Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.939
Filtrar
1.
Cancer Radiother ; 28(5): 463-473, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39304401

RESUMO

Ultra-high dose rate external beam radiotherapy (UHDR-RT) uses dose rates of several tens to thousands of Gy/s, compared with the dose rate of the order of a few Gy/min for conventional radiotherapy techniques, currently used in clinical practice. The use of such dose rate is likely to improve the therapeutic index by obtaining a radiobiological effect, known as the "FLASH" effect. This would maintain tumor control while enhancing tissues protection. To date, this effect has been achieved using beams of electrons, photons, protons, and heavy ions. However, the conditions required to achieve this "FLASH" effect are not well defined, and raise several questions, particularly with regard to the definition of the prescription, including dose fractionation, irradiated volume and the temporal structure of the pulsed beam. In addition, the dose delivered over a very short period induces technical challenges, particularly in terms of detectors, which must be mastered to guarantee safe clinical implementation. IRSN has carried out an in-depth literature review of the UHDR-RT technique, covering various aspects relating to patient radiation protection: the radiobiological mechanisms associated with the FLASH effect, the used temporal structure of the UHDR beams, accelerators and dose control, the properties of detectors to be used with UHDR beams, planning, clinical implementation, and clinical studies already carried out or in progress.


Assuntos
Neoplasias , Dosagem Radioterapêutica , Humanos , Neoplasias/radioterapia , Proteção Radiológica/métodos , Órgãos em Risco/efeitos da radiação , Fótons/uso terapêutico , Fracionamento da Dose de Radiação , Radioterapia de Alta Energia/métodos , Elétrons/uso terapêutico , Terapia com Prótons/métodos
2.
Phys Med Biol ; 69(17)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39136312

RESUMO

Objective.We demonstrate detection of high energy particle current (HEC) for MeV therapeutic electron beams. Detection of HEC comprises of remote sensing or acquiring information about HEC inside radiation transport medium from a distance outside of the medium.Approach.HEC is self-propelled motion of charged particles through a radiation transport medium. Remote sensing of HEC is embodied in an experimental setup, which includes homogeneous and heterogeneous phantoms irradiated with 4-15 MeV electron beams and two large area parallel-plane electrodes extraneous to the phantoms providing two-parameter detection. We also introduce a new type of scanning method (depth-scan) for probing object properties along the beamline axis.Main Results.Deterministic radiation transport simulations and measurements agree, considering differences in simulation vs experimental geometry and experimental uncertainties.Significance.This method may be suitable for range detection of charged particle beams, or for probing of radiation opaque objects in non-destructive testing.


Assuntos
Elétrons , Imagens de Fantasmas , Tecnologia de Sensoriamento Remoto/instrumentação , Tecnologia de Sensoriamento Remoto/métodos , Radioterapia de Alta Energia
3.
Med Phys ; 51(9): 6390-6401, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38772134

RESUMO

BACKGROUND: The extremely fast delivery of doses with ultra high dose rate (UHDR) beams necessitates the investigation of novel approaches for real-time dosimetry and beam monitoring. This aspect is fundamental in the perspective of the clinical application of FLASH radiotherapy (FLASH-RT), as conventional dosimeters tend to saturate at such extreme dose rates. PURPOSE: This study aims to experimentally characterize newly developed silicon carbide (SiC) detectors of various active volumes at UHDRs and systematically assesses their response to establish their suitability for dosimetry in FLASH-RT. METHODS: SiC PiN junction detectors, recently realized and provided by STLab company, with different active areas (ranging from 4.5 to 10 mm2) and thicknesses (10-20 µm), were irradiated using 9 MeV UHDR pulsed electron beams accelerated by the ElectronFLASH linac at the Centro Pisano for FLASH Radiotherapy (CPFR). The linearity of the SiC response as a function of the delivered dose per pulse (DPP), which in turn corresponds to a specific instantaneous dose rate, was studied under various experimental conditions by measuring the produced charge within the SiC active layer with an electrometer. Due to the extremely high peak currents, an external customized electronic RC circuit was built and used in conjunction with the electrometer to avoid saturation. RESULTS: The study revealed a linear response for the different SiC detectors employed up to 21 Gy/pulse for SiC detectors with 4.5 mm2/10 µm active area and thickness. These values correspond to a maximum instantaneous dose rate of 5.5 MGy/s and are indicative of the maximum achievable monitored DPP and instantaneous dose rate of the linac used during the measurements. CONCLUSIONS: The results clearly demonstrate that the developed devices exhibit a dose-rate independent response even under extreme instantaneous dose rates and dose per pulse values. A systematic study of the SiC response was also performed as a function of the applied voltage bias, demonstrating the reliability of these dosimeters with UHDR also without any applied voltage. This demonstrates the great potential of SiC detectors for accurate dosimetry in the context of FLASH-RT.


Assuntos
Compostos Inorgânicos de Carbono , Elétrons , Radiometria , Compostos de Silício , Compostos Inorgânicos de Carbono/química , Compostos de Silício/química , Radiometria/instrumentação , Dosagem Radioterapêutica , Radioterapia de Alta Energia/instrumentação
4.
Med Phys ; 51(9): 6412-6422, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38772041

RESUMO

BACKGROUND: The use of electron beams has been rekindled by the advent of ultra-high-dose rate radiotherapy (FLASH) and very high energy electrons (VHEE). The need for development of novel technology for beam monitoring and dosimetry of such beams is of paramount importance prior to their clinical translation. PURPOSE: In this work we explore the potential of a multi-layer nanoporous aerogel High-Energy-Current (HEC) detector as a dosimeter for electron beam. The detector does not suffer from radiation damage or signal saturation, making it suitable for very-high-dose-rate applications. Standard dose rates and energies are used to establish reference for FLASH and VHEE. We explore detector response to electron energy and residual range both experimentally and computationally. METHODS: Multilayer HEC detectors were constructed using 1×-10× basic modules of Aluminum(Al)_aerogel(A)_Tantalum(Ta) with 10-70 µm layer thicknesses. Signals are collected from all electrodes (3-21, depending on module multiplicity) with zero external voltage bias. Measurements are acquired as a function of depth(z) in water equivalent plastic using Varian TrueBeam for energies E = 6,9,12,15 MeV (SAD = 105 cm, 6 × 6 cone, 1000 MU/min). Computational simulations of identical detector geometries are performed using the 1D deterministic code CEPXS/ONEDANT. Additionally, percent-depth-doses PDD(z), measured with diode in water, are used to explore the response of HEC for various energies and residual ranges. RESULTS: The current measured from Ta electrodes resembles the shape of deposited charges in water and it is proportional to the derivative of the clinical PDD corrected for contribution from photon contamination. The signal is positive on the surface, and it decreases with depth reaching a negative local minimum at z = R50, before increasing again, reaching zero at about the practical range z = Rp. In contrast, the signal from Al electrodes is shaped like the electron PDD(z) shape but with lower signal at the surface and higher bremsstrahlung tail. By subtracting the signal from Ta and Al electrodes we obtained a curve resembling PDD(z,E) after Bremsstrahlung contamination correction. CONCLUSIONS: Multi-layer HEC sensors exhibit characteristic responses to electron beams that are unlike responses of ion chambers or diodes. Since the sensor structures are sensitive to electronic disequilibrium, high-Z electrodes give a signal proportional to the charge deposition pattern and can be modeled using the derivative of PDD(z).


Assuntos
Elétrons , Radiometria , Radiometria/instrumentação , Radioterapia de Alta Energia/instrumentação , Desenho de Equipamento
5.
Sci Rep ; 14(1): 11120, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750131

RESUMO

Very High Energy Electron (VHEE) beams are a promising alternative to conventional radiotherapy due to their highly penetrating nature and their applicability as a modality for FLASH (ultra-high dose-rate) radiotherapy. The dose distributions due to VHEE need to be optimised; one option is through the use of quadrupole magnets to focus the beam, reducing the dose to healthy tissue and allowing for targeted dose delivery at conventional or FLASH dose-rates. This paper presents an in depth exploration of the focusing achievable at the current CLEAR (CERN Linear Electron Accelerator for Research) facility, for beam energies >200 MeV. A shorter, more optimal quadrupole setup was also investigated using the TOPAS code in Monte Carlo simulations, with dimensions and beam parameters more appropriate to a clinical situation. This work provides insight into how a focused VHEE radiotherapy beam delivery system might be achieved.


Assuntos
Elétrons , Método de Monte Carlo , Dosagem Radioterapêutica , Humanos , Aceleradores de Partículas/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia/métodos , Radioterapia de Alta Energia/métodos , Radioterapia de Alta Energia/instrumentação
6.
Int J Radiat Oncol Biol Phys ; 119(4): 1317-1325, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552990

RESUMO

PURPOSE: In this study, a C-series linear accelerator was configured to enable rapid and reliable conversion between the production of conventional electron beams and an ultrahigh-dose-rate (UHDR) electron beamline to the treatment room isocenter for FLASH radiation therapy. Efforts to tune the beam resulted in a consistent, stable UHDR beamline. METHODS AND MATERIALS: The linear accelerator was configured to allow for efficient switching between conventional and modified electron output modes within 2 minutes. Additions to the air system allow for retraction of the x-ray target from the beamline when the 10 MV photon mode is selected. With the carousel set to an empty port, this grants access to the higher current pristine electron beam normally used to produce clinical photon fields. Monitoring signals related to the automatic frequency control system allows for tuning of the waveguide while the machine is in a hold state so a stable beam is produced from the initial pulse. A pulse counting system implemented on an field-programmable gate array-based controller platform controls the delivery to a desired number of pulses. Beam profiles were measured with Gafchromic film. Pulse-by-pulse dosimetry was measured using a custom electrometer designed around the EDGE diode. RESULTS: This method reliably produces a stable UHDR electron beam. Open-field measurements of the 16-cm full-width, half-maximum gaussian beam saw average dose rates of 432 Gy/s at treatment isocenter. Pulse overshoots were limited and ramp up was eliminated. Over the last year, there have been no recorded incidents that resulted in machine downtime due to the UHDR conversions. CONCLUSIONS: Stable 10 MeV UHDR beams were generated to produce an average dose rate of 432 Gy/s at the treatment room isocenter. With a reliable pulse-counting beam control system, consistent doses can be delivered for FLASH experiments with the ability to accommodate a wide range of field sizes, source-to-surface distances, and other experimental apparatus that may be relevant for future clinical translation.


Assuntos
Elétrons , Aceleradores de Partículas , Fótons , Aceleradores de Partículas/instrumentação , Elétrons/uso terapêutico , Fótons/uso terapêutico , Desenho de Equipamento , Dosagem Radioterapêutica , Fatores de Tempo , Radioterapia de Alta Energia/instrumentação , Radioterapia de Alta Energia/métodos
7.
Phys Med Biol ; 69(8)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38478998

RESUMO

Objective. Very high energy electrons (VHEE) in the range of 50-250 MeV are of interest for treating deep-seated tumours with FLASH radiotherapy (RT). This approach offers favourable dose distributions and the ability to deliver ultra-high dose rates (UHDR) efficiently. To make VHEE-based FLASH treatment clinically viable, a novel beam monitoring technology is explored as an alternative to transmission ionisation monitor chambers, which have non-linear responses at UHDR. This study introduces the fibre optic flash monitor (FOFM), which consists of an array of silica optical fibre-based Cherenkov sensors with a photodetector for signal readout.Approach. Experiments were conducted at the CLEAR facility at CERN using 200 MeV and 160 MeV electrons to assess the FOFM's response linearity to UHDR (characterised with radiochromic films) required for FLASH radiotherapy. Beam profile measurements made on the FOFM were compared to those using radiochromic film and scintillating yttrium aluminium garnet (YAG) screens.Main results. A range of photodetectors were evaluated, with a complementary-metal-oxide-semiconductor (CMOS) camera being the most suitable choice for this monitor. The FOFM demonstrated excellent response linearity from 0.9 Gy/pulse to 57.4 Gy/pulse (R2= 0.999). Furthermore, it did not exhibit any significant dependence on the energy between 160 MeV and 200 MeV nor the instantaneous dose rate. Gaussian fits applied to vertical beam profile measurements indicated that the FOFM could accurately provide pulse-by-pulse beam size measurements, agreeing within the error range of radiochromic film and YAG screen measurements, respectively.Significance. The FOFM proves to be a promising solution for real-time beam profile and dose monitoring for UHDR VHEE beams, with a linear response in the UHDR regime. Additionally it can perform pulse-by-pulse beam size measurements, a feature currently lacking in transmission ionisation monitor chambers, which may become crucial for implementing FLASH radiotherapy and its associated quality assurance requirements.


Assuntos
Elétrons , Radioterapia de Alta Energia , Dosagem Radioterapêutica , Tecnologia de Fibra Óptica , Radiometria/métodos
8.
Radiother Oncol ; 194: 110177, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38378075

RESUMO

PURPOSE: Clinical translation of FLASH-radiotherapy (RT) to deep-seated tumours is still a technological challenge. One proposed solution consists of using ultra-high dose rate transmission proton (TP) beams of about 200-250 MeV to irradiate the tumour with the flat entrance of the proton depth-dose profile. This work evaluates the dosimetric performance of very high-energy electron (VHEE)-based RT (50-250 MeV) as a potential alternative to TP-based RT for the clinical transfer of the FLASH effect. METHODS: Basic physics characteristics of VHEE and TP beams were compared utilizing Monte Carlo simulations in water. A VHEE-enabled research treatment planning system was used to evaluate the plan quality achievable with VHEE beams of different energies, compared to 250 MeV TP beams for a glioblastoma, an oesophagus, and a prostate cancer case. RESULTS: Like TP, VHEE above 100 MeV can treat targets with roughly flat (within ± 20 %) depth-dose distributions. The achievable dosimetric target conformity and adjacent organs-at-risk (OAR) sparing is consequently driven for both modalities by their lateral beam penumbrae. Electron beams of 400[500] MeV match the penumbra of 200[250] MeV TP beams and penumbra is increased for lower electron energies. For the investigated patient cases, VHEE plans with energies of 150 MeV and above achieved a dosimetric plan quality comparable to that of 250 MeV TP plans. For the glioblastoma and the oesophagus case, although having a decreased conformity, even 100 MeV VHEE plans provided a similar target coverage and OAR sparing compared to TP. CONCLUSIONS: VHEE-based FLASH-RT using sufficiently high beam energies may provide a lighter-particle alternative to TP-based FLASH-RT with comparable dosimetric plan quality.


Assuntos
Elétrons , Método de Monte Carlo , Neoplasias da Próstata , Terapia com Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Elétrons/uso terapêutico , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Próstata/radioterapia , Masculino , Neoplasias Esofágicas/radioterapia , Glioblastoma/radioterapia , Radioterapia de Alta Energia/métodos , Órgãos em Risco/efeitos da radiação , Radiometria/métodos
9.
Med Phys ; 51(8): 5746-5753, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38346088

RESUMO

BACKGROUND: Surface dose in megavoltage photon radiotherapy has a significant clinical impact on the skin-sparing effect. In previously published works, it was established that the presence of medium atomic number (Z) absorbers, such as tin, decreases the surface dose. It was concluded that high-Z absorbers, such as lead, increase the surface dose, relative to medium-Z absorbers, due to the increased contributions from photoelectrons and electron-positron pairs. PURPOSE: The purpose of this investigation is to revisit these conclusions in the context of photon beams from modern linacs. METHODS: A metric estimating the relative intensity of charged particles emitted in the forward direction, I f ${I}_f$ , was proposed using cross-sections for the photon interactions. The I f ${I}_f$ values were calculated for various absorbers using energy spectra of 6 and 10 MV photon beams from a Varian TrueBeam linac. Monte Carlo (MC) simulations were performed using TOPAS MC code to calculate the surface dose for various absorbers. Surface dose measurements were performed with 6 and 10 MV photon beams with tin and lead absorbers. RESULTS: The I f ${I}_f$ values were found to decrease as a function of Z for both 6 and 10 MV photon beams indicating that the surface dose from electrons emitted in the forward direction consistently decreases with increasing Z. With the increasing Z of the absorbers, both experimental and MC-calculated surface dose decreased without exhibiting a minimum at medium-Z absorbers. The surface dose for lead and tin was determined to be within 1% of each other for both 6 and 10 MV photon beams using MC simulations and experimental measurements. Therefore, no statistically significant difference in surface dose was found between the tin and lead absorbers disproving the presence of any minima in the surface dose versus the Z curve as has been reported in the literature. CONCLUSIONS: Surface dose for modern photon beams can be reduced using both medium and high Z absorbers since a consistent decrease in surface dose was found with increasing absorber Z.


Assuntos
Método de Monte Carlo , Fótons , Fótons/uso terapêutico , Dosagem Radioterapêutica , Doses de Radiação , Aceleradores de Partículas , Radioterapia de Alta Energia/métodos
10.
J Appl Clin Med Phys ; 25(1): e14232, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38088260

RESUMO

PURPOSE: This study aims to assess the accuracy of a modified electron beam calibration based on the IAEA TRS-398 and AAPM-TG-51 in multicenter radiotherapy. METHODS: This study was performed using the Elekta and Varian Linear Accelerator electron beams with energies of 4-22 MeV under reference conditions using cylindrical (PTW 30013, IBA FC65-G, and IBA FC65-P) and parallel-plate (PTW 34045, PTW 34001, and IBA PPC-40) chambers. The modified calibration used a cylindrical chamber and an updated k ' Q $k{^{\prime}}_Q$ based on Monte Carlo calculations, whereas TRS-398 and TG-51 used cylindrical and parallel-plate chambers for reference dosimetry. The dose ratio of the modified calibration procedure, TRS-398 and TG-51 were obtained by comparing the dose at the maximum depth of the modified calibration to TRS-398 and TG-51. RESULTS: The study found that all cylindrical chambers' beam quality conversion factors determined with the modified calibration ( k ' Q ) $( {{{k^{\prime}}}_Q} )$ to the TRS-398 and TG-51 vary from 0.994 to 1.003 and 1.000 to 1.010, respectively. The dose ratio of modified/TRS-398cyl and modified/TRS-398parallel-plate, the variation ranges were 0.980-1.014 and 0.981-1.019, while for the counterpart modified/TG-51cyl was found varying between 0.991 and 1.017 and the ratio of modified/TG-51parallel-plate varied in the range of 0.981-1.019. CONCLUSION: This multi-institutional study analyzed a modified calibration procedure utilizing new data for electron beam calibrations at multiple institutions and evaluated existing calibration protocols. Based on observed variations, the current calibration protocols should be updated with detailed metrics on the stability of linac components.


Assuntos
Elétrons , Fenilpropionatos , Radioterapia de Alta Energia , Humanos , Radioterapia de Alta Energia/métodos , Calibragem , Água , Radiometria/métodos , Fótons
11.
Radiat Prot Dosimetry ; 199(15-16): 1829-1833, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819352

RESUMO

Response of personal dosemeters to high energy photon radiation is of great interest nowadays due to a spread of new radiation technologies and the expansion of occupational exposure domains. ICRU95 publication has expanded the range of relevant photon energies upwards, setting new horizons for individual monitoring. Beryllium oxide (BeO) material is increasingly popular due to its excellent optically stimulated luminescence (OSL) properties, simple readout and reasonable energy response in the low energy (below 100 keV) range. The study considers energy dependence of OSL response at higher photon energies. Energy deposition of monoenergetic photons with energy up to 15 MeV in the BeO chips of various thickness was modeled with Monte Carlo MCNP 6.2 code. Benchmark experiments were conducted at LINAC with high voltage of 6, 10 and 15 MV resulting in respective incident photon spectra. The findings of this study add knowledge regarding behavior of BeO personal dosemeters in the photon fields within the energy range above 3 MeV.


Assuntos
Luminescência , Fótons , Radioterapia de Alta Energia , Método de Monte Carlo
12.
Phys Med Biol ; 68(22)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37797651

RESUMO

Ultra-short electron beams are used as ultra-fast radiation source for radiobiology experiments aiming at very high energy electron beams (VHEE) radiotherapy with very high dose rates. Laser plasma accelerators are capable of producing electron beams as short as 1 fs and with tunable energy from few MeV up to multi-GeV with compact footprint. This makes them an attractive source for applications in different fields, where the ultra-short (fs) duration plays an important role. The time dynamics of the dose deposited by electron beams with energies in the range 50-250 MeV have been studied and the results are presented here. The results set a quantitative limit to the maximum dose rate at which the electron beams can impart dose.


Assuntos
Elétrons , Aceleradores de Partículas , Método de Monte Carlo , Lasers , Radioterapia de Alta Energia , Dosagem Radioterapêutica , Radiometria/métodos
13.
PLoS One ; 18(10): e0293191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37871021

RESUMO

In this study, some confusing points about electron film dosimetry using white polystyrene suggested by international protocols were verified using a clinical linear accelerator (LINAC). According to international protocol recommendations, ionometric measurements and film dosimetry were performed on an SP34 slab phantom at various electron energies. Scaling factor analysis using ionometric measurements yielded a depth scaling factor of 0.923 and a fluence scaling factor of 1.019 at an electron beam energy of <10 MeV (i.e., R50 < 4.0 g/cm2). It was confirmed that the water-equivalent characteristics were similar because they have values similar to white polystyrene (i.e., depth scaling factor of 0.922 and fluence scaling factor of 1.019) presented in international protocols. Furthermore, percentage depth dose (PDD) curve analysis using film dosimetry showed that when the density thickness of the SP34 slab phantom was assumed to be water-equivalent, it was found to be most similar to the PDD curve measured using an ionization chamber in water as a reference medium. Therefore, we proved that the international protocol recommendation that no correction for measured depth dose is required means that no scaling factor correction for the plastic phantom is necessary. This study confirmed two confusing points that could occur while determining beam characteristics using electron film dosimetry, and it is expected to be used as basic data for future research on clinical LINACs.


Assuntos
Dosimetria Fotográfica , Poliestirenos , Dosimetria Fotográfica/métodos , Aceleradores de Partículas , Radioterapia de Alta Energia/métodos , Imagens de Fantasmas , Água , Radiometria/métodos
14.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445992

RESUMO

The survival fraction of epithelial HaCaT cells was analysed to assess the biological damage caused by intraoperative radiotherapy electron beams with varying energy spectra and intensities. These conditions were achieved by irradiating the cells at different depths in water using nominal 6 MeV electron beams while consistently delivering a dose of 5 Gy to the cell layer. Furthermore, a Monte Carlo simulation of the entire irradiation procedure was performed to evaluate the molecular damage in terms of molecular dissociations induced by the radiation. A significant agreement was found between the molecular damage predicted by the simulation and the damage derived from the analysis of the survival fraction. In both cases, a linear relationship was evident, indicating a clear tendency for increased damage as the averaged incident electron energy and intensity decreased for a constant absorbed dose, lowering the dose rate. This trend suggests that the radiation may have a more pronounced impact on surrounding healthy tissues than initially anticipated. However, it is crucial to conduct additional experiments with different target geometries to confirm this tendency and quantify the extent of this effect.


Assuntos
Células Epiteliais , Radioterapia de Alta Energia , Células HaCaT , Sobrevivência Celular , Elétrons , Humanos , Método de Monte Carlo , Radioterapia de Alta Energia/efeitos adversos , Células Epiteliais/efeitos da radiação , Relação Dose-Resposta à Radiação
15.
Med Phys ; 50(7): 4491-4504, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37227704

RESUMO

BACKGROUND: Electrons with kinetic energy up to a few hundred MeV, also called very high energy electrons (VHEE), are currently considered a promising technique for the future of radiation therapy (RT) and in particular ultra-high dose rate (UHDR) therapy. However, the feasibility of a clinical application is still being debated and VHEE therapy remains an active area of research for which the optimal conformal technique is also yet to be determined. PURPOSE: In this work, we will apply two existing formalisms based on analytical Gaussian multiple-Coulomb scattering theory and Monte Carlo (MC) simulations to study and compare the electron and bremsstrahlung photon dose distributions arising from two beam delivery systems (passive scattering with or without a collimator or active scanning). METHODS: We therefore tested the application of analytical and MC models to VHEE beams and assessed their performance and parameterization in the energy range of 6-200 MeV. The optimized electron beam fluence, the bremsstrahlung, an estimation of central-axis and off-axis x-ray dose at the practical range and neutron contributions to the total dose, along with an extended parameterization for the photon dose model were developed, together with a comparison between double scattering (DS) and pencil beam scanning (PBS) techniques. MC simulations were performed with the TOPAS/Geant4 toolkit to verify the dose distributions predicted by the analytical calculations. RESULTS: The results for the clinical energy range (between 6 and 20 MeV) as well as for higher energies (VHEE range between 20 and 200 MeV) and for two treatment field sizes (5 × 5 and 10 × 10 cm2 ) are reported, showing a reasonable agreement with MC simulations with mean differences below 2.1%. The relative contributions of photons generated in the medium or by the scattering system along the central-axis (up to 50% of the total dose) are also illustrated, along with their relative variations with electron energy. CONCLUSIONS: The fast analytical models parametrized in this study allow an estimation of the amount of photons produced behind the practical range by a DS system with an accuracy lower than 3%, providing important information for the eventual design of a VHEE system. The results of this work could support future research on VHEE radiotherapy.


Assuntos
Elétrons , Planejamento da Radioterapia Assistida por Computador , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia de Alta Energia/métodos , Doses de Radiação , Método de Monte Carlo , Espalhamento de Radiação
16.
Z Med Phys ; 33(4): 601-617, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37202239

RESUMO

The SSRMP recommendations on reference dosimetry in kilovolt beams as used in radiation therapy were revised to establish current practice in Switzerland. The recommendations specify the dosimetry formalism, reference class dosimeter systems and conditions used for the calibration of low and medium energy x-ray beams. Practical guidance is provided on the determination of the beam quality specifier and all corrections required for converting instrument readings to absorbed dose to water. Guidance is also provided on the determination of relative dose under non-reference conditions and on the cross calibration of instruments. The effect of lack of electron equilibrium and influence of contaminant electrons when using thin window plane parallel chambers at x-ray tube potentials higher than 50kV is elaborated in an appendix. In Switzerland the calibration of the reference system used for dosimetry is regulated by law. METAS and IRA are the authorities providing this calibration service to the radiotherapy departments. The last appendix of these recommendations summarise this calibration chain.


Assuntos
Radiometria , Radioterapia de Alta Energia , Raios X , Planejamento da Radioterapia Assistida por Computador , Radiografia , Calibragem , Água
17.
Radiat Prot Dosimetry ; 199(7): 603-614, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-36928532

RESUMO

Treatment of cancer is carried out using photon beams from high-energy medical linear accelerators. Photo-neutrons are also produced as an unwanted by product in the process of dose delivery to the cancer patients during their radiation treatments. In the present study, photo-neutron dose equivalents (both thermal and fast components) per unit delivered gamma-photon dose were measured at different depths, as function of distances from iso-centre in patient plane, field sizes, wedge angles and at LINAC head for a 15-MV medical linear accelerator model Elekta Precise using multi-foil activation technique. The neutron dose equivalents determined for the above-mentioned parameters were found to be lower (<0.05%) in comparison with the therapeutic photon dose delivered and within the prescribed limits recommended by the national regulatory authority.


Assuntos
Nêutrons , Fótons , Humanos , Radioterapia de Alta Energia , Aceleradores de Partículas , Dosagem Radioterapêutica
18.
Acta cir. bras ; Acta cir. bras;38: e384123, 2023. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1519878

RESUMO

Purpose: To study the uptake capacity of cells from the reticuloendothelial system after irradiation with high-energy X-rays. Methods: Eighteen male Wistar rats were distributed in three groups: group A (n = 6): control, unirradiated animals studied alongside animals from group B; group B (n = 6) and group C (n = 6): animals irradiated and studied after 24 and 48 hours, respectively. The rats were anesthetized and placed on a 10 MV linear accelerator. Next, they were irradiated in the abdominal region, with 8 Gy. Twenty-four (groups A and B) and 48 hours later (group C), a colloidal carbon solution (1 mL/kg) was intravenously injected in the tail vein. Fifty minutes later, the spleens and livers were withdrawn and prepared to be studied. Kupffer cells and splenic macrophages containing carbon pigments were counted in an optical microscope. Arithmetic means were calculated for each group and compared among them. Results: X-rays were associated with a reduced number of Kupffer cells containing colloidal carbon, proliferation and enlargement of biliary ducts, hypoplasia, and hepatocyte necrosis. In the irradiated spleen, the colloidal carbon uptake was concentrated in the marginal zone around the white pulp, with an inexpressive uptake of pigments by macrophages from white and red pulps. Conclusions: The X-rays in the rat abdomen are associated with a reduction in the Kupffer cells uptake of colloidal carbon, hepatocyte disorders, bile duct proliferation, and splenic uptake of colloidal carbon concentrated in the marginal zone.


Assuntos
Animais , Ratos , Sistema Fagocitário Mononuclear , Radioterapia de Alta Energia , Células de Kupffer
19.
Igaku Butsuri ; 42(3): 149-155, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-36184425

RESUMO

Photo neutrons are generated from high-energy medical X-ray linacs via photo-nuclear reactions with the materials of target and collimator as well as therapeutic X-rays. Such photo neutrons sometimes make unwanted influences and are not negligible for the aspects of radiation protection and radiation control. In this article, fundamental principle of such photo-neutron generation is briefly explained. The side effects induced by the photo neutrons are summarized. In addition, some techniques of the detection and measurement of photo neutrons are introduced.


Assuntos
Nêutrons , Proteção Radiológica , Aceleradores de Partículas , Radioterapia de Alta Energia/métodos , Raios X
20.
Phys Med Biol ; 67(22)2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36170868

RESUMO

Objective. A calibration service based on a primary standard calorimeter for the direct determination of absorbed dose for proton beams does not exist. A new Code of Practice (CoP) for reference dosimetry of proton beams is being developed by a working party of the UK Institute of Physics and Engineering in Medicine (IPEM), which will recommend that ionisation chambers are calibrated directly in their clinical beams against the proposed Primary Standard Proton Calorimeter (PSPC) developed at the National Physical Laboratory (NPL). The aim of this work is to report on the use of the NPL PSPC to directly calibrate ionisation chambers in a low-energy passively scattered proton beam following recommendations of the upcoming IPEM CoP.Approach. A comparison between the dose derived using the proposed IPEM CoP and the IAEA TRS-398 protocol was performed, andkQvalues were determined experimentally for three types of chambers. In total, 9 plane-parallel and 3 cylindrical chambers were calibrated using the two protocols for two separate visits.Main results. The ratio of absorbed dose to water obtained with the PSPC and with ionisation chambers applying TRS-398 varied between 0.98 and 1.00, depending on the chamber type. The new procedure based on the PSPC provides a significant improvement in uncertainty where absorbed dose to water measured with a user chamber is reported with an uncertainty of 0.9% (1σ), whereas the TRS-398 protocol reports an uncertainty of 2.0% and 2.3% (1σ) for cylindrical and plane-parallel chambers, respectively. ThekQvalues found agree within uncertainties with those from TRS-398 and Monte Carlo calculations.Significance. The establishment of a primary standard calorimeter for the determination of absorbed dose in proton beams combined with the introduction of the associated calibration service following the IPEM recommendations will reduce the uncertainty and improve consistency in the dose delivered to patients.


Assuntos
Grafite , Radioterapia de Alta Energia , Humanos , Radioterapia de Alta Energia/métodos , Prótons , Dosagem Radioterapêutica , Radiometria/métodos , Calibragem , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA