Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.618
Filtrar
1.
Zhen Ci Yan Jiu ; 49(5): 456-462, 2024 May 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38764116

RESUMO

OBJECTIVES: To observe effects of acupuncture at "Die E acupoint" on the protein expression levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear transcription factor κB (NF-κB), transcription factor T-bet (T-bet), and GATA-binding protein-3 (GATA-3) in the nasal mucosa and the serum contents of related inflammatory cytokines in rats with allergic rhinitis, so as to explore the mechanism of acupuncture in treating allergic rhinitis. METHODS: Twenty-four healthy SD rats were randomly divided into blank, model, acupuncture, and sham acupuncture groups, with 6 rats in each group. The rat model of allergic rhinitis was established by using ovalbumin induction. The rats in the acupuncture group received bilateral acupuncture at the "Die E acupoint" with a depth of 15-20 mm, while the rats in the sham acupuncture group received only sham acupuncture (light and shallow acupunture of the skin at the "Die E acupoint" ). Both interventions were performed once daily for a total of 6 days. Behavioral scores of rats in each group were recorded. Pathological changes of nasal mucosa were observed by H.E. staining. Serum contents of IgE, ovalbumin-specific IgE (OVA-sIgE), interferon(IFN)-γ, interleukin(IL)-4, IL-10 and IL-17 were measured by ELISA and the protein expression levels of T-bet, GATA-3, TLR4, MyD88 and NF-κB p65 in the nasal mucosa were detected by Western blot. RESULTS: After modeling, compared with the blank group, rats in the model group showed increased behavioral scores, serum IgE, OVA-sIgE, IL-4, and IL-17 contents, and nasal mucosal GATA-3, TLR4, MyD88, and NF-κB p65 protein expression levels (P<0.05), whereas the contents of serum IFN-γ, IL-10 and the protein expression level of T-bet in the nasal mucosa were decreased (P<0.05). Comparison between the EA and model groups showed that acupuncture intervention can decrease the behavioral scores of rats with allergic rhinitis, the contents of serum IgE, OVA-sIgE, IL-4, IL-17, and the protein expression levels of GATA-3, TLR4, MyD88, and NF-κB p65 in the nasal mucosa (P<0.05), and up-regulate the contents of serum IFN-γ, IL-10, and the nasal mucosal T-bet protein expression level. Sham acupuncture did not have a significant modulating effect on the above indicators. Inflammatory infiltration of nasal mucosa was seen in the model group and sham acupuncture, and the inflammatory reaction was milder in the acupuncture group. CONCLUSIONS: Acupuncture at "Die E acupoint" can alleviate the symptoms of allergic rhinitis and suppress the inflammation of nasal mucosa in rats, which may be related to inhibiting the TLR4/MyD88/NF-κB signaling and balancing the levels of cytokines of Th1/Th2 and Treg/Th17, and T-bet/GATA-3.


Assuntos
Pontos de Acupuntura , Terapia por Acupuntura , Fator 88 de Diferenciação Mieloide , NF-kappa B , Ratos Sprague-Dawley , Rinite Alérgica , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Ratos , Rinite Alérgica/terapia , Rinite Alérgica/imunologia , Rinite Alérgica/metabolismo , Rinite Alérgica/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , NF-kappa B/metabolismo , NF-kappa B/genética , NF-kappa B/imunologia , Masculino , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Feminino , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-4/metabolismo
2.
Front Immunol ; 15: 1286270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715610

RESUMO

Immunotherapy is renowned for its capacity to elicit anti-infective and anti-cancer effects by harnessing immune responses to microbial components and bolstering innate healing mechanisms through a cascade of immunological reactions. Specifically, mammalian Toll-like receptors (TLRs) have been identified as key receptors responsible for detecting microbial components. The discovery of these mammalian Toll-like receptors has clarified antigen recognition by the innate immune system. It has furnished a molecular foundation for comprehending the interplay between innate immunity and its anti-tumor or anti-infective capabilities. Moreover, accumulating evidence highlights the crucial role of TLRs in maintaining tissue homeostasis. It has also become evident that TLR-expressing macrophages play a central role in immunity by participating in the clearance of foreign substances, tissue repair, and the establishment of new tissue. This macrophage network, centered on macrophages, significantly contributes to innate healing. This review will primarily delve into innate immunity, specifically focusing on substances targeting TLR4.


Assuntos
Homeostase , Imunidade Inata , Macrófagos , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/imunologia , Humanos , Animais , Ligantes , Macrófagos/imunologia , Macrófagos/metabolismo , Transdução de Sinais
3.
Front Immunol ; 15: 1380732, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690283

RESUMO

Haemophilus parainfluenzae is a Gram-negative opportunist pathogen within the mucus of the nose and mouth without significant symptoms and has an ability to cause various infections ranging from ear, eye, and sinus to pneumonia. A concerning development is the increasing resistance of H. parainfluenzae to beta-lactam antibiotics, with the potential to cause dental infections or abscesses. The principal objective of this investigation is to utilize bioinformatics and immuno-informatic methodologies in the development of a candidate multi-epitope Vaccine. The investigation focuses on identifying potential epitopes for both B cells (B lymphocytes) and T cells (helper T lymphocytes and cytotoxic T lymphocytes) based on high non-toxic and non-allergenic characteristics. The selection process involves identifying human leukocyte antigen alleles demonstrating strong associations with recognized antigenic and overlapping epitopes. Notably, the chosen alleles aim to provide coverage for 90% of the global population. Multi-epitope constructs were designed by using suitable linker sequences. To enhance the immunological potential, an adjuvant sequence was incorporated using the EAAAK linker. The final vaccine construct, comprising 344 amino acids, was achieved after the addition of adjuvants and linkers. This multi-epitope Vaccine demonstrates notable antigenicity and possesses favorable physiochemical characteristics. The three-dimensional conformation underwent modeling and refinement, validated through in-silico methods. Additionally, a protein-protein molecular docking analysis was conducted to predict effective binding poses between the multi-epitope Vaccine and the Toll-like receptor 4 protein. The Molecular Dynamics (MD) investigation of the docked TLR4-vaccine complex demonstrated consistent stability over the simulation period, primarily attributed to electrostatic energy. The docked complex displayed minimal deformation and enhanced rigidity in the motion of residues during the dynamic simulation. Furthermore, codon translational optimization and computational cloning was performed to ensure the reliability and proper expression of the multi-Epitope Vaccine. It is crucial to emphasize that despite these computational validations, experimental research in the laboratory is imperative to demonstrate the immunogenicity and protective efficacy of the developed vaccine. This would involve practical assessments to ascertain the real-world effectiveness of the multi-epitope Vaccine.


Assuntos
Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T , Humanos , Epitopos de Linfócito T/imunologia , Biologia Computacional/métodos , Epitopos de Linfócito B/imunologia , Simulação de Acoplamento Molecular , Infecções por Haemophilus/prevenção & controle , Infecções por Haemophilus/imunologia , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/química , Desenvolvimento de Vacinas
4.
J Med Chem ; 67(9): 7458-7469, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38634150

RESUMO

Adjuvant is an integral part of all vaccine formulations but only a few adjuvants with limited efficacies or application scopes are available. Thus, developing more robust and diverse adjuvants is necessary. To this end, a new class of adjuvants having α- and ß-rhamnose (Rha) attached to the 1- and 6'-positions of monophosphoryl lipid A (MPLA) was designed, synthesized, and immunologically evaluated in mice. The results indicated a synergistic effect of MPLA and Rha, two immunostimulators that function via interacting with toll-like receptor 4 and recruiting endogenous anti-Rha antibodies, respectively. All the tested MPLA-Rha conjugates exhibited potent adjuvant activities to promote antibody production against both protein and carbohydrate antigens. Overall, MPLA-α-Rha exhibited better activities than MPLA-ß-Rha, and 6'-linked conjugates were slightly better than 1-linked ones. Particularly, MPLA-1-α-Rha and MPLA-6'-α-Rha were the most effective adjuvants in promoting IgG antibody responses against protein antigen keyhole limpet hemocyanin and carbohydrate antigen sTn, respectively.


Assuntos
Lipídeo A , Ramnose , Lipídeo A/análogos & derivados , Lipídeo A/química , Lipídeo A/farmacologia , Lipídeo A/imunologia , Animais , Ramnose/química , Ramnose/imunologia , Ramnose/farmacologia , Camundongos , Adjuvantes de Vacinas/química , Adjuvantes de Vacinas/farmacologia , Feminino , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/síntese química , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Camundongos Endogâmicos BALB C , Hemocianinas/química , Hemocianinas/imunologia
5.
Int J Biol Macromol ; 267(Pt 2): 131517, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621559

RESUMO

Infection with the hepatitis C virus (HCV) is one of the causes of liver cancer, which is the world's sixth most prevalent and third most lethal cancer. The current treatments do not prevent reinfection; because they are expensive, their usage is limited to developed nations. Therefore, a prophylactic vaccine is essential to control this virus. Hence, in this study, an immunoinformatics method was applied to design a multi-epitope vaccine against HCV. The best B- and T-cell epitopes from conserved regions of the E2 protein of seven HCV genotypes were joined with the appropriate linkers to design a multi-epitope vaccine. In addition, cholera enterotoxin subunit B (CtxB) was included as an adjuvant in the vaccine construct. This study is the first to present this epitopes-adjuvant combination. The vaccine had acceptable physicochemical characteristics. The vaccine's 3D structure was predicted and validated. The vaccine's binding stability with Toll-like receptor 2 (TLR2) and TLR4 was confirmed using molecular docking and molecular dynamics (MD) simulation. The immune simulation revealed the vaccine's efficacy by increasing the population of B and T cells in response to vaccination. In silico expression in Escherichia coli (E. coli) was also successful.


Assuntos
Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T , Hepacivirus , Hepatite C , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Hepacivirus/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Humanos , Biologia Computacional/métodos , Hepatite C/prevenção & controle , Hepatite C/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/química , Vacinas contra Hepatite Viral/imunologia , Vacinas contra Hepatite Viral/química , Simulação por Computador , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/química , Imunoinformática
6.
J Agric Food Chem ; 72(17): 9856-9866, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635925

RESUMO

The purpose of this study was to identify ovalbumin-derived immunomodulatory peptides by in vitro cell experiments, de novo sequencing, and molecular docking. Ovalbumin hydrolysates were prepared by two enzymes (alkaline protease and papain) individually, sequentially, or simultaneously, respectively. The simultaneous enzymatic hydrolysate (OVAH) had a high degree of hydrolysis (38.12 ± 0.48%) and exhibited immune-enhancing and anti-inflammatory activities. A total of 160 peptides were identified by LC-MS/MS in OVAH. Three novel peptides NVMEERKIK, ADQARELINS, and WEKAFKDE bound to TLR4-MD2 through hydrogen bonds and hydrophobic interactions with high binding affinity and binding energies of -181.40, -178.03, and -168.12 kcal/mol, respectively. These three peptides were synthesized and validated for two-way immunomodulatory activity. NVMEERKIK exhibiting the strongest immunomodulatory activity, increased NO and TNF-α levels by 128.69 and 38.01%, respectively, in normal RAW264.7 cells and reduced NO and TNF-α levels by 27.31 and 39.13%, respectively, in lipopolysaccharide-induced inflammatory RAW264.7 cells. Overall, this study first revealed that ovalbumin could be used as an immunomodulatory source for controlling inflammatory factor secretion.


Assuntos
Simulação de Acoplamento Molecular , Ovalbumina , Peptídeos , Ovalbumina/imunologia , Ovalbumina/química , Camundongos , Animais , Células RAW 264.7 , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/imunologia , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Agentes de Imunomodulação/química , Agentes de Imunomodulação/farmacologia , Sequência de Aminoácidos , Espectrometria de Massas em Tandem , Óxido Nítrico/metabolismo , Óxido Nítrico/imunologia , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia
9.
Immunol Res ; 71(2): 247-266, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36459272

RESUMO

Brucella suis mediates the transmission of brucellosis in humans and animals and a significant facultative zoonotic pathogen found in livestock. It has the capacity to survive and multiply in a phagocytic environment and to acquire resistance under hostile conditions thus becoming a threat globally. Antibiotic resistance is posing a substantial public health threat, hence there is an unmet and urgent clinical need for immune-based non-antibiotic methods to treat brucellosis. Hence, we aimed to explore the whole proteome of Brucella suis to predict antigenic proteins as a vaccine target and designed a novel chimeric vaccine (multi-epitope vaccine) through subtractive genomics-based reverse vaccinology approaches. The applied subsequent hierarchical shortlisting resulted in the identification of Multidrug efflux Resistance-nodulation-division (RND) transporter outer membrane subunit (gene BepC) that may act as a potential vaccine target. T-cell and B-cell epitopes have been predicted from target proteins using a number of immunoinformatic methods. Six MHC I, ten MHC II, and four B-cell epitopes were used to create a 324-amino-acid MEV construct, which was coupled with appropriate linkers and adjuvant. To boost the immunological response to the vaccine, the vaccine was combined with the TLR4 agonist HBHA protein. The MEV structure predicted was found to be highly antigenic, non-toxic, non-allergenic, flexible, stable, and soluble. To confirm the interactions with the receptors, a molecular docking simulation of the MEV was done using the human TLR4 (toll-like receptor 4) and HLAs. The stability and binding of the MEV-docked complexes with TLR4 were assessed using molecular dynamics (MD) simulation. Finally, MEV was reverse translated, its cDNA structure was evaluated, and then, in silico cloning into an E. coli expression host was conducted to promote maximum vaccine protein production with appropriate post-translational modifications. These comprehensive computer calculations backed up the efficacy of the suggested MEV in protecting against B. suis infections. However, more experimental validations are needed to adequately assess the vaccine candidate's potential. HIGHLIGHTS: • Subtractive genomic analysis and reverse vaccinology for the prioritization of novel vaccine target • Examination of chimeric vaccine in terms of allergenicity, antigenicity, MHC I, II binding efficacy, and structural-based studies • Molecular docking simulation method to rank based vaccine candidate and understand their binding modes.


Assuntos
Vacina contra Brucelose , Brucella suis , Brucelose , Animais , Humanos , Brucella suis/genética , Brucella suis/imunologia , Brucelose/genética , Brucelose/imunologia , Brucelose/prevenção & controle , Biologia Computacional , Epitopos de Linfócito B/genética , Epitopos de Linfócito T , Escherichia coli , Simulação de Acoplamento Molecular , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/uso terapêutico , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana/imunologia , Proteoma/genética , Proteoma/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Vacina contra Brucelose/genética , Vacina contra Brucelose/imunologia , Vacina contra Brucelose/uso terapêutico , Epitopos/genética , Epitopos/imunologia , Desenvolvimento de Vacinas , Desenho de Fármacos
10.
BMC Oral Health ; 22(1): 563, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463168

RESUMO

BACKGROUND: Toll like receptors (TLR) 2 and 4 present on innate immune cells of the dental pulp detect cariogenic bacteria. Along with bacteria, C. albicans may also be present in dental caries. The presence of C. albicans can be detected by Dectin-1 a C type Lectin receptor. Expression of Dectin-1 in human pulpits has not been reported. Similarly, cytokines are released as a consequence of dental pulp inflammation caused by cariogenic bacteria. The T helper (Th) 1 inflammatory response leads to exacerbation of inflammation and its relationship with Osteopontin (OPN) is not known in pulp inflammation. OBJECTIVE: The aim of this study was to observe the expression of Dectin-1, TLR-2, OPN and pro-inflammatory cytokines in irreversibly inflamed human dental pulp and to observe relationship between Dectin-1/TLR-2 and OPN/Pro-inflammatory cytokines in the presence of appropriate controls. METHODS: A total of 28 subjects diagnosed with irreversible pulpitis were included in this ex-vivo study. Fifteen samples were subjected to standard hematoxylin and Eosin (H&E) and immunohistochemistry staining. Whereas, gene expression analysis was performed on 13 samples to observe mRNA expression of pro-inflammatory cytokines; tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1 beta (ß), IL-6 Dectin-1, OPN, TLR-2 and TLR-4. SPSS version 21 was used for statistical analysis. One way analysis of variance (ANOVA), Pearson correlation and Chi-square test were used at p ≤ 0.05. RESULTS: Gene expressions of Dectin-1, TLR-2 and TLR-4 were observed in all samples. Dectin-1 and TLR-2 expressions were significantly correlated (r = 0.5587, p = 0.0002). Similarly, OPN and TNF-α expression showed a significant correlation (r = 0.5860, p = 0001). The agreement between histologic and clinical diagnosis was 69.2% in the cases of irreversible pulpitis. CONCLUSION: Dectin-1 was expressed by inflamed human dental pulp. Dectin-1 and TLR-2 expression pattern was suggestive of a collaborative receptor response in inflamed pulp environment. OPN and TNF-α expressions showed a positive correlation indicating a possible relationship.


Assuntos
Cárie Dentária , Polpa Dentária , Pulpite , Humanos , Candida albicans , Citocinas , Cárie Dentária/genética , Cárie Dentária/imunologia , Polpa Dentária/imunologia , Expressão Gênica , Inflamação/genética , Inflamação/imunologia , Osteopontina/genética , Osteopontina/imunologia , Pulpite/genética , Pulpite/imunologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Perfilação da Expressão Gênica
11.
Biomed Res Int ; 2022: 4975721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164443

RESUMO

Legionella pneumophila is found in the natural aquatic environment and can resist a wide range of environmental conditions. There are around fifty species of Legionella, at least twenty-four of which are directly linked to infections in humans. L. pneumophila is the cause of Legionnaires' disease, a potentially lethal form of pneumonia. By blocking phagosome-lysosome fusion, L. pneumophila lives and proliferates inside macrophages. For this disease, there is presently no authorized multiepitope vaccine available. For the multi-epitope-based vaccine (MEBV), the best antigenic candidates were identified using immunoinformatics and subtractive proteomic techniques. Several immunoinformatics methods were utilized to predict B and T cell epitopes from vaccine candidate proteins. To construct an in silico vaccine, epitopes (07 CTL, 03 HTL, and 07 LBL) were carefully selected and docked with MHC molecules (MHC-I and MHC-II) and human TLR4 molecules. To increase the immunological response, the vaccine was combined with a 50S ribosomal adjuvant. To maximize vaccine protein expression, MEBV was cloned and reverse-translated in Escherichia coli. To prove the MEBV's efficacy, more experimental validation is required. After its development, the resulting vaccine is greatly hoped to aid in the prevention of L. pneumophila infections.


Assuntos
Vacinas Bacterianas , Legionella pneumophila , Doença dos Legionários , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Legionella pneumophila/genética , Legionella pneumophila/imunologia , Doença dos Legionários/prevenção & controle , Proteômica , Receptor 4 Toll-Like/imunologia
12.
Nature ; 608(7921): 161-167, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35896747

RESUMO

Invasive fungal pathogens are major causes of human mortality and morbidity1,2. Although numerous secreted effector proteins that reprogram innate immunity to promote virulence have been identified in pathogenic bacteria, so far, there are no examples of analogous secreted effector proteins produced by human fungal pathogens. Cryptococcus neoformans, the most common cause of fungal meningitis and a major pathogen in AIDS, induces a pathogenic type 2 response characterized by pulmonary eosinophilia and alternatively activated macrophages3-8. Here, we identify CPL1 as an effector protein secreted by C. neoformans that drives alternative activation (also known as M2 polarization) of macrophages to enable pulmonary infection in mice. We observed that CPL1-enhanced macrophage polarization requires Toll-like receptor 4, which is best known as a receptor for bacterial endotoxin but is also a poorly understood mediator of allergen-induced type 2 responses9-12. We show that this effect is caused by CPL1 itself and not by contaminating lipopolysaccharide. CPL1 is essential for virulence, drives polarization of interstitial macrophages in vivo, and requires type 2 cytokine signalling for its effect on infectivity. Notably, C. neoformans associates selectively with polarized interstitial macrophages during infection, suggesting a mechanism by which C. neoformans generates its own intracellular replication niche within the host. This work identifies a circuit whereby a secreted effector protein produced by a human fungal pathogen reprograms innate immunity, revealing an unexpected role for Toll-like receptor 4 in promoting the pathogenesis of infectious disease.


Assuntos
Criptococose , Cryptococcus neoformans , Proteínas Fúngicas , Hipersensibilidade , Inflamação , Receptor 4 Toll-Like , Fatores de Virulência , Animais , Criptococose/imunologia , Criptococose/microbiologia , Criptococose/patologia , Cryptococcus neoformans/imunologia , Cryptococcus neoformans/patogenicidade , Citocinas/imunologia , Proteínas Fúngicas/imunologia , Proteínas Fúngicas/metabolismo , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Imunidade Inata , Inflamação/imunologia , Inflamação/microbiologia , Lipopolissacarídeos/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Virulência , Fatores de Virulência/imunologia
13.
Front Immunol ; 13: 877383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844541

RESUMO

The mold Alternaria alternata is one of the main sources of asthma exacerbation, being its major allergen, Alt a 1, indispensable for its development. The main objective of this work was to answer two main questions: 1) can Alt a 1 by itself (without any other context) induce an asthmatic profile in vivo?; and 2) Which molecular mechanisms take place during this phenomenon? To answer both questions, we have developed a mouse model of allergic asthma using only Alt a 1 for mice sensitization. We also made use of in-vitro cellular models and computational studies to support some aspects of our hypothesis. Our results showed that Alt a 1 can induce an asthmatic phenotype, promoting tissue remodeling and infiltration of CD45+ cells, especially eosinophils and macrophages (Siglec F+ and F4/80+). Also, we have found that Alt a 1 sensitization is mediated by the TLR4-macrophage axis.


Assuntos
Asma , Proteínas Fúngicas , Macrófagos Alveolares , Receptor 4 Toll-Like , Alérgenos , Animais , Asma/imunologia , Eosinófilos/imunologia , Proteínas Fúngicas/imunologia , Macrófagos Alveolares/imunologia , Camundongos , Receptor 4 Toll-Like/imunologia
14.
Mol Med Rep ; 26(3)2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35856408

RESUMO

Sepsis serves as a leading cause of admission to and death of patients in the intensive care unit (ICU) and is described as a systemic inflammatory response syndrome caused by abnormal host response to infection. Adipose­derived mesenchymal stem cells (ADSCs) have exhibited reliable and promising clinical application potential in multiple disorders. However, the function and the mechanism of ADSCs in sepsis remain elusive. In the present study, the crucial inhibitory effect of ADSC­derived hydroxy­carboxylic acid receptor 1 (HCAR1) on sepsis was identified. Reverse transcription quantitative­PCR determined that the mRNA expression of HCAR1 was reduced while the mRNA expression of Toll­like receptor 4 (TLR4), major histocompatibility complex class II (MHC II), NOD­like receptor family pyrin domain containing 3 (NLRP3), and the levels of interleukin­1ß (IL­1ß), tumor necrosis factor­α (TNF­α), interleukin­10 (IL­10), and interleukin­18 (IL­18) were enhanced in the peripheral blood of patients with sepsis. The expression of HCAR1 was negatively correlated with TLR4 (r=­0.666), MHC II (r=­0.587), and NLRP3 (r=­0.621) expression and the expression of TLR4 was positively correlated with NLRP3 (r=0.641), IL­1ß (r=0.666), TNF­α (r=0.606), and IL­18 (r=0.624) levels in the samples. Receiver operating characteristic (ROC) curve analysis revealed that the area under the ROC curve (AUC) of HCAR1, TLR4, MHC II and NLRP3 mRNA expression was 0.830, 0.853, 0.735 and 0.945, respectively, in which NLRP3 exhibited the highest diagnostic value, and the AUC values of IL­1ß, IL­18, TNF­α, and IL­10 were 0.751, 0.841, 0.924 and 0.729, respectively, in which TNF­α exhibited the highest diagnostic value. A sepsis rat model was established by injecting lipopolysaccharide (LPS) and the rats were randomly divided into 5 groups, including a normal control group (NC group; n=6), a sepsis model group (LPS group; n=6), an ADSC transplantation group (L + M group; n=6), a combined HCAR1 receptor agonist group [L + HCAR1 inducer (Gi) + M group; n=6], and a combined HCAR1 receptor inhibitor group [L + HCAR1 blocker (Gk) + M group; n=6]. Hematoxylin and eosin staining determined that ADSCs attenuated the lung injury of septic rats and ADSC­derived HCAR1 enhanced the effect of ADSCs. The expression of HCAR1, TLR4, MHC II, NLRP3, IL­1ß, IL­18 and TNF­α levels were suppressed by ADSCs and the effect was further induced by ADSC­derived HCAR1. However, ADSC­derived HCAR1 induced the levels of anti­inflammatory factor IL­10. The negative correlation of HCAR1 expression with TLR4, MHC II, and NLRP3 expression in the peripheral blood and lung tissues of the rats was then identified. It is thus concluded that ADSC­derived HCAR1 regulates immune response in the attenuation of sepsis. ADSC­derived HCAR1 may be a promising therapeutic strategy for sepsis.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Receptores Acoplados a Proteínas G , Sepse , Tecido Adiposo/citologia , Tecido Adiposo/imunologia , Animais , Imunidade , Interleucina-10/imunologia , Interleucina-18/imunologia , Lipopolissacarídeos/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , RNA Mensageiro/metabolismo , Ratos , Receptores Acoplados a Proteínas G/imunologia , Sepse/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
15.
Front Immunol ; 13: 879600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720418

RESUMO

Background: Transgender women (TW) are at increased risk for both human immunodeficiency virus (HIV) and cardiovascular disease (CVD). Antiretroviral therapy-treated HIV has been associated with a two-fold increased risk of CVD, potentially due to dysregulated Toll-like receptor (TLR)-induced immune activation. Use of estrogens in feminizing hormone therapy (FHT) may enhance inflammatory responses and the risk of cardiovascular mortality in TW. Despite this, the immunomodulatory effects of estrogen use in TW with HIV have been inadequately explored. Methods: As an in vitro model for FHT, cryopreserved PBMCs (cryoPBMCs) from HIV negative (HIV-), HIV+ ART-suppressed (HIV+SP), and HIV+ ART-unsuppressed (HIV+USP) cisgender men were cultured overnight in the presence of 17-ß estradiol or 17-α ethinylestradiol with and without the TLR4 agonist LPS or the TLR8 agonist ssPolyU. Monocyte activation (CD69, HLA-DR, CD38) was assessed by flow cytometry. Cytokine levels (IL-6, TNF-α, IL-1ß, and IL-10) were measured in cell culture supernatants by Legendplex. Levels of phosphorylated TLR signaling molecules (JNK, MAPK p38) were assessed by Phosflow. Plasma levels of immune activation biomarkers (LPS-binding protein, monocyte activation markers sCD14 and sCD163, and inflammatory molecules IL-6 and TNF-α receptor I) were measured by ELISA. Results: PBMCs from people with HIV (PWH) produced greater levels of inflammatory cytokines following exposure to LPS or ssPolyU compared to levels from cells of HIV- individuals. While estrogen exposure alone induced mild changes in immune activation, LPS-induced TLR4 activation was elevated with estrogen in cisgender men (CM) with HIV, increasing monocyte activation and inflammatory cytokine production (IL-6, TNF-α). Interestingly, testosterone inhibited LPS-induced cytokine production in CM regardless of HIV status. Plasma markers of immune activation and microbial translocation (e.g., sCD14, sCD163, LPS-binding protein) were generally higher in PWH compared to HIV- CM, and these markers were positively associated with in vitro responsiveness to estrogen and LPS in CM with HIV. Conclusions: Our in vitro data suggest that estrogen exposure may enhance innate immune activation in PWH. Further examination is needed to fully understand the complex interactions of FHT, HIV, and CVD in TW, and determine optimal FHT regimens or supplementary treatments aimed at reducing excess immune activation.


Assuntos
Estrogênios , Infecções por HIV , Receptor 4 Toll-Like , Pessoas Transgênero , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/virologia , Citocinas/metabolismo , Estrogênios/efeitos adversos , Estrogênios/farmacologia , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Interleucina-6/imunologia , Receptores de Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Masculino , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/imunologia
16.
Neuroimmunomodulation ; 29(4): 439-449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35609523

RESUMO

BACKGROUND: Neuroinflammation subsequent to traumatic brain injury (TBI) is important for the recovery of patients and is associated with neurodegenerative changes post-TBI. The tripartite motif containing 44 (TRIM44) protein is an E3 ligase involved in the regulation of immune function with no previously known link to TBI. This study explores the connection between TRIM44 and TBI. METHODS: After induction of TBI in rats by control cortex injury, TRIM44 expressions were determined with quantitative real-time reverse transcription polymerase chain reaction and Western blot, and Toll-like receptor 4 (TLR4)-NF-κB signaling was examined by the expression of TLR4, p65 phosphorylation, and the specific NF-κB transcription activity. The effects of TRIM44 knockdown on inflammation, neurological function, and TLR4-NF-κB signaling in TBI rats were revealed by the detection of proinflammatory cytokines and TLR4-NF-κB signaling molecules, modified neurological severity score, brain water content, and Evans blue permeability. RESULTS: We found that TRIM44 expression was significantly increased following TBI induction along with TLR4-NF-κB activation. Silencing of TRIM44 suppressed proinflammatory cytokine production, improved neurological outcomes, alleviated brain edema, and inhibited TLR4-NF-κB signaling in TBI rats. CONCLUSION: Our findings suggest that suppressing TRIM44 or modulation of relevant pathways may be a therapeutic strategy for TBI.


Assuntos
Lesões Encefálicas Traumáticas , Inflamação , Proteínas com Motivo Tripartido , Animais , Ratos , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/imunologia , Inflamação/genética , Inflamação/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Ratos Sprague-Dawley , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/imunologia
17.
Handb Exp Pharmacol ; 276: 239-273, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35434749

RESUMO

Pain impacts the lives of billions of people around the world - both directly and indirectly. It is complex and transcends beyond an unpleasant sensory experience to encompass emotional experiences. To date, there are no successful treatments for sufferers of chronic pain. Although opioids do not provide any benefit to chronic pain sufferers, they are still prescribed, often resulting in more complications such as hyperalgesia and dependence. In order to develop effective and safe medications to manage, and perhaps even treat pain, it is important to evaluate novel contributors to pain pathologies. As such, in this chapter we review the role of Toll-like receptor 4, a receptor of the innate immune system, that continues to gain substantial attention in the field of pain research. Positioned in the nexus of the neuro and immune systems, TLR4 may provide one of the missing pieces in understanding the complexities of pain. Here we consider how TLR4 enables a mechanistical understanding of pain as a multidimensional biopsychosocial state from molecules to cells to systems and back again.


Assuntos
Analgésicos Opioides , Dor Crônica , Receptor 4 Toll-Like , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/uso terapêutico , Dor Crônica/complicações , Dor Crônica/tratamento farmacológico , Dor Crônica/psicologia , Humanos , Hiperalgesia/induzido quimicamente , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/fisiologia
18.
Front Immunol ; 13: 801182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154115

RESUMO

Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis, provoking liver and spleen tissue destruction that is lethal unless treated. The parasite replicates in macrophages and modulates host microbicidal responses. We have previously reported that neutrophil elastase (NE) is required to sustain L. donovani intracellular growth in macrophages through the induction of interferon beta (IFN-ß). Here, we show that the gene expression of IFN-ß by infected macrophages was reduced by half when TLR4 was blocked by pre-treatment with neutralizing antibodies or in macrophages from tlr2-/- mice, while the levels in macrophages from myd88-/- mice were comparable to those from wild-type C57BL/6 mice. The neutralization of TLR4 in tlr2-/- macrophages completely abolished induction of IFN-ß gene expression upon parasite infection, indicating an additive role for both TLRs. Induction of type I interferon (IFN-I), OASL2, SOD1, and IL10 gene expression by L. donovani was completely abolished in macrophages from NE knock-out mice (ela2-/-) or from protein kinase R (PKR) knock-out mice (pkr-/-), and in C57BL/6 macrophages infected with transgenic L. donovani expressing the inhibitor of serine peptidase 2 (ISP2). Parasite intracellular growth was impaired in pkr-/- macrophages but was fully restored by the addition of exogenous IFN-ß, and parasite burdens were reduced in the spleen of pkr-/- mice at 7 days, as compared to the 129Sv/Ev background mice. Furthermore, parasites were unable to grow in macrophages lacking TLR3, which correlated with lack of IFN-I gene expression. Thus, L. donovani engages innate responses in infected macrophages via TLR2, TLR4, and TLR3, via downstream PKR, to induce the expression of pro-survival genes in the host cell, and guarantee parasite intracellular development.


Assuntos
Interferon-alfa/metabolismo , Interferon beta/metabolismo , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Macrófagos Peritoneais/imunologia , Transdução de Sinais/genética , Receptor 2 Toll-Like/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , eIF-2 Quinase/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Feminino , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Técnicas de Inativação de Genes , Interferon-alfa/genética , Interferon beta/genética , Leishmaniose Visceral/parasitologia , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/genética , Elastase de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Sulfonamidas/farmacologia , Receptor 2 Toll-Like/genética , Receptor 3 Toll-Like/genética , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/imunologia , eIF-2 Quinase/genética
19.
Invest New Drugs ; 40(3): 519-528, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35113284

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most common malignant tumors of the pancreas. Preclinical studies show that it evades the immune system with immune checkpoints and promotes tumor development. V-domain Ig suppressor of T cell activation (VISTA) is a new immune-check point from the B7 family and is highly expressed in cancer cells. Overexpression of toll like receptor 4 (TLR4) in pancreatic adenocarcinoma is associated with induced tumorigenesis, tumor growth, resistancy to chemotherapy. Naloxone is an opioid and inhibits TLR4-ligand association. In this study, we investigated the relation of TLR4 and downstream pathways with immune-check point VISTA in pancreatic cancer proliferation. We initially collected pancreatic cancer-related datasets using the GEPIA2 and UALCAN databases. Based on this data obtained the effect of various concentrations and incubation times of naloxone were used on PANC-1 cells proliferation. A combination of naloxone and VISTA-siRNA were applied, and the effect of both naloxone and combined treatment on TLR4, Interleukin 1 receptor associated kinase 4 (IRAK4) and VISTA gene expression were analyzed in pancreatic cancer cells. As a result of analysis with Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR), gene expression levels of TLR4, IRAK4 and VISTA were significantly suppressed and cell proliferation was significantly reduced. We found that administration of naloxone and VISTA-siRNA in combination with PDAC cells suppressed signaling. Therefore, we considered that the relationship between VISTA and TLR4 signaling pathways and the other possible associated signal molecules may be an important marker in determining the response of immune checkpoint inhibitors in cancer treatment.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Receptor 4 Toll-Like , Antígenos B7 , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Humanos , Quinases Associadas a Receptores de Interleucina-1/imunologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Naloxona/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , RNA Interferente Pequeno , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo
20.
Ann Hum Genet ; 86(3): 137-144, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35128637

RESUMO

AIM: Through their recognition of various bacterial cell wall components, TLR2 and TLR4 participate in the innate response and modulate the activation of adaptive immunity. Therefore, the genetic background of these receptors might play a crucial role in autoimmune diseases such as systemic lupus erythematosus (SLE). In this study, we investigated the possible association between polymorphisms within TLR2 and TLR4 genes with SLE susceptibility. MATERIAL AND METHODS: A total of 100 SLE patients and 200 unrelated healthy controls of the Tunisian population were enrolled in the study.TLR4rs4986790, TLR4rs4986791, and TLR2rs5743708 genotyping were performed using a polymerase chain reaction-restriction fragment length polymorphism method. The number of guanine-thymine (GT) repeat microsatellite in the intron 2 of TLR2 gene was analyzed by sequencing. RESULTS: We reported a lack of allelic and genotypic association between SNPs of TLR4 and TLR2 genes and SLE pathogenesis. No correlation was found with any SLE features. However, SLE susceptibility was associated with the GT repeat microsatellite polymorphism in the human TLR2 gene. Further subclassification of alleles into three subclasses revealed a significant association between the long-sized repeats ((GT) >23) and SLE. CONCLUSION: Though the results showed the absence of genetic association of TLR4 and TLR2 SNPs with the risk of developing SLE, we have identified a protective association between the microsatellite polymorphism in intron 2 of the TLR2 gene and SLE. Functionally, these (GT)n repeats may confer modifying effects or susceptibility to certain inflammatory conditions.


Assuntos
Lúpus Eritematoso Sistêmico , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Estudos de Casos e Controles , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Imunidade Inata/genética , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Polimorfismo de Nucleotídeo Único , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA