Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.303
Filtrar
1.
BMJ Case Rep ; 17(8)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39174048

RESUMO

This report describes the symptoms of pesticide poisoning in a previously healthy teenage girl. After consuming unwashed grapes for several days, the girl developed the following symptoms: drowsiness, vomiting, truncal weakness and fasciculations in the tongue and hands. Blood tests confirmed exposure to a small amount of the organophosphate (OP) compound, a type of chemical found in certain pesticides. The girl was treated with supportive care and cholinesterase reactivators, which minimised the damage caused by OP poisoning. Within 48 hours, the girl's symptoms improved and she made a full recovery. This case highlights that OP poisoning can present without classic cholinergic crisis symptoms (SLUDGING), including miosis. Fasciculations, as observed in this case, are a significant clue to the diagnosis.


Assuntos
Intoxicação por Organofosfatos , Vitis , Humanos , Feminino , Intoxicação por Organofosfatos/tratamento farmacológico , Intoxicação por Organofosfatos/diagnóstico , Índia , Adolescente , Vitis/intoxicação , Reativadores da Colinesterase/uso terapêutico , População Rural
2.
J Biochem Mol Toxicol ; 38(7): e23750, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952032

RESUMO

The treatment of organophosphate (OP) anticholinesterases currently lacks an effective oxime reactivator of OP-inhibited acetylcholinesterase (AChE) which can penetrate the blood-brain barrier (BBB). Our laboratories have synthesized novel substituted phenoxyalkyl pyridinium oximes and tested them for their ability to promote survival of rats challenged with lethal doses of nerve agent surrogates. These previous studies demonstrated the ability of some of these oximes to promote 24-h survival to rats challenged with a lethal level of highly relevant surrogates for sarin and VX. The reactivation of OP-inhibited AChE in peripheral tissues was likely to be a major contributor to their efficacy in survival of lethal OP challenges. In the present study, twenty of these novel oximes were screened in vitro for reactivation ability for AChE in rat skeletal muscle and serum using two nerve agent surrogates: phthalimidyl isopropyl methylphosphonate (PIMP, a sarin surrogate) and 4-nitrophenyl ethyl methylphosphonate (NEMP, a VX surrogate). The oximes demonstrated a range of 23%-102% reactivation of AChE in vitro across both tissue types. Some of the novel oximes tested in the present study demonstrated the ability to more effectively reactivate AChE in serum than the currently approved oxime, 2-PAM. Therefore, some of these novel oximes have the potential to reverse AChE inhibition in peripheral target tissues and contribute to survival efficacy.


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Reativadores da Colinesterase , Músculo Esquelético , Organofosfatos , Oximas , Animais , Oximas/farmacologia , Oximas/química , Ratos , Acetilcolinesterase/metabolismo , Acetilcolinesterase/sangue , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/toxicidade , Organofosfatos/toxicidade , Masculino , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Compostos de Piridínio/farmacologia , Ratos Sprague-Dawley
3.
Chem Biol Interact ; 399: 111138, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38992768

RESUMO

Oxidative stress status, as a disruption of redox homeostasis, in the blood sera of Wistar rats caused by repeated application of selected acetylcholinesterase reactivators - asoxime, obidoxime, K027, K048, K074, and K075 were evaluated. Throughout this study, each oxime in a dose of 0.1 of LD50/kg im was given 2x/week for 4 weeks. Then, seven days after the last oximes' application, markers of lipid peroxidation (malondialdehyde, MDA), and protein oxidation (advanced oxidation protein products, AOPP), as well as the activity of antioxidant enzymes (catalase, CAT, superoxide dismutase, SOD, reduced glutathione, GSH, and oxidized glutathione, GSSG), were determined. Oxidative stress parameters, MDA and AOPP were significantly highest in the K048-, K074- and K075-treated groups (p < 0.001). The activity of CAT was significantly elevated in the obidoxime-treated group (p < 0.05), while treatment with K027, K048, and K074 induced high elevation in SOD levels (p < 0.01, p < 0.001). Interestingly, the activity of GSH in each oxime-treated group was significantly elevated. Unlike, treatment with obidoxime caused elevation in GSSG levels (p < 0.01). As a continuation of our previously published data, these results assure that applied oximes following subacute treatment ameliorated the oxidative status and further adverse systemic toxic effects in rats.


Assuntos
Biomarcadores , Glutationa , Estresse Oxidativo , Oximas , Ratos Wistar , Animais , Estresse Oxidativo/efeitos dos fármacos , Oximas/farmacologia , Biomarcadores/sangue , Ratos , Masculino , Glutationa/sangue , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/sangue , Peroxidação de Lipídeos/efeitos dos fármacos , Catalase/metabolismo , Catalase/sangue , Malondialdeído/sangue , Malondialdeído/metabolismo , Reativadores da Colinesterase/farmacologia , Produtos da Oxidação Avançada de Proteínas/sangue , Antioxidantes/metabolismo , Antioxidantes/farmacologia
4.
Biomolecules ; 14(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38927082

RESUMO

New furan, thiophene, and triazole oximes were synthesized through several-step reaction paths to investigate their potential for the development of central nervous systems (CNS)-active and cholinesterase-targeted therapeutics in organophosphorus compound (OP) poisonings. Treating patients with acute OP poisoning is still a challenge despite the development of a large number of oxime compounds that should have the capacity to reactivate acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The activity of these two enzymes, crucial for neurotransmission, is blocked by OP, which has the consequence of disturbing normal cholinergic nerve signal transduction in the peripheral and CNS, leading to a cholinergic crisis. The oximes in use have one or two pyridinium rings and cross the brain-blood barrier poorly due to the quaternary nitrogen. Following our recent study on 2-thienostilbene oximes, in this paper, we described the synthesis of 63 heterostilbene derivatives, of which 26 oximes were tested as inhibitors and reactivators of AChE and BChE inhibited by OP nerve agents-sarin and cyclosarin. While the majority of oximes were potent inhibitors of both enzymes in the micromolar range, we identified several oximes as BChE or AChE selective inhibitors with the potential for drug development. Furthermore, the oximes were poor reactivators of AChE; four heterocyclic derivatives reactivated cyclosarin-inhibited BChE up to 70%, and cis,trans-5 [2-((Z)-2-(5-((E)-(hydroxyimino)methyl)thiophen-2-yl)vinyl)benzonitrile] had a reactivation efficacy comparable to the standard oxime HI-6. In silico analysis and molecular docking studies, including molecular dynamics simulation, connected kinetic data to the structural features of these oximes and confirmed their productive interactions with the active site of cyclosarin-inhibited BChE. Based on inhibition and reactivation and their ADMET properties regarding lipophilicity, CNS activity, and hepatotoxicity, these compounds could be considered for further development of CNS-active reactivators in OP poisoning as well as cholinesterase-targeted therapeutics in neurodegenerative diseases such as Alzheimer's and Parkinson's.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase , Simulação de Acoplamento Molecular , Oximas , Triazóis , Oximas/química , Oximas/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Butirilcolinesterase/metabolismo , Butirilcolinesterase/química , Acetilcolinesterase/metabolismo , Acetilcolinesterase/química , Humanos , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Estilbenos/química , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Estilbenos/síntese química , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/síntese química , Reativadores da Colinesterase/uso terapêutico , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo
5.
Bioorg Chem ; 150: 107526, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38878749

RESUMO

In this review, the current progress in the research and development of butyrylcholinesterase (BChE) reactivators is summarised and the advantages or disadvantages of these reactivators are critically discussed. Organophosphorus compounds such as nerve agents (sarin, tabun, VX) or pesticides (chlorpyrifos, diazinon) cause irreversible inhibition of acetylcholinesterase (AChE) and BChE in the human body. While AChE inhibition can be life threatening due to cholinergic overstimulation and crisis, selective BChE inhibition has presumably no adverse effects. Because BChE is mostly found in plasma, its activity is important for the scavenging of organophosphates before they can reach AChE in the central nervous system. Therefore, this enzyme in combination with its reactivator can be used as a pseudo-catalytic scavenger of organophosphates. Three structural types of BChE reactivators were found, i.e. bisquaternary salts, monoquaternary salts and uncharged compounds. Although the reviewed reactivators have certain limitations, the promising candidates for BChE reactivation were found in each structural group.


Assuntos
Butirilcolinesterase , Inibidores da Colinesterase , Compostos Organofosforados , Butirilcolinesterase/metabolismo , Butirilcolinesterase/química , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Humanos , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Estrutura Molecular , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Reativadores da Colinesterase/síntese química , Relação Estrutura-Atividade , Animais , Acetilcolinesterase/metabolismo , Acetilcolinesterase/química
6.
Chem Biol Interact ; 396: 111061, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38763347

RESUMO

Nerve agents pose significant threats to civilian and military populations. The reactivation of acetylcholinesterase (AChE) is critical in treating acute poisoning, but there is still lacking broad-spectrum reactivators, which presents a big challenge. Therefore, insights gained from the reactivation kinetic analysis and molecular docking are essential for understanding the behavior of reactivators towards intoxicated AChE. In this research, we present a systematic determination of the reactivation kinetics of three V agents-inhibited four human ChEs [(AChE and butyrylcholinesterase (BChE)) from either native or recombinant resources, namely, red blood cell (RBC) AChE, rhAChE, hBChE, rhBChE) reactivated by five standard oximes. We unveiled the effect of native and recombinant ChEs on the reactivation kinetics of V agents ex vitro, where the reactivation kinetics characteristic of Vs-inhibited BChE was reported for the first time. In terms of the inhibition type, all of the five oxime reactivators exhibited noncompetitive inhibition. The inhibition potency of these reactivators would not lead to the difference in the reactivation kinetics between native and recombinant ChE. Despite the significant differences between the native and recombinant ChEs observed in the inhibition, aging, and spontaneous reactivation kinetics, the reactivation kinetics of V agent-inhibited ChEs by oximes were less differentiated, which were supported by the ligand docking results. We also found differences in the reactivation efficiency between five reactivators and the phosphorylated enzyme, and molecular dynamic simulations can further explain from the perspectives of conformational stability, hydrogen bonding, binding free energies, and amino acid contributions. By Poisson-Boltzmann surface area (MM-PBSA) calculations, the total binding free energy trends aligned well with the experimental kr2 values.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase , Simulação de Acoplamento Molecular , Agentes Neurotóxicos , Oximas , Humanos , Oximas/farmacologia , Oximas/química , Cinética , Agentes Neurotóxicos/química , Agentes Neurotóxicos/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Acetilcolinesterase/metabolismo , Acetilcolinesterase/química , Butirilcolinesterase/metabolismo , Butirilcolinesterase/química , Simulação de Dinâmica Molecular , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
7.
Arch Toxicol ; 98(9): 2937-2952, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38789714

RESUMO

Six novel brominated bis-pyridinium oximes were designed and synthesized to increase their nucleophilicity and reactivation ability of phosphorylated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Their pKa was valuably found lower to parent non-halogenated oximes. Stability tests showed that novel brominated oximes were stable in water, but the stability of di-brominated oximes was decreased in buffer solution and their degradation products were prepared and characterized. The reactivation screening of brominated oximes was tested on AChE and BChE inhibited by organophosphorus surrogates. Two mono-brominated oximes reactivated AChE comparably to non-halogenated analogues, which was further confirmed by reactivation kinetics. The acute toxicity of two selected brominated oximes was similar to commercially available oxime reactivators and the most promising brominated oxime was tested in vivo on sarin- and VX-poisoned rats. This brominated oxime showed interesting CNS distribution and significant reactivation effectiveness in blood. The same oxime resulted with the best protective index for VX-poisoned rats.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase , Reativadores da Colinesterase , Agentes Neurotóxicos , Compostos Organotiofosforados , Oximas , Sarina , Animais , Oximas/farmacologia , Oximas/química , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Inibidores da Colinesterase/toxicidade , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/metabolismo , Acetilcolinesterase/efeitos dos fármacos , Butirilcolinesterase/metabolismo , Ratos , Masculino , Compostos Organotiofosforados/toxicidade , Sarina/toxicidade , Agentes Neurotóxicos/toxicidade , Ratos Wistar , Halogenação , Substâncias para a Guerra Química/toxicidade , Compostos de Piridínio/farmacologia , Estabilidade de Medicamentos
8.
Biomolecules ; 14(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38785995

RESUMO

Olesoxime, a cholesterol derivative with an oxime group, possesses the ability to cross the blood-brain barrier, and has demonstrated excellent safety and tolerability properties in clinical research. These characteristics indicate it may serve as a centrally active ligand of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), whose disruption of activity with organophosphate compounds (OP) leads to uncontrolled excitation and potentially life-threatening symptoms. To evaluate olesoxime as a binding ligand and reactivator of human AChE and BChE, we conducted in vitro kinetic studies with the active metabolite of insecticide parathion, paraoxon, and the warfare nerve agents sarin, cyclosarin, tabun, and VX. Our results showed that both enzymes possessed a binding affinity for olesoxime in the mid-micromolar range, higher than the antidotes in use (i.e., 2-PAM, HI-6, etc.). While olesoxime showed a weak ability to reactivate AChE, cyclosarin-inhibited BChE was reactivated with an overall reactivation rate constant comparable to that of standard oxime HI-6. Moreover, in combination with the oxime 2-PAM, the reactivation maximum increased by 10-30% for cyclosarin- and sarin-inhibited BChE. Molecular modeling revealed productive interactions between olesoxime and BChE, highlighting olesoxime as a potentially BChE-targeted therapy. Moreover, it might be added to OP poisoning treatment to increase the efficacy of BChE reactivation, and its cholesterol scaffold could provide a basis for the development of novel oxime antidotes.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Humanos , Butirilcolinesterase/metabolismo , Butirilcolinesterase/química , Acetilcolinesterase/metabolismo , Acetilcolinesterase/química , Ligantes , Oximas/química , Oximas/farmacologia , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Colestenonas/farmacologia , Colestenonas/química , Cinética , Sarina/química , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/antagonistas & inibidores , Antídotos/farmacologia , Antídotos/química , Colesterol/metabolismo , Colesterol/química , Compostos Organofosforados
9.
Chem Biol Interact ; 395: 110973, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38574837

RESUMO

The first organophosphorus nerve agent was discovered accidently during the development of pesticides, shortly after the first use of chemical weapons (chlorine, phosgene) on the battlefield during World War I. Despite the Chemical Weapons Convention banning these substances, they have still been employed in wars, terrorist attacks or political assassinations. Characterised by their high lethality, they target the nervous system by inhibiting the acetylcholinesterase (AChE) enzyme, preventing neurotransmission, which, if not treated rapidly, inevitably leads to serious injury or the death of the person intoxicated. The limited efficacy of current antidotes, known as AChE reactivators, pushes research towards new treatments. Numerous paths have been explored, from modifying the original pyridinium oximes to developing hybrid reactivators seeking a better affinity for the inhibited AChE. Another crucial approach resides in molecules more prone to cross the blood-brain barrier: uncharged compounds, bio-conjugated reactivators or innovative formulations. Our aim is to raise awareness on the threat and toxicity of organophosphorus nerve agents and to present the main synthetic efforts deployed since the first AChE reactivator, to tackle the task of efficiently treating victims of these chemical warfare agents.


Assuntos
Agentes Neurotóxicos , Compostos Organofosforados , Humanos , Agentes Neurotóxicos/toxicidade , Compostos Organofosforados/toxicidade , Animais , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/uso terapêutico , Reativadores da Colinesterase/química , Contramedidas Médicas , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/toxicidade , Substâncias para a Guerra Química/toxicidade , Antídotos/farmacologia , Antídotos/uso terapêutico , Oximas/farmacologia , Oximas/uso terapêutico , Oximas/química
10.
ACS Chem Neurosci ; 15(9): 1813-1827, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621296

RESUMO

Acetylcholinesterase (AChE) inhibition by organophosphorus (OP) compounds poses a serious health risk to humans. While many therapeutics have been tested for treatment after OP exposure, there is still a need for efficient reactivation against all kinds of OP compounds, and current oxime therapeutics have poor blood-brain barrier penetration into the central nervous system, while offering no recovery in activity from the OP-aged forms of AChE. Herein, we report a novel library of 4-amidophenol quinone methide precursors (QMP) that provide effective reactivation against multiple OP-inhibited forms of AChE in addition to resurrecting the aged form of AChE after exposure to a pesticide or some phosphoramidates. Furthermore, these QMP compounds also reactivate OP-inhibited butyrylcholinesterase (BChE) which is an in vivo, endogenous scavenger of OP compounds. The in vitro efficacies of these QMP compounds were tested for reactivation and resurrection of soluble forms of human AChE and BChE and for reactivation of cholinesterases within human blood as well as blood and brain samples from a humanized mouse model. We identify compound 10c as a lead candidate due to its broad-scope efficacy against multiple OP compounds as well as both cholinesterases. With methylphosphonates, compound 10c (250 µM, 1 h) shows >60% recovered activity from OEt-inhibited AChE in human blood as well as mouse blood and brain, thus highlighting its potential for future in vivo analysis. For 10c, the effective concentration (EC50) is less than 25 µM for reactivation of three different methylphosphonate-inhibited forms of AChE, with a maximum reactivation yield above 80%. Similarly, for OP-inhibited BChE, 10c has EC50 values that are less than 150 µM for two different methylphosphonate compounds. Furthermore, an in vitro kinetic analysis show that 10c has a 2.2- and 92.1-fold superior reactivation efficiency against OEt-inhibited and OiBu-inhibited AChE, respectively, when compared to an oxime control. In addition to 10c being a potent reactivator of AChE and BChE, we also show that 10c is capable of resurrecting (ethyl paraoxon)-aged AChE, which is another current limitation of oximes.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase , Reativadores da Colinesterase , Compostos Organofosforados , Animais , Inibidores da Colinesterase/farmacologia , Humanos , Acetilcolinesterase/metabolismo , Acetilcolinesterase/efeitos dos fármacos , Camundongos , Butirilcolinesterase/metabolismo , Compostos Organofosforados/farmacologia , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Indolquinonas/farmacologia
11.
Chem Res Toxicol ; 37(4): 643-657, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38556765

RESUMO

Organophosphorus (OP) nerve agents inhibit acetylcholinesterase (AChE), creating a cholinergic crisis in which death can occur. The phosphylated serine residue spontaneously dealkylates to the OP-aged form, which current therapeutics cannot reverse. Soman's aging half-life is 4.2 min, so immediate recovery (resurrection) of OP-aged AChE is needed. In 2018, we showed pyridin-3-ol-based quinone methide precursors (QMPs) can resurrect OP-aged electric eel AChE in vitro, achieving 2% resurrection after 24 h of incubation (pH 7, 4 mM). We prepared 50 unique 6-alkoxypyridin-3-ol QMPs with 10 alkoxy groups and five amine leaving groups to improve AChE resurrection. These compounds are predicted in silico to cross the blood-brain barrier and treat AChE in the central nervous system. This library resurrected 7.9% activity of OP-aged recombinant human AChE after 24 h at 250 µM, a 4-fold increase from our 2018 report. The best QMP (1b), with a 6-methoxypyridin-3-ol core and a diethylamine leaving group, recovered 20.8% (1 mM), 34% (4 mM), and 42.5% (predicted maximum) of methylphosphonate-aged AChE activity over 24 h. Seven QMPs recovered activity from AChE aged with Soman and a VX degradation product (EA-2192). We hypothesize that QMPs form the quinone methide (QM) to realkylate the phosphylated serine residue as the first step of resurrection. We calculated thermodynamic energetics for QM formation, but there was no trend with the experimental biochemical data. Molecular docking studies revealed that QMP binding to OP-aged AChE is not the determining factor for the observed biochemical trends; thus, QM formation may be enzyme-mediated.


Assuntos
Reativadores da Colinesterase , Indolquinonas , Intoxicação por Organofosfatos , Soman , Humanos , Idoso , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Compostos Organofosforados/farmacologia , Compostos Organofosforados/metabolismo , Serina , Oximas , Reativadores da Colinesterase/química
12.
Chem Biol Interact ; 394: 110941, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493910

RESUMO

The current study imposes a new class of organophosphorus (OP)-inhibited cholinesterase reactivators by conceptualizing a family of asymmetric bisoximes with various reactivating scaffolds. Several novel nucleophilic warheads were investigated, putting forward 29 novel reactivating options, by evaluating their nucleophilicity and ability to directly decompose OP compounds. Adopting the so-called zwitterionic strategy, 17 mono-oxime and nine bisoxime reactivators were discovered with major emphasis on the bifunctional-moiety approach. Compounds were compared with clinically used standards and other known experimentally highlighted reactivators. Our results clearly favor the concept of asymmetric bisoximes as leading reactivators in terms of efficacy and versatility. These top-ranked compounds were characterized in detail by reactivation kinetics parameters and evaluated for potential CNS availability. The highlighted molecules 55, 57, and 58 with various reactivating warheads, surpassed the reactivating potency of pralidoxime and several notable uncharged reactivators. The versatility of lead drug candidate 55 was also inspected on OP-inhibited butyrylcholinesterase, revealing a much higher rate compared to existing clinical antidotes.


Assuntos
Butirilcolinesterase , Reativadores da Colinesterase , Intoxicação por Organofosfatos , Oximas , Oximas/química , Oximas/farmacologia , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacologia , Butirilcolinesterase/metabolismo , Butirilcolinesterase/química , Humanos , Intoxicação por Organofosfatos/tratamento farmacológico , Acetilcolinesterase/metabolismo , Antídotos/química , Antídotos/farmacologia , Cinética , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Animais , Compostos Organofosforados/química
13.
Arch Toxicol ; 98(4): 1135-1149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446233

RESUMO

A-series agent A-234 belongs to a new generation of nerve agents. The poisoning of a former Russian spy Sergei Skripal and his daughter in Salisbury, England, in March 2018 led to the inclusion of A-234 and other A-series agents into the Chemical Weapons Convention. Even though five years have already passed, there is still very little information on its chemical properties, biological activities, and treatment options with established antidotes. In this article, we first assessed A-234 stability in neutral pH for subsequent experiments. Then, we determined its inhibitory potential towards human recombinant acetylcholinesterase (HssAChE; EC 3.1.1.7) and butyrylcholinesterase (HssBChE; EC 3.1.1.8), the ability of HI-6, obidoxime, pralidoxime, methoxime, and trimedoxime to reactivate inhibited cholinesterases (ChEs), its toxicity in rats and therapeutic effects of different antidotal approaches. Finally, we utilized molecular dynamics to explain our findings. The results of spontaneous A-234 hydrolysis showed a slow process with a reaction rate displaying a triphasic course during the first 72 h (the residual concentration 86.2%). A-234 was found to be a potent inhibitor of both human ChEs (HssAChE IC50 = 0.101 ± 0.003 µM and HssBChE IC50 = 0.036 ± 0.002 µM), whereas the five marketed oximes have negligible reactivation ability toward A-234-inhibited HssAChE and HssBChE. The acute toxicity of A-234 is comparable to that of VX and in the context of therapy, atropine and diazepam effectively mitigate A-234 lethality. Even though oxime administration may induce minor improvements, selected oximes (HI-6 and methoxime) do not reactivate ChEs in vivo. Molecular dynamics implies that all marketed oximes are weak nucleophiles, which may explain the failure to reactivate the A-234 phosphorus-serine oxygen bond characterized by low partial charge, in particular, HI-6 and trimedoxime oxime oxygen may not be able to effectively approach the A-234 phosphorus, while pralidoxime displayed low interaction energy. This study is the first to provide essential experimental preclinical data on the A-234 compound.


Assuntos
Reativadores da Colinesterase , Compostos de Pralidoxima , Taurina/análogos & derivados , Ratos , Humanos , Animais , Reativadores da Colinesterase/farmacologia , Trimedoxima/farmacologia , Butirilcolinesterase , Acetilcolinesterase , Oximas/farmacologia , Compostos de Piridínio/farmacologia , Antídotos/farmacologia , Inibidores da Colinesterase/toxicidade , Fósforo , Oxigênio
14.
Disaster Med Public Health Prep ; 18: e32, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38384185

RESUMO

Pralidoxime is the only oxime antidote to organophosphate poisoning stocked in the United Kingdom, produced by rational drug design in the 1950s. Typically, it is used alongside atropine, to reverse the effects of acetylcholinesterase inhibition. However, its efficacy has been questioned by recent meta-analyses of use treating attempted suicides in less economically developed countries, where organophosphate poisoning is more common. This policy analysis assesses the likely efficacy of pralidoxime in the United Kingdom, in scenarios largely different from those evaluated in meta-analyses. In all scenarios, the UK delay in antidote administration poses a major problem, as pralidoxime acts in a time-critical reactivation mechanism before "ageing" of acetylcholinesterase occurs. Additionally, changes in the organophosphates used today versus those pralidoxime was rationally designed to reverse, have reduced efficacy since the 1950s. Finally, the current dosage regimen may be insufficient. Therefore, one must re-evaluate our preparedness and approach to organophosphate poisoning in the United Kingdom.


Assuntos
Reativadores da Colinesterase , Intoxicação por Organofosfatos , Compostos de Pralidoxima , Humanos , Antídotos/uso terapêutico , Intoxicação por Organofosfatos/tratamento farmacológico , Acetilcolinesterase/uso terapêutico , Reativadores da Colinesterase/uso terapêutico , Reativadores da Colinesterase/farmacologia
15.
Toxicology ; 503: 153741, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311098

RESUMO

Organophosphate (OP) poisoning is currently treated with atropine, oximes and benzodiazepines. The nicotinic signs, i.e., respiratory impairment, can only be targeted indirectly via the use of oximes as reactivators of OP-inhibited acetylcholinesterase. Hence, compounds selectively targeting nicotinic acetylcholine receptors (nAChRs) might fundamentally improve current treatment options. The bispyridinium compound MB327 has previously shown some therapeutic effect against nerve agents in vitro and in vivo. Nevertheless, compound optimization was deemed necessary, due to limitations (e.g., toxicity and efficacy). The current study investigated a series of 4-tert-butyl bispyridinium compounds and of corresponding bispyridinium compounds without substituents in a rat diaphragm model using an indirect field stimulation technique. The length of the respective linker influenced the ability of the bispyridinium compounds to restore muscle function in rat hemidiaphragms. The current data show structure-activity relationships for a series of bispyridinium compounds and provide insight for future structure-based molecular modeling.


Assuntos
Reativadores da Colinesterase , Agentes Neurotóxicos , Intoxicação por Organofosfatos , Ratos , Animais , Oximas/farmacologia , Oximas/uso terapêutico , Agentes Neurotóxicos/toxicidade , Diafragma , Acetilcolinesterase/metabolismo , Compostos de Piridínio/farmacologia , Compostos de Piridínio/uso terapêutico , Relação Estrutura-Atividade , Intoxicação por Organofosfatos/tratamento farmacológico , Reativadores da Colinesterase/farmacologia , Inibidores da Colinesterase/farmacologia
16.
Chem Biol Interact ; 392: 110929, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417730

RESUMO

Despite the international convention on the prohibition of chemical weapons ratified in 1997, the threat of conflicts and terrorist attacks involving such weapons still exists. Among these, organophosphorus-nerve agents (OPs) inhibit cholinesterases (ChE) causing cholinergic syndrome. The reactivation of these enzymes is therefore essential to protect the poisoned people. However, these reactivating molecules, mainly named oximes, have major drawbacks with limited efficacy against some OPs and a non-negligible ChE inhibitor potential if administered at an inadequate dose, an effect that they are precisely supposed to mitigate. As a result, this project focused on assessing therapeutic efficacy, in mice, up to the NOAEL dose, the maximum dose of oxime that does not induce any observable toxic effect. NOAEL doses of HI-6 DMS, a reference oxime, and JDS364. HCl, a candidate reactivator, were assessed using dual-chamber plethysmography, with respiratory ventilation impairment as a toxicity criterion. Time-course modeling parameters and pharmacodynamic profiles, reflecting the interaction between the oxime and circulating ChE, were evaluated for treatments at their NOAEL and higher doses. Finally, the therapeutic potential against OPs poisoning was determined through the assessment of protective indices. For JDS364. HCl, the NOAEL dose corresponds to the smallest dose inducing the most significant therapeutic effect without causing any abnormality in ChE activity. In contrast, for HI-6 DMS, its therapeutic benefit was observed at doses higher than its NOAEL, leading to alterations in respiratory function. These alterations could not be directly correlated with ChE inhibition and had no adverse effects on survival. They are potentially attributed to the stimulation of non-enzymatic cholinergic targets by HI-6 DMS. Thus, the NOAEL appears to be an optimal dose for evaluating the efficacy of oximes, particularly when it can be linked to respiratory alterations effectively resulting from ChE inhibition.


Assuntos
Substâncias para a Guerra Química , Reativadores da Colinesterase , Agentes Neurotóxicos , Humanos , Camundongos , Animais , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/uso terapêutico , Reativadores da Colinesterase/química , Agentes Neurotóxicos/toxicidade , Nível de Efeito Adverso não Observado , Substâncias para a Guerra Química/toxicidade , Oximas/farmacologia , Oximas/uso terapêutico , Oximas/química , Compostos de Piridínio/farmacologia , Inibidores da Colinesterase/toxicidade , Inibidores da Colinesterase/química , Colinesterases , Acetilcolinesterase , Antídotos/farmacologia , Antídotos/uso terapêutico
17.
Int J Nanomedicine ; 19: 307-326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38229703

RESUMO

Introduction: Organophosphates are among the deadliest of known chemicals based on their ability to inactivate acetylcholinesterase in neuromuscular junctions and synapses of the central and peripheral nervous systems. The consequent accumulation of acetylcholine can produce severe acute toxicities and death. Oxime antidotes act by reactivating acetylcholinesterase with the only such reactivator approved for use in the United States being 2-pyridine aldoxime methyl chloride (a.k.a., pralidoxime or 2-PAM). However, this compound does not cross the blood-brain barrier readily and so is limited in its ability to reactivate acetylcholinesterase in the brain. Methods: We have developed a novel formulation of 2-PAM by encapsulating it within a nanocomplex designed to cross the blood-brain barrier via transferrin receptor-mediated transcytosis. This nanocomplex (termed scL-2PAM) has been subjected to head-to-head comparisons with unencapsulated 2-PAM in mice exposed to paraoxon, an organophosphate with anticholinesterase activity. Results and Discussion: In mice exposed to a sublethal dose of paraoxon, scL-2PAM reduced the extent and duration of cholinergic symptoms more effectively than did unencapsulated 2-PAM. The scL-2PAM formulation was also more effective than unencapsulated 2-PAM in rescuing mice from death after exposure to otherwise-lethal levels of paraoxon. Improved survival rates in paraoxon-exposed mice were accompanied by a higher degree of reactivation of brain acetylcholinesterase. Conclusion: Our data indicate that scL-2PAM is superior to the currently used form of 2-PAM in terms of both mitigating paraoxon toxicity in mice and reactivating acetylcholinesterase in their brains.


Assuntos
Inibidores da Colinesterase , Reativadores da Colinesterase , Paraoxon , Compostos de Pralidoxima , Animais , Camundongos , Acetilcolinesterase/metabolismo , Encéfalo/metabolismo , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Organofosfatos , Oximas/farmacologia , Oximas/química , Paraoxon/toxicidade , Paraoxon/química , Compostos de Pralidoxima/química , Compostos de Pralidoxima/farmacologia
18.
J Neurochem ; 168(4): 370-380, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36786545

RESUMO

Millions of individuals globally suffer from inadvertent, occupational or self-harm exposures from organophosphate (OP) insecticides, significantly impacting human health. Similar to nerve agents, insecticides are neurotoxins that target and inhibit acetylcholinesterase (AChE) in central and peripheral synapses in the cholinergic nervous system. Post-exposure therapeutic countermeasures generally include administration of atropine with an oxime to reactivate the OP-inhibited AChE. However, animal model studies and recent clinical trials using insecticide-poisoned individuals have shown minimal clinical benefits of the currently approved oximes and their efficacy as antidotes has been debated. Currently used oximes either reactivate poorly, do not readily cross the blood-brain barrier (BBB), or are rapidly cleared from the circulation and must be repeatedly administered. Zwitterionic oximes of unbranched and simplified structure, for example RS194B, have been developed that efficiently cross the BBB resulting in reactivation of OP-inhibited AChE and dramatic reversal of severe clinical symptoms in mice and macaques exposed to OP insecticides or nerve agents. Thus, a single IM injection of RS194B has been shown to rapidly restore blood AChE and butyrylcholinesterase (BChE) activity, reverse cholinergic symptoms, and prevent death in macaques following lethal inhaled sarin and paraoxon exposure. The present macaque studies extend these findings and assess the ability of post-exposure RS194B treatment to counteract oral poisoning by highly toxic diethylphosphorothioate insecticides such as parathion and chlorpyrifos. These OPs require conversion by P450 in the liver of the inactive thions to the active toxic oxon forms, and once again demonstrated RS194B efficacy to reactivate and alleviate clinical symptoms within 60 mins of a single IM administration. Furthermore, when delivered orally, the Tmax of RS194B at 1-2 h was in the same range as those administered IM but were maintained in the circulation for longer periods greatly facilitating the use of RS194B as a non-invasive treatment, especially in isolated rural settings.


Assuntos
Acetamidas , Clorpirifos , Reativadores da Colinesterase , Inseticidas , Agentes Neurotóxicos , Paration , Animais , Camundongos , Acetilcolinesterase/química , Butirilcolinesterase/química , Clorpirifos/toxicidade , Inibidores da Colinesterase/química , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacologia , Inseticidas/toxicidade , Macaca , Compostos Organofosforados/toxicidade , Oximas/farmacologia , Oximas/química , Oximas/uso terapêutico , Paration/efeitos adversos , Paration/toxicidade
19.
Chem Biol Interact ; 387: 110789, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37931869

RESUMO

The kinetic analysis of esterase inhibition by acylating compounds (organophosphorus, carbamates and sulfonylfluorides) sometimes cannot yield consistent results by fitting simple inhibition kinetic models to experimental data of complex systems. In this work kinetic data were obtained for demeton-S-methyl (DSM) with human acetylcholinesterase in two kinds of experiments: (a) time progressive inhibition with a range of concentrations, (b) progressive spontaneous reactivation starting with pre-inhibited enzyme. DSM is an organophosphorus compound used as pesticide and considered a model for studying the dermal exposure of nerve agents such as VX gas. A kinetic model equation was deduced with four different molecular phenomena occurring simultaneously: (1) inhibition; (2) spontaneous reactivation; (3) aging; and (4) ongoing inhibition (inhibition during the substrate reaction). A 3D fit of the model was applied to analyze the inhibition experimental data. The best-fitting model is compatible with a sensitive enzymatic entity. The second-order rate constant of inhibition (ki = 0.0422 µM-1 min-1), the spontaneous reactivation constant (ks = 0.0202 min-1) and the aging constant (kg = 0.0043 min-1) were simultaneously estimated. As an example for testing the model and approach, it was tested also in the presence of 5 % ethanol (conditions as previously used in the literature), the best fitting model is compatible with two apparent sensitive enzymatic entities (17 % and 83 %) and only one spontaneously reactivates and ages. The corresponding second-order rate constants of inhibition (ki = 0.0354 and 0.0119 µM-1 min-1) and the spontaneous reactivation and aging constants for the less sensitive component (kr = 0.0203 min-1 and kg = 0.0088 min-1) were estimated. The results were also consistent with a significant ongoing inhibition. These parameters were similar to those deduced in spontaneous reactivation experiments of the pre-inhibited samples with DSM in the absence or presence of ethanol. The two apparent components fit was interpreted by an equilibrium between ethanol-free and ethanol-bound enzyme. The consistency of results in inhibition and in spontaneous reactivation experiments was considered an internal validation of the methodology and the conclusions.


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Reativadores da Colinesterase , Organofosfatos , Humanos , Acetilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Reativadores da Colinesterase/farmacologia , Etanol , Cinética , Oximas/química , Ativação Enzimática , Organofosfatos/farmacologia
20.
Toxicol Lett ; 391: 26-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048886

RESUMO

The bispyridinium oxime HI-6 DMS is in development as an improved therapy for the treatment of patients exposed to organophosphorus nerve agents. The aim of the work described in this paper was to provide non-clinical data to support regulatory approval of HI-6 DMS, by demonstrating efficacy against an oxime-sensitive agent, GB and an oxime-resistant agent, GD. We investigated the dose-dependent protection afforded by therapy including atropine, avizafone and HI-6 DMS in guinea-pigs challenged with GB or GD. We also compared the efficacy of 30 mg.kg-1 of HI-6 DMS to an equimolar dose of the current in-service oxime P2S and the dichloride salt of HI-6 (HI-6 Cl2). In the treatment of GB or GD poisoning there was no significant difference between the salt forms. The most effective dose of HI-6 DMS in preventing lethality following challenge with GB was 100 mg.kg-1; though protection ratios of at least 25 were obtained at 10 mg.kg-1. Protection against GD was lower, and there was no significant increase in effectiveness of HI-6 DMS doses of 30 or 100 mg.kg-1. For GD, the outcome was improved by the addition of pyridostigmine pre-treatment. These data demonstrate the benefits of HI-6 DMS as a component of nerve agent therapy. © Crown copyright (2023), Dstl.


Assuntos
Substâncias para a Guerra Química , Reativadores da Colinesterase , Agentes Neurotóxicos , Humanos , Animais , Cobaias , Agentes Neurotóxicos/toxicidade , Oximas/uso terapêutico , Compostos de Piridínio/uso terapêutico , Atropina/farmacologia , Atropina/uso terapêutico , Reativadores da Colinesterase/uso terapêutico , Substâncias para a Guerra Química/toxicidade , Antídotos/farmacologia , Antídotos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA