observations will assist in successful gRNA design.


Assuntos
Sistemas CRISPR-Cas/genética , Clivagem do DNA , Estruturas R-Loop/genética , RNA Guia de Cinetoplastídeos/genética , Aptâmeros de Nucleotídeos/genética , Edição de Genes , Conformação de Ácido Nucleico , RNA Guia de Cinetoplastídeos/ultraestrutura , Ribonucleoproteínas/genética , Ribonucleoproteínas/ultraestrutura , Imagem Individual de Molécula , Streptococcus pyogenes/genética
7.
Cell Host Microbe ; 25(6): 815-826.e4, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31155345

RESUMO

CRISPR-Cas12a (Cpf1), a type V CRISPR-associated nuclease, provides bacterial immunity against bacteriophages and plasmids but also serves as a tool for genome editing. Foreign nucleic acids are integrated into the CRISPR locus, prompting transcription of CRISPR RNAs (crRNAs) that guide Cas12a cleavage of foreign complementary DNA. However, mobile genetic elements counteract Cas12a with inhibitors, notably type V-A anti-CRISPRs (AcrVAs). We present cryoelectron microscopy structures of Cas12a-crRNA bound to AcrVA1 and AcrVA4 at 3.5 and 3.3 Å resolutions, respectively. AcrVA1 is sandwiched between the recognition (REC) and nuclease (NUC) lobes of Cas12a and inserts into the binding pocket for the protospacer-adjacent motif (PAM), a short DNA sequence guiding Cas12a targeting. AcrVA1 cleaves crRNA in a Cas12a-dependent manner, inactivating Cas12a-crRNA complexes. The AcrVA4 dimer is anchored around the crRNA pseudoknot of Cas12a-crRNA, preventing required conformational changes for crRNA-DNA heteroduplex formation. These results uncover molecular mechanisms for CRISPR-Cas12a inhibition, providing insights into bacteria-phage dynamics.


Assuntos
Sistemas CRISPR-Cas , Endodesoxirribonucleases/antagonistas & inibidores , Endodesoxirribonucleases/metabolismo , Inibidores Enzimáticos/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Ribonucleases/metabolismo , Microscopia Crioeletrônica , Endodesoxirribonucleases/ultraestrutura , Ligação Proteica , Conformação Proteica , RNA Guia de Cinetoplastídeos/ultraestrutura , Ribonucleases/ultraestrutura
8.
Mol Cell ; 73(3): 601-610.e5, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30595438

RESUMO

CRISPR-Cas immune systems utilize RNA-guided nucleases to protect bacteria from bacteriophage infection. Bacteriophages have in turn evolved inhibitory "anti-CRISPR" (Acr) proteins, including six inhibitors (AcrIIA1-AcrIIA6) that can block DNA cutting and genome editing by type II-A CRISPR-Cas9 enzymes. We show here that AcrIIA2 and its more potent homolog, AcrIIA2b, prevent Cas9 binding to DNA by occluding protein residues required for DNA binding. Cryo-EM-determined structures of AcrIIA2 or AcrIIA2b bound to S. pyogenes Cas9 reveal a mode of competitive inhibition of DNA binding that is distinct from other known Acrs. Differences in the temperature dependence of Cas9 inhibition by AcrIIA2 and AcrIIA2b arise from differences in both inhibitor structure and the local inhibitor-binding environment on Cas9. These findings expand the natural toolbox for regulating CRISPR-Cas9 genome editing temporally, spatially, and conditionally.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , DNA/metabolismo , Edição de Genes/métodos , Fagos de Pseudomonas/metabolismo , Pseudomonas aeruginosa/enzimologia , RNA Guia de Cinetoplastídeos/metabolismo , Temperatura , Proteínas Virais/metabolismo , Ligação Competitiva , Proteína 9 Associada à CRISPR/antagonistas & inibidores , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/ultraestrutura , Microscopia Crioeletrônica , DNA/genética , DNA/ultraestrutura , Escherichia coli/enzimologia , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/virologia , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/ultraestrutura , Relação Estrutura-Atividade , Proteínas Virais/genética , Proteínas Virais/ultraestrutura
9.
Cell ; 175(1): 212-223.e17, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241607

RESUMO

CRISPR-Cas endonucleases directed against foreign nucleic acids mediate prokaryotic adaptive immunity and have been tailored for broad genetic engineering applications. Type VI-D CRISPR systems contain the smallest known family of single effector Cas enzymes, and their signature Cas13d ribonuclease employs guide RNAs to cleave matching target RNAs. To understand the molecular basis for Cas13d function and explain its compact molecular architecture, we resolved cryoelectron microscopy structures of Cas13d-guide RNA binary complex and Cas13d-guide-target RNA ternary complex to 3.4 and 3.3 Å resolution, respectively. Furthermore, a 6.5 Å reconstruction of apo Cas13d combined with hydrogen-deuterium exchange revealed conformational dynamics that have implications for RNA scanning. These structures, together with biochemical and cellular characterization, provide insights into its RNA-guided, RNA-targeting mechanism and delineate a blueprint for the rational design of improved transcriptome engineering technologies.


Assuntos
Sistemas CRISPR-Cas/genética , RNA Guia de Cinetoplastídeos/fisiologia , Ribonucleases/fisiologia , Sistemas CRISPR-Cas/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Microscopia Crioeletrônica/métodos , Endonucleases/metabolismo , Células HEK293 , Humanos , Conformação Molecular , RNA/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/ultraestrutura , Ribonucleases/metabolismo , Ribonucleases/ultraestrutura
10.
Cell ; 170(4): 714-726.e10, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28757251

RESUMO

Cas13a, a type VI-A CRISPR-Cas RNA-guided RNA ribonuclease, degrades invasive RNAs targeted by CRISPR RNA (crRNA) and has potential applications in RNA technology. To understand how Cas13a is activated to cleave RNA, we have determined the crystal structure of Leptotrichia buccalis (Lbu) Cas13a bound to crRNA and its target RNA, as well as the cryo-EM structure of the LbuCas13a-crRNA complex. The crRNA-target RNA duplex binds in a positively charged central channel of the nuclease (NUC) lobe, and Cas13a protein and crRNA undergo a significant conformational change upon target RNA binding. The guide-target RNA duplex formation triggers HEPN1 domain to move toward HEPN2 domain, activating the HEPN catalytic site of Cas13a protein, which subsequently cleaves both single-stranded target and collateral RNAs in a non-specific manner. These findings reveal how Cas13a of type VI CRISPR-Cas systems defend against RNA phages and set the stage for its development as a tool for RNA manipulation.


Assuntos
Proteínas de Bactérias/química , Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas , Leptotrichia/imunologia , Proteínas de Bactérias/ultraestrutura , Sequência de Bases , Proteínas Associadas a CRISPR/ultraestrutura , Leptotrichia/química , Leptotrichia/metabolismo , Leptotrichia/virologia , Modelos Moleculares , Processamento Pós-Transcricional do RNA , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/ultraestrutura , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/ultraestrutura , RNA Viral/química , Difração de Raios X
11.
Mol Cell ; 56(2): 333-339, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25373540

RESUMO

The RNA-guided Cas9 endonuclease specifically targets and cleaves DNA in a sequence-dependent manner and has been widely used for programmable genome editing. Cas9 activity is dependent on interactions with guide RNAs, and evolutionarily divergent Cas9 nucleases have been shown to work orthogonally. However, the molecular basis of selective Cas9:guide-RNA interactions is poorly understood. Here, we identify and characterize six conserved modules within native crRNA:tracrRNA duplexes and single guide RNAs (sgRNAs) that direct Cas9 endonuclease activity. We show the bulge and nexus are necessary for DNA cleavage and demonstrate that the nexus and hairpins are instrumental in defining orthogonality between systems. In contrast, the crRNA:tracrRNA complementary region can be modified or partially removed. Collectively, our results establish guide RNA features that drive DNA targeting by Cas9 and open new design and engineering avenues for CRISPR technologies.


Assuntos
Proteínas de Bactérias/química , Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas , Clivagem do DNA , DNA/química , Endonucleases/química , Engenharia Genética/métodos , RNA Guia de Cinetoplastídeos/química , Proteína 9 Associada à CRISPR , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Células HEK293 , Humanos , Conformação de Ácido Nucleico , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/ultraestrutura
12.
J Biol Chem ; 287(31): 26268-77, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22661715

RESUMO

Editing of mitochondrial pre-mRNAs in African trypanosomes generates full-length transcripts by the site-specific insertion and deletion of uridylate nucleotides. The reaction is catalyzed by a 0.8 MDa multienzyme complex, the editosome. Although the binding of substrate pre-edited mRNAs and cognate guide RNAs (gRNAs) represents the first step in the reaction cycle, the biochemical and biophysical details of the editosome/RNA interaction are not understood. Here we show that editosomes bind full-length substrate mRNAs with nanomolar affinity in a nonselective fashion. The complexes do not discriminate-neither kinetically nor thermodynamically-between different mitochondrial pre-mRNAs or between edited and unedited versions of the same transcript. They also bind gRNAs and gRNA/pre-mRNA hybrid RNAs with similar affinities and association rate constants. Gold labeling of editosome-bound RNA in combination with transmission electron microscopy identified a single RNA-binding site per editosome. However, atomic force microscopy of individual pre-mRNA-editosome complexes revealed that multiple editosomes can interact with one pre-mRNA. Lastly, we demonstrate a so far unknown activity of the editing machinery: editosome-bound RNA becomes unfolded by a chaperone-type RNA unwinding activity.


Assuntos
Proteínas de Protozoários/química , RNA Mensageiro/química , RNA de Protozoário/química , Proteínas de Ligação a RNA/química , Trypanosoma brucei brucei/enzimologia , Sítios de Ligação , Substâncias Macromoleculares/química , Substâncias Macromoleculares/ultraestrutura , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Conformação de Ácido Nucleico , Ligação Proteica , Proteínas de Protozoários/ultraestrutura , Processamento Pós-Transcricional do RNA , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/ultraestrutura , RNA Mensageiro/ultraestrutura , RNA Mitocondrial , Proteínas de Ligação a RNA/ultraestrutura , Ressonância de Plasmônio de Superfície
13.
Int J Parasitol ; 38(8-9): 901-12, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18295767

RESUMO

The mitochondrial RNA-binding proteins (MRP) 1 and 2 play a regulatory role in RNA editing and putative role(s) in RNA processing in Trypanosoma brucei. Here, we report the purification of a high molecular weight protein complex consisting solely of the MRP1 and MRP2 proteins from the mitochondrion of T. brucei. The MRP1/MRP2 complex natively purified from T. brucei and the one reconstituted in Escherichia coli in vivo bind guide (g) RNAs and pre-mRNAs with dissociation constants in the nanomolar range, and efficiently promote annealing of pre-mRNAs with their cognate gRNAs. In addition, the MRP1/MRP2 complex stimulates annealing between two non-cognate RNA molecules suggesting that along with the cognate duplexes, spuriously mismatched RNA hybrids may be formed at some rate in vivo. A mechanism of catalysed annealing of gRNA/pre-mRNA by the MRP1/MRP2 complex is proposed.


Assuntos
Proteínas Mitocondriais , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Proteínas de Ligação a RNA , Trypanosoma brucei brucei , Cromatografia , Microscopia Eletrônica , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/fisiologia , Proteínas Mitocondriais/ultraestrutura , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Proteínas Recombinantes/farmacologia , Edição de RNA , Precursores de RNA/metabolismo , Precursores de RNA/ultraestrutura , RNA Guia de Cinetoplastídeos/metabolismo , RNA Guia de Cinetoplastídeos/ultraestrutura , RNA de Protozoário/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA