Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 195(3): 1092-9, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26101323

RESUMO

Microbial nucleic acids constitute an important group of pathogen-associated molecular patterns (PAMPs) that efficiently trigger innate immune activation. In mice, TLR13 has recently been identified to sense a highly conserved region within bacterial 23S rRNA. However, TLR13 is not expressed in humans, and the identity of its human homolog remains elusive. Moreover, the contribution of bacterial RNA to the induction of innate immune responses against entire bacteria is still insufficiently defined. In the current study, we show that human monocytes respond to bacterial RNA with secretion of IL-6, TNF, and IFN-ß, which is critically dependent on lysosomal maturation. Using small interfering RNA and overexpression, we unambiguously identify TLR8 as receptor for bacterial RNA in primary human monocyte-derived macrophages. We further demonstrate that the sequence motif sensed by TLR8 is clearly distinct from that recognized by TLR13. Moreover, TLR8-dependent detection of bacterial RNA was critical for triggering monocyte activation in response to infection with Streptococcus pyogenes. Bacterial RNA within streptococci was also a dominant stimulus for murine immune cells, highlighting the physiological relevance of RNA sensing in defense of infections.


Assuntos
RNA Bacteriano/imunologia , RNA Ribossômico 23S/imunologia , Streptococcus pyogenes/genética , Receptor 8 Toll-Like/imunologia , Receptores Toll-Like/imunologia , Animais , Linhagem Celular , Humanos , Interferon beta/metabolismo , Interleucina-6/metabolismo , Macrófagos/imunologia , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Interferência de RNA , RNA Bacteriano/genética , RNA Ribossômico 23S/genética , RNA Interferente Pequeno , Streptococcus pyogenes/imunologia , Receptor 8 Toll-Like/biossíntese , Receptor 8 Toll-Like/genética , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Infect Immun ; 82(12): 5013-22, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25225249

RESUMO

Murine Toll-like receptor 13 (TLR13), an endosomal receptor that is not present in humans, is activated by an unmethylated motif present in the large ribosomal subunit of bacterial RNA (23S rRNA). Little is known, however, of the impact of TLR13 on antibacterial host defenses. Here we examined the role of this receptor in the context of infection induced by the model pathogen group B streptococcus (GBS). To this end, we used bacterial strains masked from TLR13 recognition by virtue of constitutive expression of the ErmC methyltransferase, which results in dimethylation of the 23S rRNA motif at a critical adenine residue. We found that TLR13-mediated rRNA recognition was required for optimal induction of tumor necrosis factor alpha and nitrous oxide in dendritic cell and macrophage cultures stimulated with heat-killed bacteria or purified bacterial RNA. However, TLR13-dependent recognition was redundant when live bacteria were used as a stimulus. Moreover, masking bacterial rRNA from TLR13 recognition did not increase the ability of GBS to avoid host defenses and replicate in vivo. In contrast, increased susceptibility to infection was observed under conditions in which signaling by all endosomal TLRs was abolished, i.e., in mice with a loss-of-function mutation in the chaperone protein UNC93B1. Our data lend support to the conclusion that TLR13 participates in GBS recognition, although blockade of the function of this receptor can be compensated for by other endosomal TLRs. Lack of selective pressure by bacterial infections might explain the evolutionary loss of TLR13 in humans. However, further studies using different bacterial species are needed to prove this hypothesis.


Assuntos
Imunidade Inata , Streptococcus agalactiae/imunologia , Receptores Toll-Like/imunologia , Animais , Células Cultivadas , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Células Dendríticas , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 23S/imunologia , Análise de Sequência de DNA
3.
Science ; 337(6098): 1111-5, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22821982

RESUMO

Host protection from infection relies on the recognition of pathogens by innate pattern-recognition receptors such as Toll-like receptors (TLRs). Here, we show that the orphan receptor TLR13 in mice recognizes a conserved 23S ribosomal RNA (rRNA) sequence that is the binding site of macrolide, lincosamide, and streptogramin group (MLS) antibiotics (including erythromycin) in bacteria. Notably, 23S rRNA from clinical isolates of erythromycin-resistant Staphylococcus aureus and synthetic oligoribonucleotides carrying methylated adenosine or a guanosine mimicking a MLS resistance-causing modification failed to stimulate TLR13. Thus, our results reveal both a natural TLR13 ligand and specific mechanisms of antibiotic resistance as potent bacterial immune evasion strategy, avoiding recognition via TLR13.


Assuntos
Farmacorresistência Bacteriana Múltipla/imunologia , Eritromicina/farmacologia , RNA Ribossômico 23S/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Receptores Toll-Like/imunologia , Adenosina/metabolismo , Animais , Guanosina/metabolismo , Lincosamidas/farmacologia , Macrolídeos/farmacologia , Metilação , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Estreptograminas/farmacologia
4.
EMBO J ; 13(14): 3389-94, 1994 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-8045265

RESUMO

An anti-RNA autoantibody (anti-28S) was employed to identify structural and functional elements characteristic of a domain termed the 'GTPase center' in eukaryotic 28S ribosomal RNA. This antibody, an inhibitor of ribosome-associated GTP hydrolysis, has a unique property: it binds to the RNA domain of eukaryotes but not to that of prokaryotes. The antibody binding occurred in the presence of Mg2+ and protected from chemical modification three conserved bases (U1958, G1960 and A1990) and the base G1959 which is replaced by A in prokaryotic 23S rRNA (A1067 in Escherichia coli). In vitro substitution of G1959 to A drastically weakened the antibody binding, and the reciprocal substitution, A1067-->G of the E.coli domain conferred the binding ability. This suggests that the G base determines the specificity of antibody binding. The G1959 was also protected by the association of ribosomes with elongation factor EF-2. The result, together with protection of E.coli base A1067 by EFG [D.Moazed, I.M. Robertson and H.F. Noller (1988) Nature, 334, 362-364], suggests that the position of G1959 in eukaryotes and A1067 in prokaryotes constitutes at least part of the factor binding site irrespective of the base replacement during evolution.


Assuntos
Autoanticorpos , GTP Fosfo-Hidrolases/imunologia , Lúpus Eritematoso Sistêmico/imunologia , RNA Catalítico/imunologia , RNA Ribossômico 28S/imunologia , Animais , Reações Antígeno-Anticorpo , Sequência de Bases , Escherichia coli/imunologia , GTP Fosfo-Hidrolases/metabolismo , Guanina/imunologia , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Catalítico/metabolismo , RNA Ribossômico 23S/imunologia , RNA Ribossômico 28S/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA