Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nature ; 629(8010): 219-227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570683

RESUMO

The Integrator complex can terminate RNA polymerase II (Pol II) in the promoter-proximal region of genes. Previous work has shed light on how Integrator binds to the paused elongation complex consisting of Pol II, the DRB sensitivity-inducing factor (DSIF) and the negative elongation factor (NELF) and how it cleaves the nascent RNA transcript1, but has not explained how Integrator removes Pol II from the DNA template. Here we present three cryo-electron microscopy structures of the complete Integrator-PP2A complex in different functional states. The structure of the pre-termination complex reveals a previously unresolved, scorpion-tail-shaped INTS10-INTS13-INTS14-INTS15 module that may use its 'sting' to open the DSIF DNA clamp and facilitate termination. The structure of the post-termination complex shows that the previously unresolved subunit INTS3 and associated sensor of single-stranded DNA complex (SOSS) factors prevent Pol II rebinding to Integrator after termination. The structure of the free Integrator-PP2A complex in an inactive closed conformation2 reveals that INTS6 blocks the PP2A phosphatase active site. These results lead to a model for how Integrator terminates Pol II transcription in three steps that involve major rearrangements.


Assuntos
Microscopia Crioeletrônica , Modelos Moleculares , Proteína Fosfatase 2 , RNA Polimerase II , RNA Polimerase II/metabolismo , RNA Polimerase II/química , RNA Polimerase II/ultraestrutura , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/química , Proteína Fosfatase 2/ultraestrutura , Terminação da Transcrição Genética , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Ligação Proteica , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/ultraestrutura , Subunidades Proteicas/metabolismo , Subunidades Proteicas/química
2.
Nature ; 628(8009): 887-893, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538796

RESUMO

Efficient termination is required for robust gene transcription. Eukaryotic organisms use a conserved exoribonuclease-mediated mechanism to terminate the mRNA transcription by RNA polymerase II (Pol II)1-5. Here we report two cryogenic electron microscopy structures of Saccharomyces cerevisiae Pol II pre-termination transcription complexes bound to the 5'-to-3' exoribonuclease Rat1 and its partner Rai1. Our structures show that Rat1 displaces the elongation factor Spt5 to dock at the Pol II stalk domain. Rat1 shields the RNA exit channel of Pol II, guides the nascent RNA towards its active centre and stacks three nucleotides at the 5' terminus of the nascent RNA. The structures further show that Rat1 rotates towards Pol II as it shortens RNA. Our results provide the structural mechanism for the Rat1-mediated termination of mRNA transcription by Pol II in yeast and the exoribonuclease-mediated termination of mRNA transcription in other eukaryotes.


Assuntos
Microscopia Crioeletrônica , Exorribonucleases , RNA Polimerase II , RNA Mensageiro , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Terminação da Transcrição Genética , Exorribonucleases/química , Exorribonucleases/metabolismo , Exorribonucleases/ultraestrutura , Modelos Moleculares , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , RNA Mensageiro/biossíntese , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/ultraestrutura , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/ultraestrutura , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/ultraestrutura , Domínios Proteicos , RNA Fúngico/biossíntese , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/ultraestrutura
3.
Mol Cell ; 83(14): 2464-2477.e5, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37369200

RESUMO

Co-transcriptional capping of the nascent pre-mRNA 5' end prevents degradation of RNA polymerase (Pol) II transcripts and suppresses the innate immune response. Here, we provide mechanistic insights into the three major steps of human co-transcriptional pre-mRNA capping based on six different cryoelectron microscopy (cryo-EM) structures. The human mRNA capping enzyme, RNGTT, first docks to the Pol II stalk to position its triphosphatase domain near the RNA exit site. The capping enzyme then moves onto the Pol II surface, and its guanylyltransferase receives the pre-mRNA 5'-diphosphate end. Addition of a GMP moiety can occur when the RNA is ∼22 nt long, sufficient to reach the active site of the guanylyltransferase. For subsequent cap(1) methylation, the methyltransferase CMTR1 binds the Pol II stalk and can receive RNA after it is grown to ∼29 nt in length. The observed rearrangements of capping factors on the Pol II surface may be triggered by the completion of catalytic reaction steps and are accommodated by domain movements in the elongation factor DRB sensitivity-inducing factor (DSIF).


Assuntos
Processamento Pós-Transcricional do RNA , RNA Mensageiro , Humanos , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Mensageiro/ultraestrutura , Microscopia Crioeletrônica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , Transcrição Gênica , Metiltransferases/química , Metiltransferases/metabolismo , Metiltransferases/ultraestrutura , Modelos Químicos
4.
Mol Cell ; 82(3): 660-676.e9, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051353

RESUMO

Previous structural studies of the initiation-elongation transition of RNA polymerase II (pol II) transcription have relied on the use of synthetic oligonucleotides, often artificially discontinuous to capture pol II in the initiating state. Here, we report multiple structures of initiation complexes converted de novo from a 33-subunit yeast pre-initiation complex (PIC) through catalytic activities and subsequently stalled at different template positions. We determine that PICs in the initially transcribing complex (ITC) can synthesize a transcript of ∼26 nucleotides before transitioning to an elongation complex (EC) as determined by the loss of general transcription factors (GTFs). Unexpectedly, transition to an EC was greatly accelerated when an ITC encountered a downstream EC stalled at promoter proximal regions and resulted in a collided head-to-end dimeric EC complex. Our structural analysis reveals a dynamic state of TFIIH, the largest of GTFs, in PIC/ITC with distinct functional consequences at multiple steps on the pathway to elongation.


Assuntos
RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Iniciação da Transcrição Genética , Microscopia Crioeletrônica , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Regiões Promotoras Genéticas , Conformação Proteica , RNA Polimerase II/genética , RNA Polimerase II/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Relação Estrutura-Atividade , Fatores de Tempo , Elongação da Transcrição Genética , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo
5.
Nature ; 598(7880): 368-372, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34526721

RESUMO

Transcription-coupled DNA repair removes bulky DNA lesions from the genome1,2 and protects cells against ultraviolet (UV) irradiation3. Transcription-coupled DNA repair begins when RNA polymerase II (Pol II) stalls at a DNA lesion and recruits the Cockayne syndrome protein CSB, the E3 ubiquitin ligase, CRL4CSA and UV-stimulated scaffold protein A (UVSSA)3. Here we provide five high-resolution structures of Pol II transcription complexes containing human transcription-coupled DNA repair factors and the elongation factors PAF1 complex (PAF) and SPT6. Together with biochemical and published3,4 data, the structures provide a model for transcription-repair coupling. Stalling of Pol II at a DNA lesion triggers replacement of the elongation factor DSIF by CSB, which binds to PAF and moves upstream DNA to SPT6. The resulting elongation complex, ECTCR, uses the CSA-stimulated translocase activity of CSB to pull on upstream DNA and push Pol II forward. If the lesion cannot be bypassed, CRL4CSA spans over the Pol II clamp and ubiquitylates the RPB1 residue K1268, enabling recruitment of TFIIH to UVSSA and DNA repair. Conformational changes in CRL4CSA lead to ubiquitylation of CSB and to release of transcription-coupled DNA repair factors before transcription may continue over repaired DNA.


Assuntos
Microscopia Crioeletrônica , Reparo do DNA , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , RNA Polimerase II/química , RNA Polimerase II/ultraestrutura , Transcrição Gênica , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Transporte/ultraestrutura , DNA Helicases/química , DNA Helicases/metabolismo , DNA Helicases/ultraestrutura , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/ultraestrutura , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética , Fator de Transcrição TFIIH/química , Fator de Transcrição TFIIH/metabolismo , Fator de Transcrição TFIIH/ultraestrutura , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/ultraestrutura , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/ultraestrutura , Ubiquitinação
6.
Mol Cell ; 81(16): 3386-3399.e10, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34265249

RESUMO

The super elongation complex (SEC) contains the positive transcription elongation factor b (P-TEFb) and the subcomplex ELL2-EAF1, which stimulates RNA polymerase II (RNA Pol II) elongation. Here, we report the cryoelectron microscopy (cryo-EM) structure of ELL2-EAF1 bound to a RNA Pol II elongation complex at 2.8 Å resolution. The ELL2-EAF1 dimerization module directly binds the RNA Pol II lobe domain, explaining how SEC delivers P-TEFb to RNA Pol II. The same site on the lobe also binds the initiation factor TFIIF, consistent with SEC binding only after the transition from transcription initiation to elongation. Structure-guided functional analysis shows that the stimulation of RNA elongation requires the dimerization module and the ELL2 linker that tethers the module to the RNA Pol II protrusion. Our results show that SEC stimulates elongation allosterically and indicate that this stimulation involves stabilization of a closed conformation of the RNA Pol II active center cleft.


Assuntos
Fator B de Elongação Transcricional Positiva/ultraestrutura , RNA Polimerase II/genética , Fatores de Transcrição/genética , Fatores de Elongação da Transcrição/genética , Regulação Alostérica/genética , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Microscopia Crioeletrônica , Humanos , Estrutura Molecular , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Fator B de Elongação Transcricional Positiva/genética , Ligação Proteica/genética , Conformação Proteica , RNA Polimerase II/ultraestrutura , Elongação da Transcrição Genética , Fatores de Transcrição/ultraestrutura , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/ultraestrutura
7.
Cell ; 184(15): 4064-4072.e28, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34133942

RESUMO

Transcription initiation requires assembly of the RNA polymerase II (Pol II) pre-initiation complex (PIC) and opening of promoter DNA. Here, we present the long-sought high-resolution structure of the yeast PIC and define the mechanism of initial DNA opening. We trap the PIC in an intermediate state that contains half a turn of open DNA located 30-35 base pairs downstream of the TATA box. The initially opened DNA region is flanked and stabilized by the polymerase "clamp head loop" and the TFIIF "charged region" that both contribute to promoter-initiated transcription. TFIIE facilitates initiation by buttressing the clamp head loop and by regulating the TFIIH translocase. The initial DNA bubble is then extended in the upstream direction, leading to the open promoter complex and enabling start-site scanning and RNA synthesis. This unique mechanism of DNA opening may permit more intricate regulation than in the Pol I and Pol III systems.


Assuntos
DNA/química , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Iniciação da Transcrição Genética , Sequência de Aminoácidos , Microscopia Crioeletrônica , DNA/ultraestrutura , Modelos Biológicos , Modelos Moleculares , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA Polimerase II/ultraestrutura , Deleção de Sequência , Fator de Transcrição TFIIH , Fatores de Transcrição TFII/metabolismo
8.
Nature ; 594(7861): 129-133, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33902108

RESUMO

Mediator is a conserved coactivator complex that enables the regulated initiation of transcription at eukaryotic genes1-3. Mediator is recruited by transcriptional activators and binds the pre-initiation complex (PIC) to stimulate the phosphorylation of RNA polymerase II (Pol II) and promoter escape1-6. Here we prepare a recombinant version of human Mediator, reconstitute a 50-subunit Mediator-PIC complex and determine the structure of the complex by cryo-electron microscopy. The head module of Mediator contacts the stalk of Pol II and the general transcription factors TFIIB and TFIIE, resembling the Mediator-PIC interactions observed in the corresponding complex in yeast7-9. The metazoan subunits MED27-MED30 associate with exposed regions in MED14 and MED17 to form the proximal part of the Mediator tail module that binds activators. Mediator positions the flexibly linked cyclin-dependent kinase (CDK)-activating kinase of the general transcription factor TFIIH near the linker to the C-terminal repeat domain of Pol II. The Mediator shoulder domain holds the CDK-activating kinase subunit CDK7, whereas the hook domain contacts a CDK7 element that flanks the kinase active site. The shoulder and hook domains reside in the Mediator head and middle modules, respectively, which can move relative to each other and may induce an active conformation of the CDK7 kinase to allosterically stimulate phosphorylation of the C-terminal domain.


Assuntos
Microscopia Crioeletrônica , Complexo Mediador/química , Complexo Mediador/ultraestrutura , RNA Polimerase II/química , RNA Polimerase II/ultraestrutura , Regulação Alostérica , Sítios de Ligação , Domínio Catalítico , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , DNA Complementar/genética , Humanos , Complexo Mediador/metabolismo , Modelos Moleculares , Fosforilação , Ligação Proteica , RNA Polimerase II/metabolismo , Fator de Transcrição TFIIB/química , Fator de Transcrição TFIIB/metabolismo , Fatores de Transcrição TFII/química , Fatores de Transcrição TFII/metabolismo , Iniciação da Transcrição Genética , Quinase Ativadora de Quinase Dependente de Ciclina
9.
Nat Struct Mol Biol ; 28(4): 382-387, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33846633

RESUMO

Efficient transcription of RNA polymerase II (Pol II) through nucleosomes requires the help of various factors. Here we show biochemically that Pol II transcription through a nucleosome is facilitated by the chromatin remodeler Chd1 and the histone chaperone FACT when the elongation factors Spt4/5 and TFIIS are present. We report cryo-EM structures of transcribing Saccharomyces cerevisiae Pol II-Spt4/5-nucleosome complexes with bound Chd1 or FACT. In the first structure, Pol II transcription exposes the proximal histone H2A-H2B dimer that is bound by Spt5. Pol II has also released the inhibitory DNA-binding region of Chd1 that is poised to pump DNA toward Pol II. In the second structure, Pol II has generated a partially unraveled nucleosome that binds FACT, which excludes Chd1 and Spt5. These results suggest that Pol II progression through a nucleosome activates Chd1, enables FACT binding and eventually triggers transfer of FACT together with histones to upstream DNA.


Assuntos
Proteínas Cromossômicas não Histona/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Proteínas de Grupo de Alta Mobilidade/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Transcrição Gênica , Fatores de Elongação da Transcrição/ultraestrutura , Cromatina/genética , Cromatina/ultraestrutura , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Histonas/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Nucleossomos/genética , Nucleossomos/ultraestrutura , RNA Polimerase II/genética , RNA Polimerase II/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/genética
10.
Nat Struct Mol Biol ; 28(4): 337-346, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33767452

RESUMO

Interactions between the splicing machinery and RNA polymerase II increase protein-coding gene transcription. Similarly, exons and splicing signals of enhancer-generated long noncoding RNAs (elncRNAs) augment enhancer activity. However, elncRNAs are inefficiently spliced, suggesting that, compared with protein-coding genes, they contain qualitatively different exons with a limited ability to drive splicing. We show here that the inefficiently spliced first exons of elncRNAs as well as promoter-antisense long noncoding RNAs (pa-lncRNAs) in human and mouse cells trigger a transcription termination checkpoint that requires WDR82, an RNA polymerase II-binding protein, and its RNA-binding partner of previously unknown function, ZC3H4. We propose that the first exons of elncRNAs and pa-lncRNAs are an intrinsic component of a regulatory mechanism that, on the one hand, maximizes the activity of these cis-regulatory elements by recruiting the splicing machinery and, on the other, contains elements that suppress pervasive extragenic transcription.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , RNA Polimerase II/ultraestrutura , RNA Longo não Codificante/genética , Transcrição Gênica , Processamento Alternativo/genética , Animais , Proteínas Cromossômicas não Histona/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Éxons/genética , Humanos , Camundongos , Regiões Promotoras Genéticas/genética , RNA Polimerase II/genética , Splicing de RNA/genética , RNA Antissenso/genética , RNA Antissenso/ultraestrutura , RNA Longo não Codificante/ultraestrutura , RNA Mensageiro/genética , Sequências Reguladoras de Ácido Nucleico/genética
11.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431688

RESUMO

The C-terminal domain (CTD) kinase I (CTDK-1) complex is the primary RNA Polymerase II (Pol II) CTD Ser2 kinase in budding yeast. CTDK-1 consists of a cyclin-dependent kinase (CDK) Ctk1, a cyclin Ctk2, and a unique subunit Ctk3 required for CTDK-1 activity. Here, we present a crystal structure of CTDK-1 at 1.85-Å resolution. The structure reveals that, compared to the canonical two-component CDK-cyclin system, the third component Ctk3 of CTDK-1 plays a critical role in Ctk1 activation by stabilizing a key element of CDK regulation, the T-loop, in an active conformation. In addition, Ctk3 contributes to the assembly of CTDK-1 through extensive interactions with both Ctk1 and Ctk2. We also demonstrate that CTDK-1 physically and genetically interacts with the serine/arginine-like protein Gbp2. Together, the data in our work reveal a regulatory mechanism of CDK complexes.


Assuntos
Quinases Ciclina-Dependentes/ultraestrutura , Proteínas Quinases/ultraestrutura , RNA Polimerase II/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Transcrição Gênica , Sequência de Aminoácidos/genética , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Cristalografia por Raios X , Quinases Ciclina-Dependentes/genética , Ciclinas/química , Ciclinas/ultraestrutura , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Fosforilação , Conformação Proteica , Proteínas Quinases/genética , RNA Polimerase II/genética , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética
12.
Trends Genet ; 37(3): 224-234, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32921511

RESUMO

Dysfunctions of nuclear processes including transcription and DNA repair lead to severe human diseases. Gaining an understanding of how these processes operate in the crowded context of chromatin can be particularly challenging. Mediator is a large multiprotein complex conserved in eukaryotes with a key coactivator role in the regulation of RNA polymerase (Pol) II transcription. Despite intensive studies, the molecular mechanisms underlying Mediator function remain to be fully understood. Novel findings have provided insights into the relationship between Mediator and chromatin architecture, revealed its role in connecting transcription with DNA repair and proposed an emerging mechanism of phase separation involving Mediator condensates. Recent developments in the field suggest multiple functions of Mediator going beyond transcriptional processes per se that would explain its involvement in various human pathologies.


Assuntos
Cromatina/genética , Complexo Mediador/genética , RNA Polimerase II/genética , Transcrição Gênica/genética , Cromatina/ultraestrutura , Reparo do DNA/genética , Humanos , Complexo Mediador/ultraestrutura , RNA Polimerase II/ultraestrutura
13.
J Struct Biol ; 207(3): 270-278, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31200019

RESUMO

Despite significant advances in all aspects of single particle cryo-electron microscopy (cryo-EM), specimen preparation still remains a challenge. During sample preparation, macromolecules interact with the air-water interface, which often leads to detrimental effects such as denaturation or adoption of preferred orientations, ultimately hindering structure determination. Randomly biotinylating the protein of interest (for example, at its primary amines) and then tethering it to a cryo-EM grid coated with two-dimensional crystals of streptavidin (acting as an affinity surface) can prevent the protein from interacting with the air-water interface. Recently, this approach was successfully used to solve a high-resolution structure of a test sample, a bacterial ribosome. However, whether this method can be used for samples where interaction with the air-water interface has been shown to be problematic remains to be determined. Here we report a 3.1 Šstructure of an RNA polymerase II elongation complex stalled at a cyclobutane pyrimidine dimer lesion (Pol II EC(CPD)) solved using streptavidin grids. Our previous attempt to solve this structure using conventional sample preparation methods resulted in a poor quality cryo-EM map due to Pol II EC(CPD)'s adopting a strong preferred orientation. Imaging the same sample on streptavidin grids improved the angular distribution of its view, resulting in a high-resolution structure. This work shows that streptavidin affinity grids can be used to address known challenges posed by the interaction with the air-water interface.


Assuntos
Dano ao DNA , Dímeros de Pirimidina/química , RNA Polimerase II/química , Proteínas de Saccharomyces cerevisiae/química , Biotinilação , Microscopia Crioeletrônica , Cristalização , Modelos Moleculares , Conformação Proteica , Dímeros de Pirimidina/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estreptavidina/química , Água/química
14.
Mol Cell ; 73(1): 97-106.e4, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30472190

RESUMO

Transcription initiation requires opening of promoter DNA in the RNA polymerase II (Pol II) pre-initiation complex (PIC), but it remains unclear how this is achieved. Here we report the cryo-electron microscopic (cryo-EM) structure of a yeast PIC that contains underwound, distorted promoter DNA in the closed Pol II cleft. The DNA duplex axis is offset at the upstream edge of the initially melted DNA region (IMR) where DNA opening begins. Unstable IMRs are found in a subset of yeast promoters that we show can still initiate transcription after depletion of the transcription factor (TF) IIH (TFIIH) translocase Ssl2 (XPB in human) from the nucleus in vivo. PIC-induced DNA distortions may thus prime the IMR for melting and may explain how unstable IMRs that are predicted in promoters of Pol I and Pol III can open spontaneously. These results suggest that DNA distortion in the polymerase cleft is a general mechanism that contributes to promoter opening.


Assuntos
DNA Fúngico/genética , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética , Microscopia Crioeletrônica , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Fúngico/metabolismo , DNA Fúngico/ultraestrutura , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Iniciação da Transcrição Genética
15.
Nat Commun ; 9(1): 5432, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575770

RESUMO

Transcription of eukaryotic protein-coding genes requires passage of RNA polymerase II (Pol II) through nucleosomes, but it is unclear how this is achieved. Here we report the cryo-EM structure of transcribing Saccharomyces cerevisiae Pol II engaged with a downstream nucleosome core particle at an overall resolution of 4.4 Å. Pol II and the nucleosome are observed in a defined relative orientation that is not predicted. Pol II contacts both sides of the nucleosome dyad using its clamp head and lobe domains. Structural comparisons reveal that the elongation factors TFIIS, DSIF, NELF, SPT6, and PAF1 complex can be accommodated on the Pol II surface in the presence of the oriented nucleosome. Our results provide a starting point for analysing the mechanisms of chromatin transcription.


Assuntos
Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , Animais , Microscopia Crioeletrônica , Estrutura Molecular , Nucleossomos/química , Conformação Proteica , RNA Polimerase II/química , Saccharomyces cerevisiae , Xenopus laevis
16.
Science ; 362(6414): 595-598, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30287617

RESUMO

Genomic DNA forms chromatin, in which the nucleosome is the repeating unit. The mechanism by which RNA polymerase II (RNAPII) transcribes the nucleosomal DNA remains unclear. Here we report the cryo-electron microscopy structures of RNAPII-nucleosome complexes in which RNAPII pauses at the superhelical locations SHL(-6), SHL(-5), SHL(-2), and SHL(-1) of the nucleosome. RNAPII pauses at the major histone-DNA contact sites, and the nucleosome interactions with the RNAPII subunits stabilize the pause. These structures reveal snapshots of nucleosomal transcription, in which RNAPII gradually tears DNA from the histone surface while preserving the histone octamer. The nucleosomes in the SHL(-1) complexes are bound to a "foreign" DNA segment, which might explain the histone transfer mechanism. These results provide the foundations for understanding chromatin transcription and epigenetic regulation.


Assuntos
Epigênese Genética , Nucleossomos/química , Nucleossomos/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Transcrição Gênica , Cromatina/genética , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Nucleossomos/ultraestrutura , RNA Polimerase II/ultraestrutura
17.
Nature ; 560(7720): 607-612, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30135578

RESUMO

Gene regulation involves activation of RNA polymerase II (Pol II) that is paused and bound by the protein complexes DRB sensitivity-inducing factor (DSIF) and negative elongation factor (NELF). Here we show that formation of an activated Pol II elongation complex in vitro requires the kinase function of the positive transcription elongation factor b (P-TEFb) and the elongation factors PAF1 complex (PAF) and SPT6. The cryo-EM structure of an activated elongation complex of Sus scrofa Pol II and Homo sapiens DSIF, PAF and SPT6 was determined at 3.1 Å resolution and compared to the structure of the paused elongation complex formed by Pol II, DSIF and NELF. PAF displaces NELF from the Pol II funnel for pause release. P-TEFb phosphorylates the Pol II linker to the C-terminal domain. SPT6 binds to the phosphorylated C-terminal-domain linker and opens the RNA clamp formed by DSIF. These results provide the molecular basis for Pol II pause release and elongation activation.


Assuntos
Microscopia Crioeletrônica , Proteínas Nucleares/ultraestrutura , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , Fatores de Transcrição/ultraestrutura , Fatores de Elongação da Transcrição/ultraestrutura , Animais , DNA/química , DNA/ultraestrutura , Humanos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/ultraestrutura , Fator B de Elongação Transcricional Positiva/metabolismo , RNA/química , RNA/ultraestrutura , Sus scrofa , Elongação da Transcrição Genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo
18.
Nature ; 560(7720): 601-606, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30135580

RESUMO

Metazoan gene regulation often involves the pausing of RNA polymerase II (Pol II) in the promoter-proximal region. Paused Pol II is stabilized by the protein complexes DRB sensitivity-inducing factor (DSIF) and negative elongation factor (NELF). Here we report the cryo-electron microscopy structure of a paused transcription elongation complex containing Sus scrofa Pol II and Homo sapiens DSIF and NELF at 3.2 Å resolution. The structure reveals a tilted DNA-RNA hybrid that impairs binding of the nucleoside triphosphate substrate. NELF binds the polymerase funnel, bridges two mobile polymerase modules, and contacts the trigger loop, thereby restraining Pol II mobility that is required for pause release. NELF prevents binding of the anti-pausing transcription elongation factor IIS (TFIIS). Additionally, NELF possesses two flexible 'tentacles' that can contact DSIF and exiting RNA. These results define the paused state of Pol II and provide the molecular basis for understanding the function of NELF during promoter-proximal gene regulation.


Assuntos
Microscopia Crioeletrônica , Proteínas Nucleares/ultraestrutura , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , Elongação da Transcrição Genética , Fatores de Transcrição/ultraestrutura , Fatores de Elongação da Transcrição/ultraestrutura , Animais , DNA/genética , DNA/metabolismo , HIV-1/genética , Humanos , Modelos Moleculares , Movimento , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Conformação Proteica , Provírus/genética , RNA/genética , RNA/metabolismo , Sus scrofa , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo
19.
Transcription ; 9(2): 102-107, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28795863

RESUMO

To prevent tumorigenesis, p53 stimulates transcription by facilitating the recruitment of the transcription machinery on target gene promoters. Cryo-Electron Microscopy studies on p53-bound RNA Polymerase II (Pol II) reveal that p53 structurally regulates Pol II to affect its DNA binding and elongation, providing new insights into p53-mediated transcriptional regulation.


Assuntos
RNA Polimerase II/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , Mapas de Interação de Proteínas , RNA Polimerase II/química , RNA Polimerase II/ultraestrutura , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/ultraestrutura
20.
Nature ; 551(7682): 653-657, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29168508

RESUMO

Eukaryotic transcription-coupled repair (TCR) is an important and well-conserved sub-pathway of nucleotide excision repair that preferentially removes DNA lesions from the template strand that block translocation of RNA polymerase II (Pol II). Cockayne syndrome group B (CSB, also known as ERCC6) protein in humans (or its yeast orthologues, Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe) is among the first proteins to be recruited to the lesion-arrested Pol II during the initiation of eukaryotic TCR. Mutations in CSB are associated with the autosomal-recessive neurological disorder Cockayne syndrome, which is characterized by progeriod features, growth failure and photosensitivity. The molecular mechanism of eukaryotic TCR initiation remains unclear, with several long-standing unanswered questions. How cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II, the role of CSB in TCR initiation, and how CSB interacts with the arrested Pol II complex are all unknown. The lack of structures of CSB or the Pol II-CSB complex has hindered our ability to address these questions. Here we report the structure of the S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy. The structure reveals that Rad26 binds to the DNA upstream of Pol II, where it markedly alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes the forward movement of Pol II, and elucidate key roles for Rad26 in both TCR and transcription elongation.


Assuntos
Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Microscopia Crioeletrônica , Reparo do DNA , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Transcrição Gênica , Adenosina Trifosfatases/química , DNA/química , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Domínios Proteicos , RNA Polimerase II/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Elongação da Transcrição Genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA