Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 847
Filtrar
1.
Arch Insect Biochem Physiol ; 117(1): e22152, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39323103

RESUMO

An entomopathogenic nematode, Oscheius tipulae, was isolated from a soil sample. The identification of this species was supported by morphological and molecular markers. The nematode isolate exhibited pathogenicity against different target insects including lepidopteran, coleopteran, and dipteran insects. The virulence of this nematode was similar to that of a well-known entomopathogenic nematode, Steinernema carpocapsae, against the same insect targets. A comparative metagenomics analysis of these two nematode species predicted the existence of a combined total of 272 bacterial species in their intestines, of which 51 bacterial species were shared between the two nematode species. In particular, the common gut bacteria included several entomopathogenic bacteria including Xenorhabdus nematophila, which is known as a symbiotic bacterium to S. carpocapsae. The nematode virulence of O. tipulae to insects was enhanced by an addition of dexamethasone but suppressed by an addition of arachidonic acid, suggesting that the immune defenses of the target insects against the nematode infection is mediated by eicosanoids, which would be manipulated by the symbiotic bacteria of the nematode. Unlike S. carpocapsae, O. tipulae showed high virulence against dipteran insects including fruit flies, onion flies, and mosquitoes. O. tipulae showed particularly high control efficacies against the onion maggot, Delia platura, infesting the Welsh onion in the rhizosphere in both pot and field assays.


Assuntos
Dípteros , Animais , Dípteros/microbiologia , Controle Biológico de Vetores , Rabditídios/patogenicidade , Rabditídios/fisiologia , Virulência , Simbiose , Nematoides , Xenorhabdus/genética , Xenorhabdus/patogenicidade , Xenorhabdus/fisiologia
2.
J Invertebr Pathol ; 206: 108181, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39178983

RESUMO

The use of biocontrol agents, such as predators and entomopathogenic nematodes, is a promising approach for the effective control of the tomato leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidaean), an oligophagous insect feeding mainly on Solanaceae species and a major pest of field- and greenhouse-grown tomatoes globally. In this context, the effects of two entomopathogenic nematode species Steinernema carpocapsae (Weiser) (Rhabditida: Steinernematidae) and Heterorhabditis bacteriophora (Poinar) (Rhabditida: Heterorhabditidae), as well as their respective bacterial symbionts, Xenorhabdus nematophila and Photorhabdus luminescens (Enterobacterales: Morganelaceae), which were applied as bacterial cell suspensions and as crude cell-free liquid filtrates on T. absoluta larvae, were investigated. The results showed that of all treatments, the nematodes S. carpocapsae and H. bacteriophora were the most effective, causing up to 98 % mortality of T. absoluta larvae. Regarding bacteria and their filtrates, the bacterium X. nematophila was the most effective (69 % mortality in young larvae), while P. luminescens and both bacterial filtrates showed similar potency (ca. 48-55 % mortality in young larvae). To achieve a holistic approach of controlling this important pest, the impact of these factors on the beneficial predator Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) was also studied. The results demonstrated that although nematodes and especially S. carpocapsae, caused significant mortality on N. tenuis (87 %), the bacterial cell suspensions of X. nematophila and P. luminescens and crude cell-free liquid filtrates had minimum impact on this beneficial predator (∼11-30 % mortality).


Assuntos
Controle Biológico de Vetores , Rabditídios , Simbiose , Xenorhabdus , Animais , Rabditídios/fisiologia , Rabditídios/microbiologia , Xenorhabdus/fisiologia , Photorhabdus/fisiologia , Mariposas/parasitologia , Mariposas/microbiologia , Solanum lycopersicum/parasitologia , Solanum lycopersicum/microbiologia , Larva/microbiologia , Larva/parasitologia , Heterópteros/microbiologia , Heterópteros/parasitologia
3.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39063211

RESUMO

Despite impressive advances in the broad field of innate immunity, our understanding of the molecules and signaling pathways that control the host immune response to nematode infection remains incomplete. We have shown recently that Transforming Growth Factor-ß (TGF-ß) signaling in the fruit fly Drosophila melanogaster is activated by nematode infection and certain TGF-ß superfamily members regulate the D. melanogaster anti-nematode immune response. Here, we investigate the effect of an entomopathogenic nematode infection factor on host TGF-ß pathway regulation and immune function. We find that Heterorhabditis bacteriophora serine carboxypeptidase activates the Activin branch in D. melanogaster adults and the immune deficiency pathway in Activin-deficient flies, it affects hemocyte numbers and survival in flies deficient for Activin signaling, and causes increased intestinal steatosis in Activin-deficient flies. Thus, insights into the D. melanogaster signaling pathways and metabolic processes interacting with H. bacteriophora pathogenicity factors will be applicable to entomopathogenic nematode infection of important agricultural insect pests and vectors of disease.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Metabolismo dos Lipídeos , Transdução de Sinais , Animais , Drosophila melanogaster/parasitologia , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Carboxipeptidases/metabolismo , Carboxipeptidases/genética , Ativinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Rabditídios/fisiologia , Imunidade Inata , Proteínas de Transporte
4.
Microbiology (Reading) ; 170(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39058385

RESUMO

Xenorhabdus nematophila is a Gram-negative bacterium, mutualistically associated with the soil nematode Steinernema carpocapsae, and this nemato-bacterial complex is parasitic for a broad spectrum of insects. The transcriptional regulator OxyR is widely conserved in bacteria and activates the transcription of a set of genes that influence cellular defence against oxidative stress. It is also involved in the virulence of several bacterial pathogens. The aim of this study was to identify the X. nematophila OxyR regulon and investigate its role in the bacterial life cycle. An oxyR mutant was constructed in X. nematophila and phenotypically characterized in vitro and in vivo after reassociation with its nematode partner. OxyR plays a major role during the X. nematophila resistance to oxidative stress in vitro. Transcriptome analysis allowed the identification of 59 genes differentially regulated in the oxyR mutant compared to the parental strain. In vivo, the oxyR mutant was able to reassociate with the nematode as efficiently as the control strain. These nemato-bacterial complexes harbouring the oxyR mutant symbiont were able to rapidly kill the insect larvae in less than 48 h after infestation, suggesting that factors other than OxyR could also allow X. nematophila to cope with oxidative stress encountered during this phase of infection in insect. The significantly increased number of offspring of the nemato-bacterial complex when reassociated with the X. nematophila oxyR mutant compared to the control strain revealed a potential role of OxyR during this symbiotic stage of the bacterial life cycle.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Estresse Oxidativo , Simbiose , Xenorhabdus , Xenorhabdus/genética , Xenorhabdus/metabolismo , Xenorhabdus/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Rabditídios/microbiologia , Rabditídios/genética , Rabditídios/fisiologia , Larva/microbiologia , Virulência , Regulon , Perfilação da Expressão Gênica , Mutação
5.
Appl Radiat Isot ; 212: 111426, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38981166

RESUMO

The suitability of F1 progeny insect larvae of the irradiated male parent, Spodoptera litura (Fabr.) for infective juveniles (IJs) of entomopathogenic nematodes (EPN), Steinernema thermophilum was assessed to comprehend the feasibility of combining EPNs with nuclear pest control tactic. As compared to the control, the IJs induced faster host mortality with reduced proliferation in F1 host larvae. IJs derived from F1 host larvae exhibited almost similar proliferation capacity on normal hosts as in control. Further, the molecular basis of EPNs induced mortality in F1 host larvae was evaluated. Dual stress of EPN infection and irradiation induced downregulation of the relative mRNA expression of antimicrobial genes and upregulated expression of antioxidative genes. A pronounced effect of EPNs in association with irradiation stress was apparent on host mortality. Radiation induced sterile F1 insect larvae of S. litura acted as a reasonably suitable host for EPNs and also provided the environment for developing viable EPNs for their potential use as biocontrol agents.


Assuntos
Raios gama , Larva , Spodoptera , Animais , Masculino , Larva/efeitos da radiação , Virulência , Rabditídios/genética , Rabditídios/crescimento & desenvolvimento , Rabditídios/fisiologia , Rabditídios/efeitos da radiação , Controle Biológico de Vetores , Interações Hospedeiro-Parasita
6.
Exp Parasitol ; 263-264: 108804, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39019304

RESUMO

Research on the use of entomopathogenic nematodes (EPNs) as a potential tool for the biological control of invertebrates has been growing in recent years, including studies involving snails with One Health importance. In this study, the effect of exposure time (24 or 48 h) of Heterorhabditis bacteriophora HP88 on the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), as well as the concentration of total proteins, uric acid, and urea in the hemolymph of Biomphalaria glabrata, were investigated. The concentrations of these metabolic markers were measured weekly until the end of the third week after exposure. Along with a significant reduction in total protein levels, a significant increase (p < 0.01) in uric acid and urea contents in the hemolymph of B. glabrata exposed to H. bacteriophora was observed. The accumulation of urea in these mollusks could lead to deleterious effects due to its high toxicity, inducing significant cell damage. Variations in transaminase activities were also observed, with snails exposed to EPNs showing significantly higher values (p < 0.01) than individuals in the control group, both for ALT and AST. These results indicate that experimental exposure to infective juveniles of H. bacteriophora causes significant alterations in the metabolic pattern of B. glabrata, compromising the maintenance of its homeostasis. Finally, exposure for 48 h caused more damage to the planorbid in question compared to snails exposed for 24 h, suggesting that the exposure time may influence the intensity of the host's response.


Assuntos
Alanina Transaminase , Aspartato Aminotransferases , Biomphalaria , Hemolinfa , Controle Biológico de Vetores , Rhabditoidea , Ureia , Ácido Úrico , Animais , Biomphalaria/parasitologia , Hemolinfa/química , Hemolinfa/parasitologia , Hemolinfa/metabolismo , Alanina Transaminase/metabolismo , Aspartato Aminotransferases/metabolismo , Ácido Úrico/metabolismo , Ureia/metabolismo , Rhabditoidea/fisiologia , Proteínas/metabolismo , Rabditídios/fisiologia
7.
J Invertebr Pathol ; 206: 108163, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38955262

RESUMO

Entomopathogenic nematodes (EPNs) are ubiquitous soil-thriving organisms that use chemical cues to seek and infect soil-dwelling arthropods, yielding various levels of biological control. Going beyond soil application, scientists and practitioners started exploring the option of applying EPNs onto the foliage of crops in attempts to manage leaf-dwelling insect pests as well. Despite some success, particularly with protective formulations, it remains uncertain whether EPNs could indeed survive the phyllospheric environment, and successfully control foliar insect pests. In this context, we tested the potential of commercially produced Steinernema feltiae and S. carpocapsae, two of the most commonly used EPNs in the field of biological control, in controlling Lepidopteran foliar pests of economic importance, i.e. Tuta absoluta and Spodoptera spp. caterpillars as models. We first tested the survival and efficacy of both EPN species against the Lepidopteran caterpillars when applied onto tomato, sweet pepper and lettuce leaves, under controlled conditions and in commercial greenhouse conditions, respectively. Subsequently, we explored the behavioural responses of the EPNs to environmental cues typically encountered in the phyllosphere, and analysed plant volatile organic compounds (VOCs). Our results show that both S. feltiae and S. carpocapsae successfully survived and infected the foliar caterpillars, reaching similar level of control to a standard chemical pesticide in commercial practices. Remarkably, both EPN species survived and remained effective up to four days in the phyllosphere, and needed only a few hours to successfully penetrate the caterpillars. Interestingly, S. feltiae was attracted to VOCs from tomato plants, and tended to prefer those from caterpillar-induced plants, suggesting that the nematodes may actively forage toward its host, although it has never been exposed to leaf-borne volatiles during its evolution. The present study shows the high potential of steinernematids in managing major foliar pests in greenhouses and in becoming a key player in foliar biological control. In particular, the discovery that EPNs use foliar VOCs to locate caterpillar hosts opens up new opportunities in terms of application techniques and affordable effective doses.


Assuntos
Larva , Controle Biológico de Vetores , Animais , Controle Biológico de Vetores/métodos , Larva/parasitologia , Larva/fisiologia , Larva/crescimento & desenvolvimento , Rabditídios/fisiologia , Mariposas/parasitologia , Mariposas/fisiologia , Folhas de Planta/parasitologia , Spodoptera/parasitologia , Spodoptera/fisiologia
8.
Pest Manag Sci ; 80(10): 5400-5411, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38943354

RESUMO

BACKGROUND: Root-knot nematodes (RKNs), Meloidogyne spp., are one of the most destructive polyphagous plant-parasitic nematodes. They pose a serious threat to global food security and are difficult to control. Entomopathogenic nematodes (EPNs) show promise in controlling RKNs. However, it remains unclear whether the volatile organic compounds (VOCs) emitted from EPN-infected cadavers can control RKNs. RESULTS: We investigated the fumigation activity of VOCs released from cadavers infected by five different species of EPNs on RKNs in Petri dishes, and found that VOCs released from Steinernema feltiae (SN strain) and S. carpocapsae (All strain) infected cadavers had a significant lethal effect on second-stage juveniles (J2s) of Meloidogyne incognita. The VOCs released from the cadavers infected with S. feltiae were analyzed using SPME-GC/MS. Dimethyl disulfide (DMDS), tetradecane, pentadecane, and butylated hydroxytoluene (BHT), were selected for a validation experiment with pure compounds. The DMDS compound had significant nematicidal activity and repelled J2s. DMDS also inhibited egg hatching and the invasion of tomato roots by J2s. In a pot experiment, the addition of S. feltiae-infected cadavers and cadavers wrapped with a 400-mesh nylon net also significantly reduced the population of RKNs in tomato roots after 7 days. The number of root knots and eggs was reduced by 58% and 74.34%, respectively, compared to the control. CONCLUSION: These results suggested that the VOCs emitted by the EPN-infected cadavers affected various developmental stages of M. incognita and thus have the potential to be used in controlling RKNs through multiple methods. © 2024 Society of Chemical Industry.


Assuntos
Controle Biológico de Vetores , Tylenchoidea , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/farmacologia , Tylenchoidea/fisiologia , Tylenchoidea/efeitos dos fármacos , Rabditídios/fisiologia , Raízes de Plantas/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle
9.
J Helminthol ; 98: e43, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38800903

RESUMO

Entomopathogenic nematodes (EPNs) are closely associated with Popillia japonica and potentially used as their biological control agents, although field results proved inconsistent and evoked a continual pursuit of native EPNs more adapted to the environment. Therefore, we surveyed the Azorean Archipelago to isolate new strains of Heterorhabditis bacteriophora and to evaluate their virulence against the model organism Galleria mellonella under laboratory conditions. Six strains were obtained from pasture and coastal environments and both nematode and symbiont bacteria were molecularly identified. The bioassays revealed that Az172, Az186, and Az171 presented high virulence across the determination of a lethal dose (LD50) and short exposure time experiments with a comparable performance to Az29. After 72 hours, these virulent strains presented a mean determination of a lethal dose of 11 infective juveniles cm-2, a lethal time (LT50) of 34 hours, and achieved 40% mortality after an initial exposure time of only 60 minutes. Az170 exhibited an intermediate performance, whereas Az179 and Az180 were classified as low virulent strains. However, both strains presented the highest reproductive potential with means of 1700 infective juveniles/mg of larvae. The bioassays of the native EPNs obtained revealed that these strains hold the potential to be used in biological control initiatives targeting P. japonica because of their high virulence and locally adapted to environmental conditions.


Assuntos
Controle Biológico de Vetores , Rhabditoidea , Animais , Açores , Virulência , Rhabditoidea/microbiologia , Rhabditoidea/fisiologia , Larva/microbiologia , Mariposas/parasitologia , Agentes de Controle Biológico , Bioensaio , Rabditídios/fisiologia , Dose Letal Mediana
10.
J Parasitol ; 110(3): 200-205, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38802106

RESUMO

Phasmarhabditis (syn. Pellioditis) californica is a facultative parasite that has been marketed as a popular biocontrol agent against pestiferous slugs in England, Scotland, and Wales. The necromenic nematode Pristionchus entomophagus has also been recovered from slugs infected with Ph. californica. In this study, we experimentally investigated the outcome of single and mixed applications of Pr. entomophagus and Ph. californica on the slug Deroceras reticulatum (Müller). Host mortality was comparable for single and mixed applications of Ph. californica, with time to death significantly shorter in both treatment groups compared with controls. However, trials with Pr. entomophagus alone did not cause any significant host mortality relative to controls. Compared with the single Ph. californica applications, mixed applications resulted in 67% fewer infective juveniles establishing in the host, and subsequently far fewer infective juveniles were recovered in the next generation. In contrast, the establishment rate and progeny production in Pr. entomophagus were not impacted by the presence of Ph. californica (i.e., mixed applications). Hence, the presence of Pr. entomophagus had a deleterious effect on the establishment success and progeny production of Ph. californica. Our findings reveal an asymmetrical, antagonistic interaction between Ph. californica and Pr. entomophagus and highlight the importance of understanding the ecological relationships between co-occurring species. A decrease in parasite establishment success and progeny production has the potential to directly impact the persistence, sustainability, and efficacy of Ph. californica as a biological control agent.


Assuntos
Gastrópodes , Controle Biológico de Vetores , Animais , Gastrópodes/parasitologia , Rabditídios/fisiologia , Interações Hospedeiro-Parasita , Rhabditoidea/fisiologia
11.
J Invertebr Pathol ; 204: 108123, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705354

RESUMO

Entomopathogenic nematodes (EPNs) can control several important turfgrass insect pests including white grubs, weevils, cutworms, and sod webworms. But most of the research has focused on inundative releases in a biopesticide strategy using EPN strains that may have lost some of their ability to persist effectively over years of lab maintenance and / or selection for virulence and efficient mass-production. Our study examined the potential of fresh field isolate mixes of endemic EPNs to provide multi-year suppression of turfgrass insect pests. In early June 2020, we applied isolate mixes from golf courses of the EPNs Steinernema carpocapsae, Heterorhabditis bacteriophora, and their combination to plots straddling fairway and rough on two golf courses in central New Jersey, USA. Populations of EPNs and insect pests were sampled on the fairway and rough side of the plots from just before EPN application until October 2022. EPN populations increased initially in plots treated with the respective species. Steinernema carpocapsae densities stayed high for most of the experiment. Heterorhabditis bacteriophora densities decreased after 6 months and stabilized at lower levels. Several insect pests were reduced across the entire experimental period. In the fairway, the combination treatment reduced annual bluegrass weevil larvae (59 % reduction) and adults (74 %); S. carpocapsae reduced only adults (42 %). White grubs were reduced by H. bacteriophora (67 %) and the combination (63 %). Black turfgrass ataenius adults were reduced in all EPN treatments (43-62 %) in rough and fairway. Sod webworm larvae were reduced by S. carpocapsae in the fairway (75 %) and the rough (100 %) and by H. bacteriophora in the rough (75 %). Cutworm larvae were reduced in the fairway by S. carpocapsae (88 %) and the combination (75 %). Overall, our observations suggest that inoculative applications of fresh field isolate mixes of endemic EPNs may be a feasible approach to long-term suppression of insect pests in turfgrass but may require periodic reapplications.


Assuntos
Controle Biológico de Vetores , Rabditídios , Animais , Rabditídios/fisiologia , Poaceae/parasitologia , Mariposas/parasitologia , Gorgulhos/parasitologia , New Jersey
12.
Acta Trop ; 256: 107262, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38801912

RESUMO

Chagas disease is a zoonosis caused by the protozoan Trypanosoma cruzi and transmitted through the feces of triatomines, mainly in Latin America. Since the 1950s, chemical insecticides have been the primary method for controlling these triatomines, yet resistance has emerged, prompting the exploration of alternative approaches. The objective of this research was to test the capacity of the entomopathogenic nematodes Heterorhabditis indica and its symbiotic bacteria Photorhabdus luminescens, to produce mortality of Triatoma dimidiata a key vector of T. cruzi in Mexico under laboratory conditions. Two bioassays were conducted. In the first bioassay, the experimental unit was a 250 ml plastic jar with 100 g of sterile soil and three adult T. dimidiata. Three nematode quantities were tested: 2250, 4500, and 9000 nematodes per 100 g of sterile soil (n/100 g) per jar, with 3 replicates for each concentration and 1 control per concentration (1 jar with 100 g of sterile soil and 3 T. dimidiata without nematodes). The experimental unit of the second bioassay was a 500 ml plastic jar with 100 g of sterile soil and 4 adult T. dimidiata. This bioassay included 5, 50, 500, and 5000 n/100 g of sterile soil per jar, with 3 replicates of each quantity and 1 control per quantity. Data were analyzed using Kaplan-Meyer survival analysis. Electron microscopy was used to assess the presence of nematodes and tissue damage in T. dimidiata. The results of the first bioassay demonstrated that the nematode induced an accumulated average mortality ranging from 55.5 % (2250 n/100 g) to 100 % (4500 and 9000 n/100 g) within 144 h. In the second bioassay, the 5000 n/100 g concentration yielded 87.5 % mortality at 86 h, but a concentration as small as 500 n/100 g caused 75 % mortality from 84 h onwards. Survival analysis indicated higher T. dimidiata mortality with increased nematode quantities, with significant differences between the 4500, 5000, and 9000 n/100 g and controls. Electron microscopy revealed the presence of nematodes and its presumably symbiotic bacteria in the digestive system of T. dimidiata. Based on these analyses, we assert that the H. indica and P. luminescens complex causes mortality in adult T. dimidiata under laboratory conditions.


Assuntos
Doença de Chagas , Photorhabdus , Triatoma , Animais , Doença de Chagas/parasitologia , Doença de Chagas/prevenção & controle , Triatoma/parasitologia , México , Análise de Sobrevida , Rabditídios/fisiologia , Agentes de Controle Biológico , Controle Biológico de Vetores/métodos , Rhabditoidea/fisiologia , Vetores de Doenças , Trypanosoma cruzi/fisiologia
13.
Pest Manag Sci ; 80(9): 4410-4416, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38656697

RESUMO

BACKGROUND: In agricultural pest management, especially in combatting the invasive red imported fire ant (RIFA, Solenopsis invicta), significant challenges emerge as a consequence of the constraints of solely depending on chemical insecticides or entomopathogenic nematodes (EPNs). The utilization of chemical insecticides carries environmental and ecological hazards, whereas EPNs, when applied independently, might not offer the immediate effectiveness necessary for adequate RIFA suppression. Acknowledging these hurdles, our study investigates a synergistic method that integrates EPNs with chemical insecticides, aiming to fulfill the urgent demand for more efficient and environmentally friendly pest control solutions. RESULTS: Our evaluation focused on the interaction between the highly pathogenic Steinernema riobrave 7-12 EPN strain and prevalent insecticides, specifically beta-cypermethrin and a mixture of bifenthrin and clothianidin, applied at highly diluted recommended concentrations. The findings revealed a notable increase in RIFA mortality rates when EPNs and these insecticides were used together, outperforming the results achieved with each method individually. Remarkably, this enhanced efficacy was especially evident at lower concentrations of the bifenthrin-clothianidin mixture, indicating a valuable approach to minimizing reliance on chemical insecticides in agriculture. Furthermore, the high survival rates of EPNs alongside the tested insecticides indicate their compatibility and potential for sustained use in integrated pest management programs. CONCLUSION: Our research underscores the effectiveness of merging EPNs with chemical insecticides as a powerful and sustainable strategy for RIFA management. This combined approach not only meets the immediate challenges of pest control in agricultural settings, but also supports wider environmental objectives by reducing the dependency on chemical insecticides. © 2024 Society of Chemical Industry.


Assuntos
Formigas Lava-Pés , Inseticidas , Controle Biológico de Vetores , Piretrinas , Animais , Formigas Lava-Pés/efeitos dos fármacos , Formigas Lava-Pés/parasitologia , Guanidinas , Controle de Insetos/métodos , Neonicotinoides , Controle Biológico de Vetores/métodos , Rabditídios/fisiologia , Tiazóis
14.
J Helminthol ; 98: e21, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38445299

RESUMO

Certain entomopathogenic nematodes (EPNs) in the families Steinernematidae and Heterorhabditidae are among the most studied biocontrol tools, some of which are commercially available against pest insects. Their use against foliar and subterranean insect pests is largely unexplored in the Canadian Prairies. We conducted a laboratory-based study to produce baseline information on the biocontrol potential of a few commercial EPN species. Percent mortality of flea beetles, diamondback moths (DBMs), lygus, cabbage root maggots, and black cutworms (BCWs) was assessed after 72 hours exposure to Steinernema carpocapsae, S. kraussei, S. feltiae, and Heterorhabditis bacteriophora at varying concentrations (25, 50, 100, and 200 infective juveniles (IJs) per larvae, pupae, or cm2 of soil surface). Irrespective of concentration level, S. carpocapsae and S. kraussei caused significant mortality in DBM and BCW larvae compared with H. bacteriophora.S. kraussei, and S. feltiae were more efficient than S. carpocapsae in controlling root maggot larvae. H. bacteriophora caused zero mortality to root maggots at any concentration. Root maggot pupae were resistant to entry to EPN species tested, likely due to hard outer covering. Compared with root maggot pupae, a moderate level of mortality was observed in DBM pupae, suggesting differential ability of the tested EPNs in killing different life stages of certain pests. All nematode species tested caused low mortality (≤10%) in flea beetle adults. The findings of this investigation form fundamental data essential for carrying out field-based studies on canola and other related crops aimed at control and management of these pest species.


Assuntos
Besouros , Rabditídios , Humanos , Animais , Adulto , Alberta , Insetos , Larva , Pupa , Strongyloidea
15.
Parasit Vectors ; 17(1): 100, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429838

RESUMO

BACKGROUND: The family Rhabdiasidae (Nematoda: Rhabditida) is a globally distributed group of nematode parasites, with over 110 species parasitic mainly in amphibians and reptiles. However, the systematic position of the family Rhabdiasidae in the order Rhabditida remains unsolved, and the evolutionary relationships among its genera are still unclear. Moreover, the present knowledge of the mitochondrial genomes of rhabdiasids remains limited. METHODS: Two rhabdiasid species: Rhabdias kafunata Sata, Takeuchi & Nakano, 2020 and R. bufonis (Schrank, 1788) collected from the Asiatic toad Bufo gargarizans Cantor (Amphibia: Anura) in China, were identified based on morphology (light and scanning electron microscopy) and molecular characterization (sequencing of the nuclear 28S and ITS regions and mitochondrial cox1 and 12S genes). The complete mitochondrial genomes of R. kafunata and R. bufonis were also sequenced and annotated for the first time. Moreover, phylogenetic analyses based on the amino acid sequences of 12 protein-coding genes (PCGs) of the mitochondrial genomes were performed to clarify the systematic position of the family Rhabdiasidae in the order Rhabditida using maximum likelihood (ML) and Bayesian inference (BI). The phylogenetic analyses based on the 28S + ITS sequences, were also inferred to assess the evolutionary relationships among the genera within Rhabdiasidae. RESULTS: The detailed morphology of the cephalic structures, vulva and eggs in R. kafunata and R. bufonis was revealed using scanning electron microscopy (SEM) for the first time. The characterization of 28S and ITS regions of R. kafunata was reported for the first time. The mitogenomes of R. kafunata and R. bufonis are 15,437 bp and 15,128 bp long, respectively, and both contain 36 genes, including 12 PCGs (missing atp8). Comparative mitogenomics revealed that the gene arrangement of R. kafunata and R. bufonis is different from all of the currently available mitogenomes of nematodes. Phylogenetic analyses based on the ITS + 28S data showed Neoentomelas and Kurilonema as sister lineages, and supported the monophyly of Entomelas, Pneumonema, Serpentirhabdias and Rhabdias. Mitochondrial phylogenomic results supported Rhabdiasidae as a member of the superfamily Rhabditoidea in the suborder Rhabditina, and its occurrance as sister to the family Rhabditidae. CONCLUSIONS: The complete mitochondrial genome of R. kafunata and R. bufonis were reported for the first time, and two new gene arrangements of mitogenomes in Nematoda were revealed. Mitogenomic phylogenetic results indicated that the family Rhabdiasidae is a member of Rhabditoidea in Rhabditina, and is closely related to Rhabditidae. Molecular phylogenies based on the ITS + 28S sequence data supported the validity of Kurilonema, and showed that Kurilonema is sister to Neoentomelas. The present phylogenetic results also indicated that the ancestors of rhabdiasids seem to have initially infected reptiles, then spreading to amphibians.


Assuntos
Genoma Mitocondrial , Rabditídios , Rhabditoidea , Feminino , Animais , Filogenia , Rabditídios/genética , Teorema de Bayes , Óvulo , Anuros/parasitologia , Répteis
16.
Parasites Hosts Dis ; 62(1): 131-138, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38443776

RESUMO

Halicephalobus gingivalis is a free-living nematode that occasionally causes infections in horses. We report a rare case of limb fracture of horse caused by infection with H. gingivalis. An 8-year-old mare was referred to the Veterinary Hospital of the Federal University of Lavras with claudication grade 5 of the right hind limb, that had been started 3 months ago. The patient had aseptic arthritis in the tarsal joint and edema that extended to the quartile. The radiographic examination showed punctate osteolysis with exacerbation of bone trabeculation along the calcaneus, talus, proximal epiphysis of the third metatarsal and distal epiphysis of the tibia. Treatment for arthritis was initiated, and the animal showed a slight improvement in limb function. However, 21 days after hospitalization, due to a comminuted fracture of the tibia, it was euthanized. At necropsy, yellowish masses were found from the metatarsal to the tibia, and around the tarsal bones and joint. Similar masses were also found in the left kidney. Numerous nematodes compatible with H. gingivalis were identified. This is the first description of a pathological fracture caused by H. gingivalis infection in an equine limb.


Assuntos
Artrite , Fraturas Ósseas , Fraturas Espontâneas , Rabditídios , Animais , Feminino , Cavalos , Extremidade Inferior
17.
J Parasitol ; 110(1): 22-39, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334188

RESUMO

A new species of entomopathogenic nematode, Steinernema adamsi n. sp., was recovered from the soil of a longan tree (Dimocarpus sp.) in Mueang Lamphun District, Thailand, using baiting techniques. Upon analysis of the nematode's morphological traits, we found it to be a new species of Steinernema and a member of the Longicaudatum clade. Molecular analyses of the ITS rDNA and D2D3 of 28S rDNA sequences further confirmed that S. adamsi n. sp. is a new species of the Longicaudatum clade, which is closely related to Steinernema guangdongense and Steinernema longicaudam. Using morphometric analysis, the infective juveniles measure between 774.69 and 956.96 µm, males have a size range of 905.44 to 1,281.98 µm, and females are within the range of 1,628.21 to 2,803.64 µm. We also identified the symbiotic bacteria associated with the nematode based on 16S sequences as Xenorhabdus spp. closely related toXenorhabdus griffiniae. Furthermore, we have successfully assessed a cryopreservation method for the long-term preservation of S. adamsi n. sp. Successful cryopreservation of this new species will allow for the longer preservation of its traits and will be valuable for its future use. The discovery of this new species has significant implications for the development of effective biological control agents in Thailand, and our work contributes to our understanding of the diversity and evolution of entomopathogenic nematodes.


Assuntos
Rabditídios , Xenorhabdus , Animais , Feminino , Masculino , Rabditídios/genética , Tailândia , Filogenia , DNA Ribossômico/genética , Solo
18.
J Parasitol ; 110(1): 59-65, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381123

RESUMO

The chemotaxis responses of soil nematodes have been well studied in bacteriophagic nematodes, plant-parasitic nematodes, entomopathogenic nematodes, and to a lesser extent malacopathogenic nematodes. Free-living stages of parasitic nematodes often use chemotaxis to locate hosts. In this study, we compared the chemotaxis profile of 2 slug-associated nematodes with overlapping host ranges. Phasmarhabditis californica is a facultative parasite that has been shown to express strain-dependent variation in chemoattraction profile. We tested 4 slug species to determine the attraction index of a Canadian strain of Ph. californica and a sympatric necromenic nematode, Pristionchus entomophagus. When tested against a control (distilled water), Ph. californica showed a clear (positive) attraction towards the mucus of slugs Ambigolimax valentianus, Arion rufus, and Arion fasciatus, but not Deroceras reticulatum. However, when given a choice between the mucus of D. reticulatum and Ar. fasciatus in a pairwise test, Ph. californica was strongly attracted to the former. Other pairwise comparisons did not reveal a clear preference for either slug species in the following pairs: D. reticulatum-Ar. rufus, Am. valentianus-Ar. rufus, D. reticulatum-Am. valentianus. The chemotaxis assay for Pr. entomophagus showed an attraction toward D. reticulatum and Ar. fasciatus (tested against controls); the attraction index for Am. valentianus was positive, but this was not statistically significant. In contrast, the attraction index for Ar. rufus was negative, suggesting possible repulsion to the mucus of this slug species. Given that Pr. entomophagus and Ph. californica occupy overlapping habitats, utilize similar hosts, and exhibit similar chemotaxis profiles, there is a potential for direct interaction between these 2 nematodes. Like other members of the genus Pristionchus, Pr. entomophagus may be able to prey upon the co-occurring Ph. californica, such antagonistic interactions could have important implications for the coexistence of these 2 species and Ph. californica in particular as a biocontrol agent against pestiferous slugs.


Assuntos
Gastrópodes , Rabditídios , Animais , Quimiotaxia , Canadá , Muco
19.
J Invertebr Pathol ; 203: 108070, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311231

RESUMO

Consistent efficacy is required for entomopathogenic nematodes to gain wider adoption as biocontrol agents. Recently, we demonstrated that when exposed to nematode pheromone blends, entomopathogenic nematodes showed increased dispersal, infectivity, and efficacy under laboratory and greenhouse conditions. Prior to this study, the impact of entomopathogenic nematode-pheromone combinations on field efficacy had yet to be studied. Steinernema feltiae is a commercially available entomopathogenic nematode that has been shown to increase mortality in insect pests such as the pecan weevil Curculio caryae. In this study, the pecan weevil was used as a model system to evaluate changes in S. feltiae efficacy when treated with a partially purified ascaroside pheromone blend. Following exposure to the pheromone blend, the efficacy of S. feltiae significantly increased as measured with decreased C. caryae survival despite unfavorable environmental conditions. The results of this study highlight a potential new avenue for using entomopathogenic nematodes in field conditions. With increased efficacy, using entomopathogenic nematodes will reduce reliance on conventional management methods in pecan production, translating into more environmentally acceptable practices.


Assuntos
Carya , Rabditídios , Gorgulhos , Animais , Feromônios/farmacologia , Controle Biológico de Vetores/métodos
20.
J Invertebr Pathol ; 203: 108077, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402946

RESUMO

The European truffle beetle, Leiodes cinnamomeus, is the most important pest in black truffle (Tuber melanosporum) plantations. Entomopathogenic nematodes (EPNs) are a promising biological control agents against L. cinnamomeus. EPNs may employ multiple sensory cues while seeking for hosts, such as volatile organic compounds (VOCs) and CO2 gradients. We report for the first time the attraction of EPNs to truffle fruitbodies, and identified some VOCs potentially playing a key role in this interaction. We conducted olfactometer assays to investigate the attraction behavior of Steinernema feltiae and Steinernema carpocapsae towards both T. melanosporum fruitbodies and larvae of L. cinnamomeus. Subsequently, a chemotaxis assay using agar plates was performed to determine which of the 14 of the main VOCs emitted by the fruitbodies attracted S. feltiae at low (0.1 %) and high (mg/100 g truffle) concentrations. Both EPN species were attracted to mature fruitbodies of T. melanosporum, which may enhance the likelihood of encountering L. cinnamomeus during field applications. L. cinnamomeus larvae in the presence of truffles did not significantly affect the behavior of EPNs 24 h after application, underscoring the importance of the chemical compounds emitted by truffles themselves. Chemotaxis assays showed that four long-chain alcohol compounds emitted by T. melanosporum fruitbodies attracted S. feltiae, especially at low concentration, providing a first hint in the chemical ecology of a little-studied ecological system of great economical value. Further studies should be conducted to gain a finer understanding of the tritrophic interactions between T. melanosporum, EPNs, and L. cinnamomeus, as this knowledge may have practical implications for the efficacy of EPNs in the biological control of this pest.


Assuntos
Ascomicetos , Besouros , Rabditídios , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/farmacologia , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA