Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.706
Filtrar
1.
PLoS One ; 19(5): e0298373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38691542

RESUMO

Pulse repetition interval modulation (PRIM) is integral to radar identification in modern electronic support measure (ESM) and electronic intelligence (ELINT) systems. Various distortions, including missing pulses, spurious pulses, unintended jitters, and noise from radar antenna scans, often hinder the accurate recognition of PRIM. This research introduces a novel three-stage approach for PRIM recognition, emphasizing the innovative use of PRI sound. A transfer learning-aided deep convolutional neural network (DCNN) is initially used for feature extraction. This is followed by an extreme learning machine (ELM) for real-time PRIM classification. Finally, a gray wolf optimizer (GWO) refines the network's robustness. To evaluate the proposed method, we develop a real experimental dataset consisting of sound of six common PRI patterns. We utilized eight pre-trained DCNN architectures for evaluation, with VGG16 and ResNet50V2 notably achieving recognition accuracies of 97.53% and 96.92%. Integrating ELM and GWO further optimized the accuracy rates to 98.80% and 97.58. This research advances radar identification by offering an enhanced method for PRIM recognition, emphasizing the potential of PRI sound to address real-world distortions in ESM and ELINT systems.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Som , Radar , Algoritmos , Reconhecimento Automatizado de Padrão/métodos
2.
Sensors (Basel) ; 24(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733038

RESUMO

With the continuous advancement of autonomous driving and monitoring technologies, there is increasing attention on non-intrusive target monitoring and recognition. This paper proposes an ArcFace SE-attention model-agnostic meta-learning approach (AS-MAML) by integrating attention mechanisms into residual networks for pedestrian gait recognition using frequency-modulated continuous-wave (FMCW) millimeter-wave radar through meta-learning. We enhance the feature extraction capability of the base network using channel attention mechanisms and integrate the additive angular margin loss function (ArcFace loss) into the inner loop of MAML to constrain inner loop optimization and improve radar discrimination. Then, this network is used to classify small-sample micro-Doppler images obtained from millimeter-wave radar as the data source for pose recognition. Experimental tests were conducted on pose estimation and image classification tasks. The results demonstrate significant detection and recognition performance, with an accuracy of 94.5%, accompanied by a 95% confidence interval. Additionally, on the open-source dataset DIAT-µRadHAR, which is specially processed to increase classification difficulty, the network achieves a classification accuracy of 85.9%.


Assuntos
Pedestres , Radar , Humanos , Algoritmos , Marcha/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Aprendizado de Máquina
3.
Environ Monit Assess ; 196(6): 581, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805130

RESUMO

In case necessary precautions are not taken in surface mines, serious accidents and loss of life may occur, particularly due to large mass displacements. It is extremely important to identify the early warning signs of these displacements and take the necessary precautions. In this study, free medium-resolution satellite radar images from the European Space Agency's (ESA) C-band Sentinel-1A satellite and commercial high-resolution satellite radar images (SAR, Synthetic Aperture Radar) from the Deutsches Zentrum für Luft- und Raumfahrt's (DLR) X-band TerraSAR-X satellite were obtained, and it was attempted to reveal the traceability and adequacy of monitoring of deformations and possible mass displacements in the dump site of an open-pit coal mine. The compatibility of the results obtained from the satellite radar data with two devices of Global Positioning System (GPS) which were installed in the field was evaluated. Furthermore, the velocity results in the Line Of Sight (LOS) direction and vertical deformation velocity results obtained with all three approaches (GPS/Sentinel-1A, GPS/TerraSAR-X, and Sentinel-1A/TerraSAR-X) were compared. It was observed that the results were statistically equal and the directions of movement were similar/compatible. The result of this study showed that deformations at mine sites can be monitored with sufficient accuracy for early warning with free Sentinel-1A satellite data, although the TerraSAR-X satellite offers a higher resolution.


Assuntos
Monitoramento Ambiental , Sistemas de Informação Geográfica , Radar , Monitoramento Ambiental/métodos , Minas de Carvão , Imagens de Satélites
4.
Comput Biol Med ; 176: 108555, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749323

RESUMO

Cardiovascular diagnostics relies heavily on the ECG (ECG), which reveals significant information about heart rhythm and function. Despite their significance, traditional ECG measures employing electrodes have limitations. As a result of extended electrode attachments, patients may experience skin irritation or pain, and motion artifacts may interfere with signal accuracy. Additionally, ECG monitoring usually requires highly trained professionals and specialized equipment, which increases the treatment's complexity and cost. In critical care scenarios, such as continuous monitoring of hospitalized patients, wearable sensors for collecting ECG data may be difficult to use. Although there are issues with ECG, it remains a valuable tool for diagnosing and monitoring cardiac disorders due to its non-invasive nature and the detailed information it provides about the heart. The goal of this study is to present an innovative method for generating continuous ECG waveforms from non-contact radar data by using Deep Learning. The method can eliminate the need for invasive or wearable biosensors and expensive equipment to collect ECGs. In this paper, we propose the MultiResLinkNet, a one-dimensional convolutional neural network (1D CNN) model for generating ECG signals from radar waveforms. With the help of a publicly accessible radar benchmark dataset, an end-to-end DL architecture is trained and assessed. There are six ports of raw radar data in this dataset, along with ground truth physiological signals collected from 30 participants in five distinct scenarios: Resting, Valsalva, Apnea, Tilt-up, and Tilt-down. By using strong temporal and spectral measurements, we assessed our proposed framework's ability to convert ECG data from Radar signals in three distinct scenarios, namely Resting, Valsalva, and Apnea (RVA). ECG segmentation performed better by MultiResLinkNet than by state-of-the-art networks in both combined and individual cases. As a result of the simulations, the resting, valsalva, and RVA scenarios showed the highest average temporal values, respectively: 66.09523 ± 19.33, 60.13625 ± 21.92, and 61.86265 ± 21.37. In addition, it exhibited the highest spectral correlation values (82.4388 ± 18.42 (Resting), 77.05186 ± 23.26 (Valsalva), 74.65785 ± 23.17 (Apnea), and 79.96201 ± 20.82 (RVA)), along with minimal temporal and spectral errors in almost every case. The qualitative evaluation revealed strong similarities between generated and actual ECG waveforms. As a result of our method of forecasting ECG patterns from remote radar data, we can monitor high-risk patients, especially those undergoing surgery.


Assuntos
Aprendizado Profundo , Eletrocardiografia , Radar , Processamento de Sinais Assistido por Computador , Humanos , Eletrocardiografia/métodos
5.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230115, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38705175

RESUMO

Radar networks hold great promise for monitoring population trends of migrating insects. However, it is important to elucidate the nature of responses to environmental cues. We use data from a mini-network of vertical-looking entomological radars in the southern UK to investigate changes in nightly abundance, flight altitude and behaviour of insect migrants, in relation to meteorological and celestial conditions. Abundance of migrants showed positive relationships with air temperature, indicating that this is the single most important variable influencing the decision to initiate migration. In addition, there was a small but significant effect of moonlight illumination, with more insects migrating on full moon nights. While the effect of nocturnal illumination levels on abundance was relatively minor, there was a stronger effect on the insects' ability to orientate close to downwind: flight headings were more tightly clustered on nights when the moon was bright and when cloud cover was sparse. This indicates that nocturnal illumination is important for the navigational mechanisms used by nocturnal insect migrants. Further, our results clearly show that environmental conditions such as air temperature and light levels must be considered if long-term radar datasets are to be used to assess changing population trends of migrants. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Assuntos
Migração Animal , Voo Animal , Insetos , Animais , Insetos/fisiologia , Iluminação , Radar , Lua , Temperatura
6.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230113, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38705181

RESUMO

In the current biodiversity crisis, populations of many species have alarmingly declined, and insects are no exception to this general trend. Biodiversity monitoring has become an essential asset to detect biodiversity change but remains patchy and challenging for organisms that are small, inconspicuous or make (nocturnal) long-distance movements. Radars are powerful remote-sensing tools that can provide detailed information on intensity, timing, altitude and spatial scale of aerial movements and might therefore be particularly suited for monitoring aerial insects and their movements. Importantly, they can contribute to several essential biodiversity variables (EBVs) within a harmonized observation system. We review existing research using small-scale biological and weather surveillance radars for insect monitoring and outline how the derived measures and quantities can contribute to the EBVs 'species population', 'species traits', 'community composition' and 'ecosystem function'. Furthermore, we synthesize how ongoing and future methodological, analytical and technological advancements will greatly expand the use of radar for insect biodiversity monitoring and beyond. Owing to their long-term and regional-to-large-scale deployment, radar-based approaches can be a powerful asset in the biodiversity monitoring toolbox whose potential has yet to be fully tapped. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Assuntos
Biodiversidade , Insetos , Radar , Insetos/fisiologia , Animais , Tecnologia de Sensoriamento Remoto/métodos , Tecnologia de Sensoriamento Remoto/instrumentação , Monitoramento Biológico/métodos , Voo Animal
7.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230117, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38705193

RESUMO

Concerns about perceived widespread declines in insect numbers have led to recognition of a requirement for long-term monitoring of insect biodiversity. Here we examine whether an existing, radar-based, insect monitoring system developed for research on insect migration could be adapted to this role. The radar detects individual larger (greater than 10 mg) insects flying at heights of 150-2550 m and estimates their size and mass. It operates automatically and almost continuously through both day and night. Accumulation of data over a 'half-month' (approx. 15 days) averages out weather effects and broadens the source area of the wind-borne observation sample. Insect counts are scaled or interpolated to compensate for missed observations; adjustment for variation of detectability with range and insect size is also possible. Size distributions for individual days and nights exhibit distinct peaks, representing different insect types, and Simpson and Shannon-Wiener indices of biodiversity are calculated from these. Half-month count, biomass and index statistics exhibit variations associated with the annual cycle and year to year changes that can be attributed to drought and periods of high rainfall. While species-based biodiversity measures cannot be provided, the radar's capacity to estimate insect biomass over a wide area indicates utility for tracking insect population sizes. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Assuntos
Biodiversidade , Insetos , Radar , Animais , Insetos/fisiologia , Densidade Demográfica , Entomologia/métodos , Entomologia/instrumentação , Biomassa
8.
PLoS One ; 19(4): e0300653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557860

RESUMO

Photonic radar, a cornerstone in the innovative applications of microwave photonics, emerges as a pivotal technology for future Intelligent Transportation Systems (ITS). Offering enhanced accuracy and reliability, it stands at the forefront of target detection and recognition across varying weather conditions. Recent advancements have concentrated on augmenting radar performance through high-speed, wide-band signal processing-a direct benefit of modern photonics' attributes such as EMI immunity, minimal transmission loss, and wide bandwidth. Our work introduces a cutting-edge photonic radar system that employs Frequency Modulated Continuous Wave (FMCW) signals, synergized with Mode Division and Wavelength Division Multiplexing (MDM-WDM). This fusion not only enhances target detection and recognition capabilities across diverse weather scenarios, including various intensities of fog and solar scintillations, but also demonstrates substantial resilience against solar noise. Furthermore, we have integrated machine learning techniques, including Decision Tree, Extremely Randomized Trees (ERT), and Random Forest classifiers, to substantially enhance target recognition accuracy. The results are telling: an accuracy of 91.51%, high sensitivity (91.47%), specificity (97.17%), and an F1 Score of 91.46%. These metrics underscore the efficacy of our approach in refining ITS radar systems, illustrating how advancements in microwave photonics can revolutionize traditional methodologies and systems.


Assuntos
Radar , Tempo (Meteorologia) , Reprodutibilidade dos Testes , Benchmarking , Aprendizado de Máquina
9.
Sensors (Basel) ; 24(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38610238

RESUMO

The potential of microwave Doppler radar in non-contact vital sign detection is significant; however, prevailing radar-based heart rate (HR) and heart rate variability (HRV) monitoring technologies often necessitate data lengths surpassing 10 s, leading to increased detection latency and inaccurate HRV estimates. To address this problem, this paper introduces a novel network integrating a frequency representation module and a residual in residual module for the precise estimation and tracking of HR from concise time series, followed by HRV monitoring. The network adeptly transforms radar signals from the time domain to the frequency domain, yielding high-resolution spectrum representation within specified frequency intervals. This significantly reduces latency and improves HRV estimation accuracy by using data that are only 4 s in length. This study uses simulation data, Frequency-Modulated Continuous-Wave radar-measured data, and Continuous-Wave radar data to validate the model. Experimental results show that despite the shortened data length, the average heart rate measurement accuracy of the algorithm remains above 95% with no loss of estimation accuracy. This study contributes an efficient heart rate variability estimation algorithm to the domain of non-contact vital sign detection, offering significant practical application value.


Assuntos
Aprendizado Profundo , Frequência Cardíaca , Radar , Determinação da Frequência Cardíaca , Algoritmos
10.
Sensors (Basel) ; 24(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38610269

RESUMO

An increasing number of studies on non-contact vital sign detection using radar are now beginning to turn to data-driven neural network approaches rather than traditional signal-processing methods. However, there are few radar datasets available for deep learning due to the difficulty of acquiring and labeling the data, which require specialized equipment and physician collaboration. This paper presents a new model of heartbeat-induced chest wall motion (CWM) with the goal of generating a large amount of simulation data to support deep learning methods. An in-depth analysis of published CWM data collected by the VICON Infrared (IR) motion capture system and continuous wave (CW) radar system during respiratory hold was used to summarize the motion characteristics of each stage within a cardiac cycle. In combination with the physiological properties of the heartbeat, appropriate mathematical functions were selected to describe these movement properties. The model produced simulation data that closely matched the measured data as evaluated by dynamic time warping (DTW) and the root-mean-squared error (RMSE). By adjusting the model parameters, the heartbeat signals of different individuals were simulated. This will accelerate the application of data-driven deep learning methods in radar-based non-contact vital sign detection research and further advance the field.


Assuntos
Parede Torácica , Humanos , Radar , Movimento (Física) , Movimento , Simulação por Computador
11.
Sensors (Basel) ; 24(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38610471

RESUMO

The adoption of telehealth has soared, and with that the acceptance of Remote Patient Monitoring (RPM) and virtual care. A review of the literature illustrates, however, that poor device usability can impact the generated data when using Patient-Generated Health Data (PGHD) devices, such as wearables or home use medical devices, when used outside a health facility. The Pi-CON methodology is introduced to overcome these challenges and guide the definition of user-friendly and intuitive devices in the future. Pi-CON stands for passive, continuous, and non-contact, and describes the ability to acquire health data, such as vital signs, continuously and passively with limited user interaction and without attaching any sensors to the patient. The paper highlights the advantages of Pi-CON by leveraging various sensors and techniques, such as radar, remote photoplethysmography, and infrared. It illustrates potential concerns and discusses future applications Pi-CON could be used for, including gait and fall monitoring by installing an omnipresent sensor based on the Pi-CON methodology. This would allow automatic data collection once a person is recognized, and could be extended with an integrated gateway so multiple cameras could be installed to enable data feeds to a cloud-based interface, allowing clinicians and family members to monitor patient health status remotely at any time.


Assuntos
Marcha , Fotopletismografia , Humanos , Coleta de Dados , Monitorização Fisiológica , Radar
12.
BMJ Open ; 14(4): e082418, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626955

RESUMO

OBJECTIVES: Systematically measuring the work environment of healthcare employees is key to continuously improving the quality of care and addressing staff shortages. In this study, we systematically analyse the responses to the one open-ended question posed in the Dutch version of the Culture of Care Barometer (CoCB-NL) to examine (1) if the responses offered new insights into healthcare employees' perceptions of their work environment and (2) if the original CoCB had any themes missing. DESIGN: Retrospective text analysis using Rigorous and Accelerated Data Reduction technique. SETTING: University hospital in the Netherlands using the CoCB-NL as part of the annual employee survey. PARTICIPANTS: All hospital employees were invited to participate in the study (N=14 671). In total, 2287 employees responded to the open-ended question. RESULTS: 2287 comments were analysed. Comments that contained more than one topic were split according to topic, adding to the total (n=2915). Of this total, 372 comments were excluded because they lacked content or respondents indicated they had nothing to add. Subsequently, 2543 comments were allocated to 33 themes. Most comments (n=2113) addressed the 24 themes related to the close-ended questions in the CoCB-NL. The themes most commented on concerned questions on 'organisational support'. The remaining 430 comments covered nine additional themes that addressed concerns about work environment factors (team connectedness, team effectiveness, corporate vision, administrative burden and performance pressure) and themes (diversity and inclusion, legal frameworks and collective bargaining, resilience and work-life balance, and personal matters). CONCLUSIONS: Analysing responses to the open-ended question in the CoCB-NL led to new insights into relevant elements of the work environment and missing themes in the COCB-NL. Moreover, the analysis revealed important themes that not only require attention from healthcare organisations to ensure adequate improvements in their employees' work environment but should also be considered to further develop the CoCB-NL.


Assuntos
Hospitais , Radar , Humanos , Estudos Retrospectivos , Inquéritos e Questionários , Recursos Humanos em Hospital
13.
Environ Sci Pollut Res Int ; 31(22): 32553-32570, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658507

RESUMO

The devastating nature of landslides demands a thorough understanding of their spatial distribution and the risks they pose to human settlements and infrastructural assets. In this study, we employed a combination of Interferometric Synthetic Aperture Radar (InSAR) and Geographic Information System (GIS) techniques to explore the western escarpment of the Main Ethiopian Rift, with a focus on selected districts within the northern Shewa Zone, Ethiopia. By analyzing the SAR data, we derived 28 displacement maps and utilized them to create a comprehensive landslide hazard zonation map. The results indicated significant ground displacement, particularly along the rift margins and areas characterized by rugged terrain. The hazard zones were classified based on their level of risk, with 44% classified as very low, 24% as low, 5% as moderate, 13% as high, and 14% as very high hazard zones. The accuracy of our results was evaluated using receiver operating characteristic (ROC) analysis, which was conducted utilizing landslide inventory data. The analysis demonstrated a remarkable area under the curve (AUC) value of 0.848, providing strong evidence for the validity of our findings. Additionally, our study involved a spatial and statistical assessment of major infrastructure, revealing that 20 to 28% of these properties were in hazard zones ranging from moderate to very high levels, which calls for efficient risk-reduction actions. Therefore, this finding enables stakeholders to identify high-risk areas, prioritize mitigation efforts, and minimize the impact of landslide disasters.


Assuntos
Sistemas de Informação Geográfica , Deslizamentos de Terra , Etiópia , Monitoramento Ambiental/métodos , Humanos , Radar
14.
Sensors (Basel) ; 24(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38676065

RESUMO

This paper proposes a new approach for wide angle monitoring of vital signs in smart home applications. The person is tracked using an indoor radar. Upon detecting the person to be static, the radar automatically focuses its beam on that location, and subsequently breathing and heart rates are extracted from the reflected signals using continuous wavelet transform (CWT) analysis. In this way, leveraging the radar's on-chip processor enables real-time monitoring of vital signs across varying angles. In our experiment, we employ a commercial multi-input multi-output (MIMO) millimeter-wave FMCW radar to monitor vital signs within a range of 1.15 to 2.3 m and an angular span of -44.8 to +44.8 deg. In the Bland-Altman plot, the measured results indicate the average difference of -1.5 and 0.06 beats per minute (BPM) relative to the reference for heart rate and breathing rate, respectively.


Assuntos
Frequência Cardíaca , Radar , Frequência Cardíaca/fisiologia , Humanos , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Respiração , Taxa Respiratória/fisiologia , Análise de Ondaletas , Processamento de Sinais Assistido por Computador , Algoritmos
15.
Sensors (Basel) ; 24(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38676149

RESUMO

Activity recognition is one of the significant technologies accompanying the development of the Internet of Things (IoT). It can help in recording daily life activities or reporting emergencies, thus improving the user's quality of life and safety, and even easing the workload of caregivers. This study proposes a human activity recognition (HAR) system based on activity data obtained via the micro-Doppler effect, combining a two-stream one-dimensional convolutional neural network (1D-CNN) with a bidirectional gated recurrent unit (BiGRU). Initially, radar sensor data are used to generate information related to time and frequency responses using short-time Fourier transform (STFT). Subsequently, the magnitudes and phase values are calculated and fed into the 1D-CNN and Bi-GRU models to extract spatial and temporal features for subsequent model training and activity recognition. Additionally, we propose a simple cross-channel operation (CCO) to facilitate the exchange of magnitude and phase features between parallel convolutional layers. An open dataset collected through radar, named Rad-HAR, is employed for model training and performance evaluation. Experimental results demonstrate that the proposed 1D-CNN+CCO-BiGRU model demonstrated superior performance, achieving an impressive accuracy rate of 98.2%. This outperformance of existing systems with the radar sensor underscores the proposed model's potential applicability in real-world scenarios, marking a significant advancement in the field of HAR within the IoT framework.


Assuntos
Aprendizado Profundo , Atividades Humanas , Redes Neurais de Computação , Radar , Humanos , Algoritmos , Internet das Coisas
16.
Sensors (Basel) ; 24(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38610419

RESUMO

Through-wall radar human body pose recognition technology has broad applications in both military and civilian sectors. Identifying the current pose of targets behind walls and predicting subsequent pose changes are significant challenges. Conventional methods typically utilize radar information along with machine learning algorithms such as SVM and random forests to aid in recognition. However, these approaches have limitations, particularly in complex scenarios. In response to this challenge, this paper proposes a cross-modal supervised through-wall radar human body pose recognition method. By integrating information from both cameras and radar, a cross-modal dataset was constructed, and a corresponding deep learning network architecture was designed. During training, the network effectively learned the pose features of targets obscured by walls, enabling accurate pose recognition (e.g., standing, crouching) in scenarios with unknown wall obstructions. The experimental results demonstrated the superiority of the proposed method over traditional approaches, offering an effective and innovative solution for practical through-wall radar applications. The contribution of this study lies in the integration of deep learning with cross-modal supervision, providing new perspectives for enhancing the robustness and accuracy of target pose recognition.


Assuntos
Corpo Humano , Militares , Humanos , Radar , Algoritmos , Aprendizado de Máquina
17.
Sensors (Basel) ; 24(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38544164

RESUMO

Millimeter-wave (mmWave) radars attain high resolution without compromising privacy while being unaffected by environmental factors such as rain, dust, and fog. This study explores the challenges of using mmWave radars for the simultaneous detection of people and small animals, a critical concern in applications like indoor wireless energy transfer systems. This work proposes innovative methodologies for enhancing detection accuracy and overcoming the inherent difficulties posed by differences in target size and volume. In particular, we explore two distinct positioning scenarios that involve up to four mmWave radars in an indoor environment to detect and track both humans and small animals. We compare the outcomes achieved through the implementation of three distinct data-fusion methods. It was shown that using a single radar without the application of a tracking algorithm resulted in a sensitivity of 46.1%. However, this sensitivity significantly increased to 97.10% upon utilizing four radars using with the optimal fusion method and tracking. This improvement highlights the effectiveness of employing multiple radars together with data fusion techniques, significantly enhancing sensitivity and reliability in target detection.


Assuntos
Algoritmos , Privacidade , Animais , Humanos , Reprodutibilidade dos Testes , Transferência de Energia , Radar
18.
Environ Monit Assess ; 196(4): 359, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470540

RESUMO

Monitoring ground deformation in industrial parks is of great importance for the economic development of urban areas. However, limited research has been conducted on the deformation mechanism in industrial parks, and there is a lack of integrated monitoring and prediction models. Therefore, this study proposes a comprehensive monitoring and prediction model for industrial parks, utilizing time-series Interferometry Synthetic Aperture Radar (InSAR) technology and the Whale Optimization Algorithm-Back Propagation (WOA-BP) neural network algorithm. Taking Yinxi Industrial Park in Baiyin District as a case study, we used 68 scenes of Sentinel-1A ascending and descending orbit data from June 2018 to April 2021. The Stanford Method for Persistent Scatterers-Permanent Scatterers (StaMPS-PS) and the Small Baseline Subsets-Interferometry Synthetic Aperture Radar (SBAS-InSAR) technologies were employed to obtain the surface deformation information of the park. The deformation information obtained by the two technologies was cross-validated in terms of temporal and spatial distribution, and the vertical and east-west deformation of the park was obtained by combining the ascending and descending orbit data. The results show that the deformation feature points in the line of sight (LOS) direction obtained by the two technologies have a high consistency in spatial distribution, using the ascending orbit data as an example. Additionally, the SBAS-InSAR technology was used to obtain the east-west and vertical deformation results of the park after merging the ascending and descending orbit data for the same period. It was found that the park is mainly affected by vertical deformation, with a maximum subsidence rate of 14.67 mm/yr. The subsidence areas correspond to the deformation positions observed in field survey photos. Based on the ascending orbit deformation data, the two technologies were validated with 585 points of the same latitude and longitude, and the coefficient of determination R2 was found to be 0.82, with a root mean square error (RMSE) of 2.20 mm/a. The deformation rates were also highly consistent. Due to the 47% increase in the number of sampling points provided by the StaMPS-PS technique compared to the SBAS-InSAR technique, the former was found to be more applicable in the industrial park. Based on the ground deformation mechanism in the park, we combined the StaMPS-PS technique with the WOA-BP neural network to construct a deformation zone prediction model. We conducted predictive studies on the deformation zones of buildings and roads within the park, and the results showed that the WOA-optimized BP neural network achieved higher accuracy and lower overall error compared to the unoptimized network. Finally, we analyzed and discussed the geological conditions and inducing factors of ground deformation in the park, providing a reference for a better understanding of the deformation mechanism and early warning of disasters in the industrial park.


Assuntos
Monitoramento Ambiental , Radar , Animais , Fatores de Tempo , Cetáceos , Interferometria , Tecnologia
19.
Forensic Sci Int ; 357: 111996, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522323

RESUMO

Jane, Arnna, and Grant Beaumont went missing from Glenelg Beach in Adelaide, South Australia on 26 January (Australia Day) 1966. Despite multiple land and sea searches over nearly 60 years, the children have not been found. New credible eyewitness testimony led to a site of interest at the now disused New Castalloy factory in North Plympton, Adelaide. This site has a complex stratigraphy of anthropogenic fill, which made ground penetrating radar (GPR) investigations unpromising. Electrical resistivity tomography (ERT), while not commonly used in a forensic capacity, provided an alternative approach that allowed suitable depth penetration to resolve a feature of interest, which was subsequently excavated by the South Australia Police. This feature did contain organic, and animal remains but, sadly, not the grave of Jane, Arnna, and Grant Beaumont. However, this investigation highlights the potential to use ERT in a forensic capacity, as well as the limitations of using geophysical techniques for covert burial detection.


Assuntos
Ciências Forenses , Radar , Animais , Criança , Humanos , Ciências Forenses/métodos , Fenômenos Geológicos , Austrália do Sul , Tomografia
20.
Lancet ; 403(10433): 1279-1289, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38492578

RESUMO

BACKGROUND: Individuals with rare kidney diseases account for 5-10% of people with chronic kidney disease, but constitute more than 25% of patients receiving kidney replacement therapy. The National Registry of Rare Kidney Diseases (RaDaR) gathers longitudinal data from patients with these conditions, which we used to study disease progression and outcomes of death and kidney failure. METHODS: People aged 0-96 years living with 28 types of rare kidney diseases were recruited from 108 UK renal care facilities. The primary outcomes were cumulative incidence of mortality and kidney failure in individuals with rare kidney diseases, which were calculated and compared with that of unselected patients with chronic kidney disease. Cumulative incidence and Kaplan-Meier survival estimates were calculated for the following outcomes: median age at kidney failure; median age at death; time from start of dialysis to death; and time from diagnosis to estimated glomerular filtration rate (eGFR) thresholds, allowing calculation of time from last eGFR of 75 mL/min per 1·73 m2 or more to first eGFR of less than 30 mL/min per 1·73 m2 (the therapeutic trial window). FINDINGS: Between Jan 18, 2010, and July 25, 2022, 27 285 participants were recruited to RaDaR. Median follow-up time from diagnosis was 9·6 years (IQR 5·9-16·7). RaDaR participants had significantly higher 5-year cumulative incidence of kidney failure than 2·81 million UK patients with all-cause chronic kidney disease (28% vs 1%; p<0·0001), but better survival rates (standardised mortality ratio 0·42 [95% CI 0·32-0·52]; p<0·0001). Median age at kidney failure, median age at death, time from start of dialysis to death, time from diagnosis to eGFR thresholds, and therapeutic trial window all varied substantially between rare diseases. INTERPRETATION: Patients with rare kidney diseases differ from the general population of individuals with chronic kidney disease: they have higher 5-year rates of kidney failure but higher survival than other patients with chronic kidney disease stages 3-5, and so are over-represented in the cohort of patients requiring kidney replacement therapy. Addressing unmet therapeutic need for patients with rare kidney diseases could have a large beneficial effect on long-term kidney replacement therapy demand. FUNDING: RaDaR is funded by the Medical Research Council, Kidney Research UK, Kidney Care UK, and the Polycystic Kidney Disease Charity.


Assuntos
Falência Renal Crônica , Insuficiência Renal Crônica , Insuficiência Renal , Humanos , Taxa de Filtração Glomerular , Rim , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/terapia , Falência Renal Crônica/etiologia , Radar , Doenças Raras , Sistema de Registros , Insuficiência Renal/epidemiologia , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/complicações , Reino Unido/epidemiologia , Recém-Nascido , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA