Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Nucleic Acids Res ; 52(3): 1374-1386, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38050960

RESUMO

tRNA superwobbling, used by certain bacteria and organelles, is an intriguing decoding concept in which a single tRNA isoacceptor is used to decode all synonymous codons of a four-fold degenerate codon box. While Escherichia coli relies on three tRNAGly isoacceptors to decode the four glycine codons (GGN), Mycoplasma mycoides requires only a single tRNAGly. Both organisms express tRNAGly with the anticodon UCC, which are remarkably similar in sequence but different in their decoding ability. By systematically introducing mutations and altering the number and type of tRNA modifications using chemically synthesized tRNAs, we elucidated the contribution of individual nucleotides and chemical groups to decoding by the E. coli and M. mycoides tRNAGly. The tRNA sequence was identified as the key factor for superwobbling, revealing the T-arm sequence as a novel pivotal element. In addition, the presence of tRNA modifications, although not essential for providing superwobbling, was shown to delicately fine-tune and balance the decoding of synonymous codons. This emphasizes that the tRNA sequence and its modifications together form an intricate system of high complexity that is indispensable for accurate and efficient decoding.


Assuntos
Escherichia coli , Mycoplasma mycoides , RNA Bacteriano , RNA de Transferência de Glicina , Anticódon/genética , Sequência de Bases , Códon/genética , Escherichia coli/genética , Glicina/genética , RNA de Transferência/genética , RNA de Transferência de Glicina/genética , Mycoplasma mycoides/genética , Mycoplasma mycoides/metabolismo , RNA Bacteriano/genética
2.
J Nutr Biochem ; 99: 108866, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563666

RESUMO

Palmitic acid (PA) induces apoptosis in the human trophoblast cell line HTR8/SVneo. However, the molecular mechanism underlying this effect remains unclear. Although small noncoding RNAs are involved in trophoblast growth and invasion during early pregnancy, the functional roles of tRNA-derived species are currently unknown. Therefore, the purpose of this study was to examine the involvement of tRNA-derived species in PA-induced apoptosis in human trophoblasts. In this study, we investigate the expression and function of tRNA-derived stress-induced RNAs (tiRNAs) in HTR8/SVneo. We determined the expression of tiRNAs in HTR8/SVneo cells in response to PA. Then, we transfected inhibitor of target tiRNA in HTR8/SVneo with or without PA to examine the tRNA-derived species-regulated intracellular signal transduction by detecting calcium homeostasis, mitochondrial membrane potential, and signaling proteins. We found that the expression of tRNAGly-derived tiRNAs decreased in PA-treated human trophoblasts. Moreover, inhibition of tiRNAGlyCCC/GCC enhanced the PA-induced apoptosis along with the induction of DNA fragmentation and mitochondrial depolarization. Inhibition of tiRNAGlyCCC/GCC enhanced the expression of endoplasmic reticulum stress-related proteins and increased Ca2+ levels in the cytoplasm and mitochondria. Moreover, the levels of cytochrome c released from the mitochondria were synergistically affected by tiRNAGlyCCC/GCC inhibitor and PA. Furthermore, artificial regulation of ANG inhibited the expression of tiRNAGlyCCC/GCC and similar effects were observed upon the inhibition of tiRNAGlyCCC/GCC in human trophoblasts. These results suggest that tiRNAGlyCCC/GCC might be the molecule via which PA induces its effects in human trophoblasts.


Assuntos
Apoptose/efeitos dos fármacos , Ácido Palmítico/efeitos adversos , RNA de Transferência de Glicina/metabolismo , Trofoblastos/citologia , Cálcio/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Humanos , RNA de Transferência de Glicina/genética , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo
3.
Nucleic Acids Res ; 49(22): 13045-13061, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34871455

RESUMO

Dnmt2, a member of the DNA methyltransferase superfamily, catalyzes the formation of 5-methylcytosine at position 38 in the anticodon loop of tRNAs. Dnmt2 regulates many cellular biological processes, especially the production of tRNA-derived fragments and intergenerational transmission of paternal metabolic disorders to offspring. Moreover, Dnmt2 is closely related to human cancers. The tRNA substrates of mammalian Dnmt2s are mainly detected using bisulfite sequencing; however, we lack supporting biochemical data concerning their substrate specificity or recognition mechanism. Here, we deciphered the tRNA substrates of human DNMT2 (hDNMT2) as tRNAAsp(GUC), tRNAGly(GCC) and tRNAVal(AAC). Intriguingly, for tRNAAsp(GUC) and tRNAGly(GCC), G34 is the discriminator element; whereas for tRNAVal(AAC), the inosine modification at position 34 (I34), which is formed by the ADAT2/3 complex, is the prerequisite for hDNMT2 recognition. We showed that the C32U33(G/I)34N35 (C/U)36A37C38 motif in the anticodon loop, U11:A24 in the D stem, and the correct size of the variable loop are required for Dnmt2 recognition of substrate tRNAs. Furthermore, mammalian Dnmt2s possess a conserved tRNA recognition mechanism.


Assuntos
5-Metilcitosina/metabolismo , Anticódon/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , RNA de Transferência/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Anticódon/genética , Sequência de Bases , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/genética , Células HEK293 , Células HeLa , Humanos , Inosina/metabolismo , Camundongos , Modelos Moleculares , Células NIH 3T3 , Conformação de Ácido Nucleico , Ligação Proteica , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência de Ácido Aspártico/química , RNA de Transferência de Ácido Aspártico/genética , RNA de Transferência de Ácido Aspártico/metabolismo , RNA de Transferência de Glicina/química , RNA de Transferência de Glicina/genética , RNA de Transferência de Glicina/metabolismo , RNA de Transferência de Valina/química , RNA de Transferência de Valina/genética , RNA de Transferência de Valina/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Especificidade por Substrato
4.
Science ; 373(6559): 1161-1166, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516840

RESUMO

Heterozygous mutations in six transfer RNA (tRNA) synthetase genes cause Charcot-Marie-Tooth (CMT) peripheral neuropathy. CMT mutant tRNA synthetases inhibit protein synthesis by an unknown mechanism. We found that CMT mutant glycyl-tRNA synthetases bound tRNAGly but failed to release it, resulting in tRNAGly sequestration. This sequestration potentially depleted the cellular tRNAGly pool, leading to insufficient glycyl-tRNAGly supply to the ribosome. Accordingly, we found ribosome stalling at glycine codons and activation of the integrated stress response (ISR) in affected motor neurons. Moreover, transgenic overexpression of tRNAGly rescued protein synthesis, peripheral neuropathy, and ISR activation in Drosophila and mouse CMT disease type 2D (CMT2D) models. Conversely, inactivation of the ribosome rescue factor GTPBP2 exacerbated peripheral neuropathy. Our findings suggest a molecular mechanism for CMT2D, and elevating tRNAGly levels may thus have therapeutic potential.


Assuntos
Doença de Charcot-Marie-Tooth/metabolismo , Glicina-tRNA Ligase/metabolismo , RNA de Transferência de Glicina/metabolismo , Animais , Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , Drosophila melanogaster , Feminino , Glicina-tRNA Ligase/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/fisiologia , RNA de Transferência de Glicina/genética
5.
Nucleic Acids Res ; 49(17): 10106-10119, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34390350

RESUMO

AaRSs (aminoacyl-tRNA synthetases) group into two ten-member classes throughout evolution, with unique active site architectures defining each class. Most are monomers or homodimers but, for no apparent reason, many bacterial GlyRSs are heterotetramers consisting of two catalytic α-subunits and two tRNA-binding ß-subunits. The heterotetrameric GlyRS from Escherichia coli (EcGlyRS) was historically tested whether its α- and ß-polypeptides, which are encoded by a single mRNA with a gap of three in-frame codons, are replaceable by a single chain. Here, an unprecedented X-shaped structure of EcGlyRS shows wide separation of the abutting chain termini seen in the coding sequences, suggesting strong pressure to avoid a single polypeptide format. The structure of the five-domain ß-subunit is unique across all aaRSs in current databases, and structural analyses suggest these domains play different functions on α-subunit binding, ATP coordination and tRNA recognition. Moreover, the X-shaped architecture of EcGlyRS largely fits with a model for how two classes of tRNA synthetases arose, according to whether enzymes from opposite classes can simultaneously co-dock onto separate faces of the same tRNA acceptor stem. While heterotetrameric GlyRS remains the last structurally uncharacterized member of aaRSs, our study contributes to a better understanding of this ancient and essential enzyme family.


Assuntos
Domínio Catalítico/genética , Escherichia coli/genética , Glicina-tRNA Ligase/genética , RNA de Transferência de Glicina/química , Trifosfato de Adenosina/metabolismo , Cristalografia por Raios X , Glicina/química , Modelos Moleculares , RNA de Transferência de Glicina/genética
6.
Nucleic Acids Res ; 49(17): 10007-10017, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34403468

RESUMO

Toxic gain-of-function mutations in aminoacyl-tRNA synthetases cause a degeneration of peripheral motor and sensory axons, known as Charcot-Marie-Tooth (CMT) disease. While these mutations do not disrupt overall aminoacylation activity, they interfere with translation via an unknown mechanism. Here, we dissect the mechanism of function of CMT mutant glycyl-tRNA synthetase (CMT-GARS), using high-resolution ribosome profiling and reporter assays. We find that CMT-GARS mutants deplete the pool of glycyl-tRNAGly available for translation and inhibit the first stage of elongation, the accommodation of glycyl-tRNA into the ribosomal A-site, which causes ribosomes to pause at glycine codons. Moreover, ribosome pausing activates a secondary repression mechanism at the level of translation initiation, by inducing the phosphorylation of the alpha subunit of eIF2 and the integrated stress response. Thus, CMT-GARS mutant triggers translational repression via two interconnected mechanisms, affecting both elongation and initiation of translation.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Glicina-tRNA Ligase/genética , Elongação Traducional da Cadeia Peptídica/genética , Iniciação Traducional da Cadeia Peptídica/genética , Ribossomos/metabolismo , Linhagem Celular , Fator de Iniciação 2 em Eucariotos/metabolismo , Mutação com Ganho de Função/genética , Expressão Gênica/genética , Glicina/genética , Células HEK293 , Humanos , Fosforilação , Biossíntese de Proteínas/genética , RNA de Transferência de Glicina/genética
7.
J Exp Clin Cancer Res ; 40(1): 222, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225773

RESUMO

BACKGROUND: tRNA-derived small noncoding RNAs (sncRNAs) are mainly categorized into tRNA halves (tiRNAs) and fragments (tRFs). Biological functions of tiRNAs in human solid tumor are attracting more and more attention, but researches concerning the mechanisms in tiRNAs-mediated tumorigenesis are rarely. The direct regulatory relationship between tiRNAs and splicing-related proteins remain elusive. METHODS: Papillary thyroid carcinoma (PTC) associated tRNA fragments were screened by tRNA fragments deep sequencing and validated by qRT-PCR and Northern Blot in PTC tissues. The biological function of tRNA fragments were assessed by cell counting kit, transwells and subcutaneous transplantation tumor of nude mice. For mechanistic study, tRNA fragments pull-down, RNA immunoprecipitation, Western Blot, Immunofluorescence, Immunohistochemical staining were performed. RESULTS: Herein, we have identified a 33 nt tiRNA-Gly significantly increases in papillary thyroid cancer (PTC) based on tRFs & tiRNAs sequencing. The ectopic expression of tiRNA-Gly promotes cell proliferation and migration, whereas down-regulation of tiRNA-Gly exhibits reverse effects. Mechanistic investigations reveal tiRNA-Gly directly bind the UHM domain of a splicing-related RNA-binding protein RBM17. The interaction with tiRNA-Gly could translocate RBM17 from cytoplasm into nucleus. In addition, tiRNA-Gly increases RBM17 protein expression via inhibiting its degradation in a ubiquitin/proteasome-dependent way. Moreover, RBM17 level in tiRNA-Gly high-expressing human PTC tissues is upregulated. In vivo mouse model shows that suppression of tiRNA-Gly decreases RBM17 expression. Importantly, tiRNA-Gly can induce exon 16 splicing of MAP4K4 mRNA leading to phosphorylation of downstream signaling pathway, which is RBM17 dependent. CONCLUSIONS: Our study firstly illustrates tiRNA-Gly can directly bind to RBM17 and display oncogenic effect via RBM17-mediated alternative splicing. This fully novel model broadens our understanding of molecular mechanism in which tRNA fragment in tumor cells directly bind RNA binding protein and play a role in alternative splicing.


Assuntos
Fatores de Processamento de RNA/metabolismo , RNA de Transferência de Glicina/metabolismo , RNA de Transferência/metabolismo , Câncer Papilífero da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Processamento Alternativo , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fatores de Processamento de RNA/genética , RNA de Transferência/genética , RNA de Transferência de Glicina/genética , Transdução de Sinais , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
8.
Leuk Res ; 87: 106234, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31669784

RESUMO

Chronic lymphocytic leukemia (CLL) is one of the most common types of leukemia in adults. Several studies have identified various prognostic biomarkers in CLL. In this study, we investigated the potential value of an internal fragment of the tRNAs bearing the Glycine anticodon CCC (i-tRF-GlyCCC), which is a small non-coding RNA, as a prognostic and screening biomarker in CLL. For this purpose, blood samples were collected from 90 CLL patients and 43 non-leukemic blood donors. Peripheral blood mononuclear cells (PBMCs) were isolated, total RNA was extracted and in-vitro polyadenylated, and first-strand cDNA was synthesized using an oligo-dT-adaptor primer. A real-time quantitative PCR assay was developed and applied for the quantification of i-tRF-GlyCCC in our samples. The biostatistical analysis revealed that i-tRF-GlyCCC levels are significantly lower in PBMCs of CLL patients, compared to PBMCs of non-leukemic controls, and that i-tRF-GlyCCC could be considered as a screening biomarker. Kaplan-Meier overall survival (OS) analysis revealed reduced OS for CLL patients with positive i-tRF-GlyCCC expression (P = 0.001). Multivariate Cox regression confirmed its independent unfavorable prognostic power with regard to OS. In conclusion, i-tRF-GlyCCC may constitute a promising molecular biomarker in CLL, for screening and prognostic purposes.


Assuntos
Biomarcadores Tumorais/genética , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/genética , RNA de Transferência de Glicina/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases/fisiologia , Biomarcadores Tumorais/química , Estudos de Casos e Controles , Células Cultivadas , Estudos de Coortes , Feminino , Seguimentos , Humanos , Invenções , Células K562 , Leucemia Linfocítica Crônica de Células B/mortalidade , Masculino , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Prognóstico , RNA de Transferência de Glicina/química , Reação em Cadeia da Polimerase em Tempo Real/tendências , Análise de Sequência de RNA
9.
Int J Mol Sci ; 20(16)2019 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-31405256

RESUMO

Decoding of the 61 sense codons of the genetic code requires a variable number of tRNAs that establish codon-anticodon interactions. Thanks to the wobble base pairing at the third codon position, less than 61 different tRNA isoacceptors are needed to decode the whole set of codons. On the tRNA, a subtle distribution of nucleoside modifications shapes the anticodon loop structure and participates to accurate decoding and reading frame maintenance. Interestingly, although the 61 anticodons should exist in tRNAs, a strict absence of some tRNAs decoders is found in several codon families. For instance, in Eukaryotes, G34-containing tRNAs translating 3-, 4- and 6-codon boxes are absent. This includes tRNA specific for Ala, Arg, Ile, Leu, Pro, Ser, Thr, and Val. tRNAGly is the only exception for which in the three kingdoms, a G34-containing tRNA exists to decode C3 and U3-ending codons. To understand why G34-tRNAGly exists, we analysed at the genome wide level the codon distribution in codon +1 relative to the four GGN Gly codons. When considering codon GGU, a bias was found towards an unusual high usage of codons starting with a G whatever the amino acid at +1 codon. It is expected that GGU codons are decoded by G34-containing tRNAGly, decoding also GGC codons. Translation studies revealed that the presence of a G at the first position of the downstream codon reduces the +1 frameshift by stabilizing the G34•U3 wobble interaction. This result partially explains why G34-containing tRNAGly exists in Eukaryotes whereas all the other G34-containing tRNAs for multiple codon boxes are absent.


Assuntos
Códon/genética , Biossíntese de Proteínas , RNA de Transferência de Glicina/genética , Animais , Sequência de Bases , Mudança da Fase de Leitura do Gene Ribossômico , Código Genético , Glicina/genética , Humanos , Coelhos
10.
Nat Commun ; 9(1): 4865, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451861

RESUMO

The precise interplay between the mRNA codon and the tRNA anticodon is crucial for ensuring efficient and accurate translation by the ribosome. The insertion of RNA nucleobase derivatives in the mRNA allowed us to modulate the stability of the codon-anticodon interaction in the decoding site of bacterial and eukaryotic ribosomes, allowing an in-depth analysis of codon recognition. We found the hydrogen bond between the N1 of purines and the N3 of pyrimidines to be sufficient for decoding of the first two codon nucleotides, whereas adequate stacking between the RNA bases is critical at the wobble position. Inosine, found in eukaryotic mRNAs, is an important example of destabilization of the codon-anticodon interaction. Whereas single inosines are efficiently translated, multiple inosines, e.g., in the serotonin receptor 5-HT2C mRNA, inhibit translation. Thus, our results indicate that despite the robustness of the decoding process, its tolerance toward the weakening of codon-anticodon interactions is limited.


Assuntos
2-Aminopurina/análogos & derivados , Anticódon/química , Códon/química , Inosina/metabolismo , Biossíntese de Proteínas , Receptor 5-HT2C de Serotonina/genética , 2-Aminopurina/química , 2-Aminopurina/metabolismo , Anticódon/metabolismo , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , Sequência de Bases , Códon/metabolismo , Citidina/análogos & derivados , Citidina/genética , Citidina/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Células HEK293 , Humanos , Ligação de Hidrogênio , Inosina/genética , Piridonas/química , Piridonas/metabolismo , RNA de Transferência de Glicina/genética , RNA de Transferência de Glicina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
Nucleic Acids Res ; 45(13): 8079-8090, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28531275

RESUMO

A T-box regulator or riboswitch actively monitors the levels of charged/uncharged tRNA and participates in amino acid homeostasis by regulating genes involved in their utilization or biosynthesis. It has an aptamer domain for cognate tRNA recognition and an expression platform to sense the charge state and modulate gene expression. These two conserved domains are connected by a variable linker that harbors additional secondary structural elements, such as Stem III. The structural basis for specific tRNA binding is known, but the structural basis for charge sensing and the role of other elements remains elusive. To gain new structural insights on the T-box mechanism, a molecular envelope was calculated from small angle X-ray scattering data for the Bacillus subtilis glyQS T-box riboswitch in complex with an uncharged tRNAGly. A structural model of an anti-terminated glyQS T-box in complex with its cognate tRNAGly was derived based on the molecular envelope. It shows the location and relative orientation of various secondary structural elements. The model was validated by comparing the envelopes of the wild-type complex and two variants. The structural model suggests that in addition to a possible regulatory role, Stem III could aid in preferential stabilization of the T-box anti-terminated state allowing read-through of regulated genes.


Assuntos
RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA de Transferência de Glicina/química , RNA de Transferência de Glicina/metabolismo , Riboswitch/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Sequência de Bases , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Bacteriano/genética , RNA de Transferência de Glicina/genética , Espalhamento a Baixo Ângulo , Difração de Raios X
12.
Sci Rep ; 6: 20850, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26865164

RESUMO

Ischemic injuries will lead to necrotic tissue damage, and post-ischemia angiogenesis plays critical roles in blood flow restoration and tissue recovery. Recently, several types of small RNAs have been reported to be involved in this process. In this study, we first generated a rat brain ischemic model to investigate the involvement of new types of small RNAs in ischemia. We utilized deep sequencing and bioinformatics analyses to demonstrate that the level of small RNA fragments derived from tRNAs strikingly increased in the ischemic rat brain. Among these sequences, tRNA(Val)- and tRNA(Gly)-derived small RNAs account for the most abundant segments. The up-regulation of tRNA(Val)- and tRNA(Gly)-derived fragments was verified through northern blot and quantitative PCR analyses. The levels of these two fragments also increased in a mouse hindlimb ischemia model and cellular hypoxia model. Importantly, up-regulation of the tRNA(Val)- and tRNA(Gly)-derived fragments in endothelial cells inhibited cell proliferation, migration and tube formation. Furthermore, we showed that these small RNAs are generated by angiogenin cleavage. Our results indicate that tRNA-derived fragments are involved in tissue ischemia, and we demonstrate for the first time that tRNA(Val)- and tRNA(Gly)-derived fragments inhibit angiogenesis by modulating the function of endothelial cells.


Assuntos
Isquemia Encefálica/genética , Neovascularização Fisiológica/genética , Pequeno RNA não Traduzido/genética , RNA de Transferência de Glicina/genética , RNA de Transferência de Valina/genética , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Hipóxia Celular , Movimento Celular , Proliferação de Células , Biologia Computacional , Regulação da Expressão Gênica , Membro Posterior/irrigação sanguínea , Membro Posterior/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Proteólise , Clivagem do RNA , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência de Glicina/metabolismo , RNA de Transferência de Valina/metabolismo , Ratos , Ratos Sprague-Dawley , Ribonuclease Pancreático/genética , Ribonuclease Pancreático/metabolismo , Transdução de Sinais
13.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(5): 3086-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-25629498

RESUMO

Recently, a growing number of reports had shown the association between mitochondrial DNA (mtDNA) sequence variants and aplastic anemia (AA). Owing to its high mutation rate, mtDNA variant had become biomarker for clinical and molecular diagnosis for AA. However, the relationship between mtDNA variant and AA was largely unknown. In this study, we reanalyzed the possible association between a "pathogenic" mutation A10055G in mt-tRNA(Gly) gene and AA, through the application of bioinformatics tool, we found that this mutation did not alter the secondary structure of tRNA(Gly), the pathogenicity scoring system indicated that the score of this mutation was only two points and belonged to a "neutral polymorphism", suggested that the role of A10055G mutation in clinical expression in AA needed to be further experimentally addressed.


Assuntos
Alelos , Anemia Aplástica/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , RNA de Transferência de Glicina/genética , Animais , Biologia Computacional , Bases de Dados de Ácidos Nucleicos , Evolução Molecular , Genes Mitocondriais , Humanos , Mutação , Conformação de Ácido Nucleico , Filogenia , RNA de Transferência de Glicina/química
14.
J Biol Chem ; 290(38): 23336-47, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26229106

RESUMO

Many amino acid-related genes in Gram-positive bacteria are regulated by the T box riboswitch. The leader RNA of genes in the T box family controls the expression of downstream genes by monitoring the aminoacylation status of the cognate tRNA. Previous studies identified a three-nucleotide codon, termed the "Specifier Sequence," in the riboswitch that corresponds to the amino acid identity of the downstream genes. Pairing of the Specifier Sequence with the anticodon of the cognate tRNA is the primary determinant of specific tRNA recognition. This interaction mimics codon-anticodon pairing in translation but occurs in the absence of the ribosome. The goal of the current study was to determine the effect of a full range of mismatches for comparison with codon recognition in translation. Mutations were individually introduced into the Specifier Sequence of the glyQS leader RNA and tRNA(Gly) anticodon to test the effect of all possible pairing combinations on tRNA binding affinity and antitermination efficiency. The functional role of the conserved purine 3' of the Specifier Sequence was also verifiedin this study. We found that substitutions at the Specifier Sequence resulted in reduced binding, the magnitude of which correlates well with the predicted stability of the RNA-RNA pairing. However, the tolerance for specific mismatches in antitermination was generally different from that during decoding, which reveals a unique tRNA recognition pattern in the T box antitermination system.


Assuntos
Anticódon/química , Bacillus subtilis/química , Códon/química , RNA Bacteriano/química , RNA de Transferência de Glicina/química , Riboswitch/fisiologia , Anticódon/genética , Anticódon/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/biossíntese , Códon/genética , Códon/metabolismo , Biossíntese de Proteínas/fisiologia , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência de Glicina/genética , RNA de Transferência de Glicina/metabolismo
15.
Mol Cell Biochem ; 408(1-2): 171-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26134044

RESUMO

Mitochondrial diabetes originates mainly from mutations located in maternally transmitted, mitochondrial tRNA-coding genes. In a genetic screening program of type 2 diabetes conducted with a Chinese Han population, we found one family with suggestive maternally transmitted diabetes. The proband's mitochondrial genome was analyzed using DNA sequencing. Total 42 known nucleoside changes and 1 novel variant were identified, and the entire mitochondrial DNA sequence was assigned to haplogroup M11b. Phylogenetic analysis showed that a homoplasmic mutation, 10003T>C transition, occurred at the highly conserved site in the gene encoding tRNA(Gly). Using a transmitochondrial cybrid cell line harboring this mutation, we observed that the steady-state level of tRNA(Gly) significantly affected and the amount of tRNA(Gly) decreased by 97%, production of reactive oxygen species was enhanced, and mitochondrial membrane potential, mtDNA copy number and cellular oxygen consumption rate were remarkably decreased compared with wild-type cybrid cells. The homoplasmic 10003T>C mutation in the mitochondrial tRNA(Gly) gene suggested to be as a pathogenesis-related mutation which might contribute to the maternal inherited diabetes in the Han Chinese family.


Assuntos
Povo Asiático/genética , Diabetes Mellitus Tipo 2/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Mutação , RNA de Transferência de Glicina/genética , Idoso , Povo Asiático/etnologia , China/etnologia , Diabetes Mellitus Tipo 2/etnologia , Feminino , Predisposição Genética para Doença , Genoma Mitocondrial , Haplótipos , Humanos , Masculino , Potencial da Membrana Mitocondrial , Pessoa de Meia-Idade , Consumo de Oxigênio , Linhagem , Filogenia , Espécies Reativas de Oxigênio/metabolismo
16.
Mitochondrion ; 21: 49-57, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25615420

RESUMO

In this report, we investigate molecular pathogenic mechanism of a diabetes-associated homoplasmic mitochondrial tRNA mutation in a Han Chinese family with maternally transmitted diabetes mellitus. Of 10 adult matrilineal relatives, 5 individuals suffered from diabetes (4 subjects with only diabetes, one subject with both diabetes and hearing impairment), while other five matrilineal relatives (one with hearing loss) had glucose intolerance. The average age at onset of diabetes in matrilineal relatives was 50 years. Molecular analysis of their mitochondrial genomes identified the novel homoplasmic T10003C mutation in the tRNA(Gly) gene belonging to haplogroup M11b. The T10003C mutation is expected to form a base-pairing (13C-22G) at the highly conserved D-stem of tRNA(Gly), thereby affecting secondary structure and function of this tRNA. A tRNA Northern analysis revealed that the T10003C mutation caused ~70% reduction in the steady-state level of tRNA(Gly). An in vivo translation analysis showed ~33% reduction in the rate of mitochondrial translation in mutant cells. Oxygen consumption analysis showed the defects in overall respiratory capacity or the ATP-linked, proton leak, and maximal respiration in mutant cells. As a result, the cellular energy deficiency contributes to the development of diabetes in subjects carrying the T10003C mutation. These data provide the first direct evidence that the tRNA(Gly) mutation might be associated with diabetes. Thus, our findings may provide new insights into the understanding of pathophysiology of maternally inherited diabetes.


Assuntos
Diabetes Mellitus/genética , Genes Mitocondriais , Doenças Mitocondriais/genética , Mutação , RNA de Transferência de Glicina/genética , Trifosfato de Adenosina/metabolismo , Adulto , Idoso , Povo Asiático , Northern Blotting , Respiração Celular , Metabolismo Energético , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA de Transferência de Glicina/química , Adulto Jovem
17.
J Cell Physiol ; 229(9): 1121-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24676899

RESUMO

There is a critical need for techniques that directly monitor protein synthesis within cells isolated from normal and diseased tissue. Fibrotic disease, for which there is no drug treatment, is characterized by the overexpression of collagens. Here, we use a bioinformatics approach to identify a pair of glycine and proline isoacceptor tRNAs as being specific for the decoding of collagen mRNAs, leading to development of a FRET-based approach, dicodon monitoring of protein synthesis (DiCoMPS), that directly monitors the synthesis of collagen. DiCoMPS aimed at detecting collagen synthesis will be helpful in identifying novel anti-fibrotic compounds in cells derived from patients with fibrosis of any etiology, and, suitably adapted, should be widely applicable in monitoring the synthesis of other proteins in cells.


Assuntos
Colágeno/biossíntese , Fibroblastos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Microscopia Confocal , RNA de Transferência de Glicina/metabolismo , RNA de Transferência de Prolina/metabolismo , Animais , Carbocianinas/metabolismo , Células Cultivadas , Fibroblastos/patologia , Fibrose , Corantes Fluorescentes/metabolismo , Humanos , Cinética , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , RNA de Transferência de Glicina/genética , RNA de Transferência de Prolina/genética , Transfecção
18.
Am J Bot ; 99(11): 1857-65, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23108464

RESUMO

PREMISE OF THE STUDY: Molecular studies have shown that multiple origins of polyploid taxa are the rule rather than the exception. To understand the distribution and ecology of polyploid species and the evolutionary significance of polyploidy in general, it is important to delineate these independently derived lineages as accurately as possible. Although gene flow among polyploid lineages and backcrossing to their diploid parents often confound this process, such post origin gene flow is very infrequent in asexual polyploids. In this study, we estimate the number of independent origins of the apomictic allopolyploid fern Astrolepis integerrima, a morphologically heterogeneous species most common in the southwestern United States and Mexico, with outlying populations in the southeastern United States and the Caribbean. METHODS: Plastid DNA sequence and AFLP data were obtained from 33 A. integerrima individuals. Phylogenetic analysis of the sequence data and multidimensional clustering of the AFLP data were used to identify independently derived lineages. KEY RESULTS: Analysis of the two datasets identified 10 genetic groups within the 33 analyzed samples. These groups suggest a minimum of 10 origins of A. integerrima in the northern portion of its range, with both putative parents functioning as maternal donors, both supplying unreduced gametes, and both contributing a significant portion of their genetic diversity to the hybrids. CONCLUSIONS: Our results highlight the extreme cryptic genetic diversity and systematic complexity that can underlie a single polyploid taxon.


Assuntos
Genes de Plantas/genética , Poliploidia , Pteridaceae/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , DNA Intergênico/genética , DNA de Plantas/química , DNA de Plantas/genética , Evolução Molecular , Geografia , México , Dados de Sequência Molecular , Filogenia , Pteridaceae/classificação , RNA de Transferência de Arginina/genética , RNA de Transferência de Glicina/genética , Análise de Sequência de DNA , Estados Unidos
19.
Am J Bot ; 99(6): 1118-24, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22542903

RESUMO

PREMISE OF THE STUDY: Not all ferns grow in moist, shaded habitats; some lineages thrive in exposed, seasonally dry environments. Notholaenids are a clade of xeric-adapted ferns commonly characterized by the presence of a waxy exudate, called farina, on the undersides of their leaves. Although some other lineages of cheilanthoid ferns also have farinose sporophytes, previous studies suggested that notholaenids are unique in also producing farina on their gametophytes. For this reason, consistent farina expression across life cycle phases has been proposed as a potential synapomorphy for the genus Notholaena. Recent phylogenetic studies have shown two species with nonfarinose sporophytes to be nested within Notholaena, with a third nonfarinose species well supported as sister to all other notholaenids. This finding raises the question: are the gametophytes of these three species farinose like those of their close relatives, or are they glabrous, consistent with their sporophytes? METHODS: We sowed spores of a diversity of cheilanthoid ferns onto culture media to observe and document whether their gametophytes produced farina. To place these species within a phylogenetic context, we extracted genomic DNA, then amplified and sequenced three plastid loci. The aligned data were analyzed using maximum likelihood to generate a phylogenetic tree. KEY RESULTS: Here we show that notholaenids lacking sporophytic farina also lack farina in the gametophytic phase, and notholaenids with sporophytic farina always display gametophytic farina (with a single exception). Outgroup taxa never displayed gametophytic farina, regardless of whether they displayed farina on their sporophytes. CONCLUSIONS: Notholaenids are unique among ferns in consistently expressing farina across both phases of the life cycle.


Assuntos
Gleiquênias/genética , Genes de Plantas/genética , Células Germinativas Vegetais/metabolismo , Filogenia , DNA Intergênico/genética , DNA de Plantas/química , DNA de Plantas/genética , Gleiquênias/classificação , Gleiquênias/crescimento & desenvolvimento , Variação Genética , Células Germinativas Vegetais/crescimento & desenvolvimento , Dados de Sequência Molecular , Plastídeos/genética , ATPases Translocadoras de Prótons/genética , RNA de Transferência de Arginina/genética , RNA de Transferência de Glicina/genética , Ribulose-Bifosfato Carboxilase/genética , Análise de Sequência de DNA , Especificidade da Espécie
20.
J Biol Chem ; 287(28): 23427-33, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22605341

RESUMO

Mycoplasma genitalium is expected to metabolize RNA using unique pathways because its minimal genome encodes very few ribonucleases. In this work, we report that the only exoribonuclease identified in M. genitalium, RNase R, is able to remove tRNA 3'-trailers and generate mature 3'-ends. Several sequence and structural features of a tRNA precursor determine its precise processing at the 3'-end by RNase R in a purified system. The aminoacyl-acceptor stem plays a major role in stopping RNase R digestion at the mature 3'-end. Disruption of the stem causes partial or complete degradation of the pre-tRNA by RNase R, whereas extension of the stem results in the formation of a product terminating downstream at the new mature 3'-end. In addition, the 3'-terminal CCA sequence and the discriminator residue influence the ability of RNase R to stop at the mature 3'-end. RNase R-mediated generation of the mature 3'-end prefers a sequence of RCCN at the 3' terminus of tRNA. Variations of this sequence may cause RNase R to trim further and remove terminal CA residues from the mature 3'-end. Therefore, M. genitalium RNase R can precisely remove the 3'-trailer of a tRNA precursor by recognizing features in the terminal domains of tRNA, a process requiring multiple RNases in most bacteria.


Assuntos
Exorribonucleases/metabolismo , Mycoplasma genitalium/metabolismo , Precursores de RNA/metabolismo , RNA Bacteriano/metabolismo , RNA de Transferência/metabolismo , Sequência de Bases , Exorribonucleases/genética , Modelos Genéticos , Mycoplasma genitalium/genética , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , RNA Bacteriano/genética , RNA de Transferência/genética , RNA de Transferência de Glicina/genética , RNA de Transferência de Glicina/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA