RESUMO
Serotonin regulates multiple physiological and pathological processes in the brain, including mood and cognition. The serotonin receptors 5-HT1AR (also known as HTR1A) and 5-HT7R (also known as HTR7) have emerged as key players in stress-related disorders, particularly depression. These receptors can form heterodimers, which influence their functions. Here, we explored the developmental dynamics of 5-HT1AR and 5-HT7R expression and validated heterodimerization levels in the brain of control and stressed mice. In control animals, we found that there was an increase in 5-HT1AR expression over 5-HT7R in the prefrontal cortex (PFC) and hippocampus during development. Using a chronic unpredictable stress as a depression model, we found an increase in 5-HT7R expression exclusively in the PFC of resilient animals, whereas no changes in 5-HT1AR expression between control and anhedonic mice were obtained. Quantitative in situ analysis of heterodimerization revealed the PFC as the region exhibiting the highest abundance of 5-HT1AR-5-HT7R heterodimers. More importantly, upon chronic stress, the amount of heterodimers was significantly reduced only in PFC of anhedonic mice, whereas it was not affected in resilient animals. These results suggest an important role of brain-region-specific 5-HT1AR-5-HT7R heterodimerization for establishing depressive-like behaviour and for development of resiliency.
Assuntos
Córtex Pré-Frontal , Receptor 5-HT1A de Serotonina , Receptores de Serotonina , Estresse Psicológico , Animais , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/genética , Receptores de Serotonina/metabolismo , Receptores de Serotonina/genética , Estresse Psicológico/metabolismo , Córtex Pré-Frontal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Masculino , Hipocampo/metabolismo , Depressão/metabolismo , Depressão/genética , Multimerização Proteica , Doença CrônicaRESUMO
HTR1A C-1019G polymorphism (rs6295) and serotonin transporter promoter polymorphism (5-HTTLPR) have been linked with panic disorder (PD) in different ethnic backgrounds. Both these polymorphisms are in the promoter regions. However, results are inconsistent and contrasting evidence makes reliable conclusions even more challenging. A meta-analysis was conducted to test whether C-1019G polymorphism and 5-HTTLPR were involved in the etiology of PD. Articles researching the link between C-1019G, 5-HTTLPR polymorphisms, and PD were retrieved by database searching and systematically selected on the basis of selected inclusion parameters. 21 studies were included that examined the relationship of rs6295,5-HTTLPR polymorphisms with PD risk susceptibility (rs62957 polymorphism - 7 articles, and 5-HTTLPR polymorphism - 14 articles). A significant association was seen between the rs6295 polymorphism and PD pathogenesis, especially in Caucasian PD patients. No significant genetic linkage was found between the 5-HTTLPR polymorphism and PD. C-1019G polymorphism was involved in the etiology of PD in Caucasian patients. The 5-HTTLPR polymorphism was not a susceptibility factor of PD.
Assuntos
Predisposição Genética para Doença , Transtorno de Pânico , Receptor 5-HT1A de Serotonina , Proteínas da Membrana Plasmática de Transporte de Serotonina , Humanos , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Transtorno de Pânico/genética , Receptor 5-HT1A de Serotonina/genética , Polimorfismo de Nucleotídeo Único , População Branca/genéticaRESUMO
BACKGROUND: Early life adversity is a risk factor for psychopathology and is associated with epigenetic alterations in the 5-HT1A receptor gene promoter. The 5-HT1A receptor mediates neurotrophic effects, which could affect brain structure and function. We examined relationships between self-reported early childhood abuse, 5-HT1A receptor promoter DNA methylation, and gray matter volume (GMV) in Major Depressive Disorder (MDD). METHODS: Peripheral DNA methylation of 5-HT1A receptor promoter CpG sites -681 and -1007 was assayed in 50 individuals with MDD, including 18 with a history of childhood abuse. T1-weighted structural magnetic resonance imaging (MRI) was performed. Voxel-based morphometry (VBM) was quantified in amygdala, hippocampus, insula, occipital lobe, orbitofrontal cortex, temporal lobe, parietal lobe, and at the voxel level. RESULTS: No relationship was observed between DNA methylation and history of childhood abuse. We observed regional heterogeneity comparing -681 CpG site methylation and GMV (p = 0.014), with a positive relationship to GMV in orbitofrontal cortex (p = 0.035). Childhood abuse history was associated with higher GMV considering all ROIs simultaneously (p < 0.01). In whole-brain analyses, childhood abuse history was positively correlated with GMV in multiple clusters, including insula and orbitofrontal cortex (pFWE = 0.005), and negatively in intracalcarine cortex (pFWE = 0.001). LIMITATIONS: Small sample size, childhood trauma assessment instrument used, and assay of peripheral, rather than CNS, methylation. CONCLUSIONS: These cross-sectional findings support hypotheses of 5-HT1A receptor-related neurotrophic effects, and of increased regional GMV as a potential regulatory mechanism in the setting of childhood abuse. Orbitofrontal cortex was uniquely associated with both childhood abuse history and 5-HT1A receptor methylation.
Assuntos
Metilação de DNA , Transtorno Depressivo Maior , Substância Cinzenta , Imageamento por Ressonância Magnética , Receptor 5-HT1A de Serotonina , Humanos , Receptor 5-HT1A de Serotonina/genética , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Masculino , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Adulto , Pessoa de Meia-Idade , Autorrelato , Sobreviventes Adultos de Maus-Tratos Infantis , Maus-Tratos Infantis/psicologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Regiões Promotoras Genéticas/genética , Criança , Encéfalo/diagnóstico por imagem , Encéfalo/patologiaRESUMO
Selective serotonin (5-HT) reuptake inhibitors (SSRIs) like fluoxetine remain a first-line treatment for major depression, but are effective in less than half of patients and can take 4-8 weeks to show results. In this study, we examined cF1ko mice with genetically induced upregulation of 5-HT1A autoreceptors that reduces 5-HT neuronal activity. These mice display anxiety- and depression-related behaviors that did not respond to chronic fluoxetine treatment. We examined treatment with NLX-101, a biased agonist that preferentially targets 5-HT1A heteroreceptors. By testing different doses of NLX-101, we found that a dose of 0.2 mg/kg was effective in reducing depression-related behavior in cF1ko mice without causing hypothermia, a 5-HT1A autoreceptor-mediated response. After 1 h, this dose activated dorsal raphe 5-HT neurons and cells in the medial prefrontal cortex (mPFC), increasing nuclear c-fos labelling in cF1ko mice. In cF1ko mice but not wild-type littermates, 0.2 mg/kg NLX-101 administered 1 h prior to each behavioral test for two weeks reduced depressive behavior in the forced swim test, but increased anxiety-related behaviors in the open field, elevated plus maze, and novelty suppressed feeding tests. During this treatment, NLX-101 induced widespread increases in the density of 5-HT axons, varicosities, and especially synaptic and triadic structures, particularly in depression-related brain regions including mPFC, hippocampal CA1 and CA2/3, amygdala and nucleus accumbens of cF1ko mice. Overall, NLX-101 was rapid and effective in reducing depressive behavior in SSRI-resistant mice, but also induced anxiety-related behaviors. The increase in serotonin innervation induced by intermittent NLX-101 may contribute to its behavioral actions.
Assuntos
Fluoxetina , Receptor 5-HT1A de Serotonina , Animais , Masculino , Camundongos , Antidepressivos/farmacologia , Ansiedade/tratamento farmacológico , Depressão/tratamento farmacológico , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/metabolismo , Relação Dose-Resposta a Droga , Fluoxetina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piperazinas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Piridinas/farmacologia , Pirimidinas , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/genética , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Neurônios Serotoninérgicos/efeitos dos fármacos , Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologiaRESUMO
BACKGROUND & AIMS: Portal hypertension (PH) is one of the most frequent complications of chronic liver disease. The peripheral 5-hydroxytryptamine (5-HT) level was increased in cirrhotic patients. We aimed to elucidate the function and mechanism of 5-HT receptor 1A (HTR1A) in the portal vein (PV) on PH. METHODS: PH models were induced by thioacetamide injection, bile duct ligation, or partial PV ligation. HTR1A expression was detected using real-time polymerase chain reaction, in situ hybridization, and immunofluorescence staining. In situ intraportal infusion was used to assess the effects of 5-HT, the HTR1A agonist 8-OH-DPAT, and the HTR1A antagonist WAY-100635 on portal pressure (PP). Htr1a-knockout (Htr1a-/-) rats and vascular smooth muscle cell (VSMC)-specific Htr1a-knockout (Htr1aΔVSMC) mice were used to confirm the regulatory role of HTR1A on PP. RESULTS: HTR1A expression was significantly increased in the hypertensive PV of PH model rats and cirrhotic patients. Additionally, 8-OH-DPAT increased, but WAY-100635 decreased, the PP in rats without affecting liver fibrosis and systemic hemodynamics. Furthermore, 5-HT or 8-OH-DPAT directly induced the contraction of isolated PVs. Genetic deletion of Htr1a in rats and VSMC-specific Htr1a knockout in mice prevented the development of PH. Moreover, 5-HT triggered adenosine 3',5'-cyclic monophosphate pathway-mediated PV smooth muscle cell contraction via HTR1A in the PV. We also confirmed alverine as an HTR1A antagonist and demonstrated its capacity to decrease PP in rats with thioacetamide-, bile duct ligation-, and partial PV ligation-induced PH. CONCLUSIONS: Our findings reveal that 5-HT promotes PH by inducing the contraction of the PV and identify HTR1A as a promising therapeutic target for attenuating PH. As an HTR1A antagonist, alverine is expected to become a candidate for clinical PH treatment.
Assuntos
Hipertensão Portal , Camundongos Knockout , Pressão na Veia Porta , Veia Porta , Receptor 5-HT1A de Serotonina , Agonistas do Receptor 5-HT1 de Serotonina , Animais , Feminino , Humanos , Masculino , Camundongos , Ratos , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Hipertensão Portal/metabolismo , Hipertensão Portal/genética , Hipertensão Portal/fisiopatologia , Hipertensão Portal/etiologia , Ligadura , Cirrose Hepática/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/patologia , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/fisiopatologia , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Piperazinas/farmacologia , Pressão na Veia Porta/efeitos dos fármacos , Veia Porta/metabolismo , Piridinas/farmacologia , Ratos Sprague-Dawley , Ratos Wistar , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/genética , Serotonina/metabolismo , Serotonina/farmacologia , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Transdução de Sinais , Tioacetamida/toxicidadeRESUMO
Previous studies on germ-free (GF) animals have described altered anxiety-like and social behaviors together with dysregulations in brain serotonin (5-HT) metabolism. Alterations in circulating 5-HT levels and gut 5-HT metabolism have also been reported in GF mice. In this study, we conducted an integrative analysis of various behaviors as well as markers of 5-HT metabolism in the brain and along the GI tract of GF male mice compared with conventional (CV) ones. We found a strong decrease in locomotor activity, accompanied by some signs of increased anxiety-like behavior in GF mice compared with CV mice. Brain gene expression analysis showed no differences in HTR1A and TPH2 genes. In the gut, we found decreased TPH1 expression in the colon of GF mice, while it was increased in the cecum. HTR1A expression was dramatically decreased in the colon, while HTR4 expression was increased both in the cecum and colon of GF mice compared with CV mice. Finally, SLC6A4 expression was increased in the ileum and colon of GF mice compared with CV mice. Our results add to the evidence that the microbiota is involved in regulation of behavior, although heterogeneity among studies suggests a strong impact of genetic and environmental factors on this microbiota-mediated regulation. While no impact of GF status on brain 5-HT was observed, substantial differences in gut 5-HT metabolism were noted, with tissue-dependent results indicating a varying role of microbiota along the GI tract.
Assuntos
Comportamento Animal , Vida Livre de Germes , Serotonina , Animais , Serotonina/metabolismo , Camundongos , Masculino , Microbioma Gastrointestinal/fisiologia , Encéfalo/metabolismo , Triptofano Hidroxilase/metabolismo , Triptofano Hidroxilase/genética , Ansiedade/metabolismo , Ansiedade/microbiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Camundongos Endogâmicos C57BL , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/genética , Colo/metabolismo , Colo/microbiologiaRESUMO
Alcohol use disorder is considered a chronic and relapsing disorder affecting the central nervous system. The serotonergic system, mainly through its influence on the mesolimbic dopaminergic reward system, has been postulated to play a pivotal role in the underlying mechanism of alcohol dependence. The study aims to analyse the association of the rs6295 polymorphism of the 5HTR1A gene in women with alcohol use disorder and the association of personality traits with the development of alcohol dependence, as well as the interaction of the rs6295, personality traits, and anxiety with alcohol dependence in women. The study group consisted of 213 female volunteers: 101 with alcohol use disorder and 112 controls. NEO Five-Factor and State-Trait Anxiety Inventories were applied for psychometric testing. Genotyping of rs6295 was performed by real-time PCR. We did not observe significant differences in 5HTR1A rs6295 genotypes (p = 0.2709) or allele distribution (p = 0.4513). The AUD subjects scored higher on the anxiety trait (p < 0.0001) and anxiety state (p < 0.0001) scales, as well as on the neuroticism (p < 0.0001) and openness (p = 0134) scales. Significantly lower scores were obtained by the AUD subjects on the extraversion (p < 0.0001), agreeability (p < 0.0001), and conscientiousness (p < 0.0001) scales. Additionally, we observed a significant effect of 5HTR1A rs6295 genotype interaction and alcohol dependency, or lack thereof, on the openness scale (p = 0.0016). In summary, this study offers a comprehensive overview of alcohol dependence among women. It offers valuable insights into this complex topic, contributing to a more nuanced understanding of substance use among this specific demographic. Additionally, these findings may have implications for developing prevention and intervention strategies tailored to individual genetic and, most importantly, personality and anxiety differences.
Assuntos
Alcoolismo , Ansiedade , Personalidade , Polimorfismo de Nucleotídeo Único , Receptor 5-HT1A de Serotonina , Humanos , Feminino , Receptor 5-HT1A de Serotonina/genética , Alcoolismo/genética , Alcoolismo/psicologia , Personalidade/genética , Adulto , Ansiedade/genética , Pessoa de Meia-Idade , Genótipo , Predisposição Genética para Doença , Alelos , Estudos de Associação Genética , Estudos de Casos e ControlesRESUMO
Calcium calmodulin-dependent protein kinase (CaMK) mediates calcium-induced neural gene activation. CaMK also inhibits the non-syndromic intellectual disability gene, Freud-1/CC2D1A, a transcriptional repressor of human serotonin-1A (5-HT1A) and dopamine-D2 receptor genes. The altered expression of these Freud-1-regulated genes is implicated in mental illnesses such as major depression and schizophrenia. We hypothesized that Freud-1 is blocked by CaMK-induced phosphorylation. The incubation of purified Freud-1 with either CaMKIIα or CaMKIV increased Freud-1 phosphorylation that was partly prevented in Freud-1-Ser644Ala and Freud-1-Thr780Ala CaMK site mutants. In human SK-N-SH neuroblastoma cells, active CaMKIV induced the serine and threonine phosphorylation of Freud-1, and specifically increased Freud-1-Thr780 phosphorylation in transfected HEK-293 cells. The activation of purified CaMKIIα or CaMKIV reduced Freud-1 binding to its DNA element on the 5-HT1A and dopamine-D2 receptor genes. In SK-N-SH cells, active CaMKIV but not CaMKIIα blocked the Freud-1 repressor activity, while Freud-1 Ser644Ala, Thr780Ala or dual mutants were resistant to inhibition by activated CaMKIV or calcium mobilization. These results indicate that the Freud-1 repressor activity is blocked by CaMKIV-induced phosphorylation at Thr780, resulting in the up-regulation of the target genes, such as the 5-HT1A receptor gene. The CaMKIV-mediated inhibition of Freud-1 provides a novel de-repression mechanism to induce 5-HT1A receptor expression for the regulation of cognitive development, behavior and antidepressant response.
Assuntos
Cálcio , Receptor 5-HT1A de Serotonina , Humanos , Fosforilação , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/genética , Células HEK293 , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/genética , Linhagem Celular Tumoral , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Regulação da Expressão Gênica , Proteínas de Ligação a DNARESUMO
Psychedelic substances such as lysergic acid diethylamide (LSD) and psilocybin show potential for the treatment of various neuropsychiatric disorders1-3. These compounds are thought to mediate their hallucinogenic and therapeutic effects through the serotonin (5-hydroxytryptamine (5-HT)) receptor 5-HT2A (ref. 4). However, 5-HT1A also plays a part in the behavioural effects of tryptamine hallucinogens5, particularly 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), a psychedelic found in the toxin of Colorado River toads6. Although 5-HT1A is a validated therapeutic target7,8, little is known about how psychedelics engage 5-HT1A and which effects are mediated by this receptor. Here we map the molecular underpinnings of 5-MeO-DMT pharmacology through five cryogenic electron microscopy (cryo-EM) structures of 5-HT1A, systematic medicinal chemistry, receptor mutagenesis and mouse behaviour. Structure-activity relationship analyses of 5-methoxytryptamines at both 5-HT1A and 5-HT2A enable the characterization of molecular determinants of 5-HT1A signalling potency, efficacy and selectivity. Moreover, we contrast the structural interactions and in vitro pharmacology of 5-MeO-DMT and analogues to the pan-serotonergic agonist LSD and clinically used 5-HT1A agonists. We show that a 5-HT1A-selective 5-MeO-DMT analogue is devoid of hallucinogenic-like effects while retaining anxiolytic-like and antidepressant-like activity in socially defeated animals. Our studies uncover molecular aspects of 5-HT1A-targeted psychedelics and therapeutics, which may facilitate the future development of new medications for neuropsychiatric disorders.
Assuntos
5-Metoxitriptamina , Ansiolíticos , Antidepressivos , Metoxidimetiltriptaminas , Receptor 5-HT1A de Serotonina , Receptor 5-HT2A de Serotonina , Animais , Humanos , Masculino , Camundongos , 5-Metoxitriptamina/análogos & derivados , 5-Metoxitriptamina/química , 5-Metoxitriptamina/farmacologia , 5-Metoxitriptamina/uso terapêutico , Ansiolíticos/química , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Antidepressivos/química , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Microscopia Crioeletrônica , Alucinógenos , Dietilamida do Ácido Lisérgico/química , Dietilamida do Ácido Lisérgico/farmacologia , Metoxidimetiltriptaminas/química , Metoxidimetiltriptaminas/farmacologia , Metoxidimetiltriptaminas/uso terapêutico , Modelos Moleculares , Receptor 5-HT1A de Serotonina/química , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/ultraestrutura , Receptor 5-HT2A de Serotonina/química , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/ultraestrutura , Agonistas do Receptor de Serotonina/química , Agonistas do Receptor de Serotonina/farmacologia , Agonistas do Receptor de Serotonina/uso terapêutico , Relação Estrutura-AtividadeRESUMO
Women are more vulnerable to stress and have a higher likelihood of developing mood disorders. The serotonin (5HT) system has been highly implicated in stress response and mood regulation. However, sex-dependent mechanisms underlying serotonergic regulation of stress vulnerability remain poorly understood. Here, we report that adult hippocampal neural stem cells (NSCs) of the Ascl1 lineage (Ascl1-NSCs) in female mice express functional 5HT1A receptors (5HT1ARs), and selective deletion of 5HT1ARs in Ascl1-NSCs decreases the Ascl1-NSC pool only in females. Mechanistically, 5HT1AR deletion in Ascl1-NSCs of females leads to 5HT-induced depolarization mediated by upregulation of 5HT7Rs. Furthermore, repeated restraint stress (RRS) impairs Ascl1-NSC maintenance through a 5HT1AR-mediated mechanism. By contrast, Ascl1-NSCs in males express 5HT7R receptors (5HT7Rs) that are downregulated by RRS, thus maintaining the Ascl1-NSC pool. These findings suggest that sex-specific expression of distinct 5HTRs and their differential interactions with stress may underlie sex differences in stress vulnerability.
Assuntos
Hipocampo , Células-Tronco Neurais , Receptores de Serotonina , Estresse Psicológico , Animais , Células-Tronco Neurais/metabolismo , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Receptores de Serotonina/metabolismo , Receptores de Serotonina/genética , Estresse Psicológico/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Caracteres Sexuais , Camundongos Endogâmicos C57BL , Serotonina/metabolismoRESUMO
There are no approved pharmacotherapies for fragile X syndrome (FXS), a rare neurodevelopmental disorder caused by a mutation in the FMR1 promoter region that leads to various symptoms, including intellectual disability and auditory hypersensitivity. The gene that encodes inhibitory serotonin 1A receptors (5-HT1ARs) is differentially expressed in embryonic brain tissue from individuals with FXS, and 5-HT1ARs are highly expressed in neural systems that are disordered in FXS, providing a rationale to focus on 5-HT1ARs as targets to treat symptoms of FXS. We examined agonist-labeled 5-HT1AR densities in male and female Fmr1 knockout mice and found no differences in whole-brain 5-HT1AR expression in adult control compared to Fmr1 knockout mice. However, juvenile Fmr1 knockout mice had lower whole-brain 5-HT1AR expression than age-matched controls. Consistent with these results, juvenile Fmr1 knockout mice showed reduced behavioral responses elicited by the 5-HT1AR agonist (R)-8-OH-DPAT, effects blocked by the selective 5-HT1AR antagonist, WAY-100635. Also, treatment with the selective 5-HT1AR agonist, NLX-112, dose-dependently prevented audiogenic seizures (AGS) in juvenile Fmr1 knockout mice, an effect reversed by WAY-100635. Suggestive of a potential role for 5-HT1ARs in regulating AGS, compared to males, female Fmr1 knockout mice had a lower prevalence of AGS and higher expression of antagonist-labeled 5-HT1ARs in the inferior colliculus and auditory cortex. These results provide preclinical support that 5-HT1AR agonists may be therapeutic for young individuals with FXS hypersensitive to auditory stimuli.
Assuntos
Epilepsia Reflexa , Síndrome do Cromossomo X Frágil , Colículos Inferiores , Animais , Feminino , Masculino , Camundongos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Colículos Inferiores/metabolismo , Camundongos Knockout , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1A de Serotonina/metabolismo , SerotoninaRESUMO
Serotonin 1A (5-HT1A) autoreceptors located on serotonin neurons inhibit their activity, and their upregulation has been implicated in depression, suicide and resistance to antidepressant treatment. Conversely, post-synaptic 5-HT1A heteroreceptors are important for antidepressant response. The transcription factor deformed epidermal autoregulatory factor 1 (Deaf1) acts as a presynaptic repressor and postsynaptic enhancer of 5-HT1A transcription, but the mechanism is unclear. Because Deaf1 interacts with and is phosphorylated by glycogen synthase kinase 3ß (GSK3ß)-a constitutively active protein kinase that is inhibited by the mood stabilizer lithium at therapeutic concentrations-we investigated the role of GSK3ß in Deaf1 regulation of human 5-HT1A transcription. In 5-HT1A promoter-reporter assays, human HEK293 kidney and 5-HT1A-expressing SKN-SH neuroblastoma cells, transfection of Deaf1 reduced 5-HT1A promoter activity by ~45%. To identify potential GSK3ß site(s) on Deaf1, point mutations of known and predicted phosphorylation sites on Deaf1 were tested. Deaf1 repressor function was not affected by any of the mutants tested except the Y300F mutant, which augmented Deaf1 repression. Both lithium and the selective GSK3 inhibitors CHIR-99021 and AR-014418 attenuated and reversed Deaf1 repression compared to vector. This inhibition was at concentrations that maximally inhibit GSK3ß activity as detected by the GSK3ß-sensitive TCF/LEF reporter construct. Our results support the hypothesis that GSK3ß regulates the activity of Deaf1 to repress 5-HT1A transcription and provide a potential mechanism for actions of GSK3 inhibitors on behavior.
Assuntos
Glicogênio Sintase Quinase 3 beta , Lítio , Receptor 5-HT1A de Serotonina , Serotonina , Humanos , Antidepressivos , Glicogênio Sintase Quinase 3 beta/genética , Células HEK293 , Lítio/farmacologia , Receptor 5-HT1A de Serotonina/genética , Serotonina/farmacologiaRESUMO
The recombinant B6.CBA-D13Mit76C mouse strain is characterized by an altered sensitivity of 5-HT1A receptors and upregulated 5-HT1A gene transcription. Recently, we found that in B6.CBA-D13Mit76C mice, chronic fluoxetine treatment produced the pro-depressive effect in a forced swim test. Since 5-HT2A receptor blockade may be beneficial in treatment-resistant depression, we investigated the influence of chronic treatment (14 days, intraperitoneally) with selective 5-HT2A antagonist ketanserin (0.5 mg/kg), fluoxetine (20 mg/kg), or fluoxetine + ketanserin on the behavior, functional activity of 5-HT1A and 5-HT2A receptors, serotonin turnover, and transcription of principal genes of the serotonin system in the brain of B6.CBA-D13Mit76C mice. Ketanserin did not reverse the pro-depressive effect of fluoxetine, while fluoxetine, ketanserin, and fluoxetine + ketanserin decreased the functional activity of 5-HT1A receptors and Htr1a gene transcription in the midbrain and hippocampus. All tested drug regimens decreased the mRNA levels of Slc6a4 and Maoa in the midbrain. These changes were not accompanied by a significant shift in the levels of serotonin and its metabolite 5-HIAA. Notably, ketanserin upregulated enzymatic activity of tryptophan hydroxylase 2 (TPH2). Thus, despite some benefits (reduced Htr1a, Slc6a4, and Maoa transcription and increased TPH2 activity), prolonged blockade of 5-HT2A receptors failed to ameliorate the adverse effect of fluoxetine in the case of abnormal functioning of 5-HT1A receptors.
Assuntos
Fluoxetina , Serotonina , Camundongos , Animais , Camundongos Endogâmicos CBA , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Ketanserina/farmacologia , Receptor 5-HT1A de Serotonina/genéticaRESUMO
Mental disorders are strongly connected with several psychiatric conditions including depression, bipolar disorder, schizophrenia, eating disorder, and suicides. There are many biological conditions and pathways that define these complicated illnesses. For example, eating disorders are complex mental health conditions that require the intervention of geneticists, psychiatrists, and medical experts in order to alleviate their symptoms. A patient with suicidal ideation should first be identified and consequently monitored by a similar team of specialists. Both genetics and epigenetics can shed light on eating disorders and suicides as they are found in the main core of such investigations. In the present study, an analysis has been performed on two specific members of the GPCR family toward drawing conclusions regarding their functionality and implementation in mental disorders. Specifically, evolutionary and structural studies on the adrenoceptor alpha 2b (ADRA2B) and the 5-hydroxytryptamine receptor 1A (HTR1A) have been carried out. Both receptors are classified in the biogenic amine receptors sub-cluster of the GPCRs and have been connected in many studies with mental diseases and malnutrition conditions. The major goal of this study is the investigation of conserved motifs among biogenic amine receptors that play an important role in this family signaling pathway, through an updated evolutionary analysis and the correlation of this information with the structural features of the HTR1A and ADRA2B. Furthermore, the structural comparison of ADRA2B, HTR1A, and other members of GPCRs related to mental disorders is performed.
Assuntos
Transtornos Mentais , Receptor 5-HT1A de Serotonina , Receptores de Amina Biogênica , Humanos , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Receptor 5-HT1A de Serotonina/genética , Receptores Adrenérgicos alfa 2 , Receptores de Amina Biogênica/genética , Receptores de Amina Biogênica/metabolismo , Serotonina , Transtornos da Alimentação e da Ingestão de Alimentos/genética , Ideação SuicidaRESUMO
BACKGROUND: Childhood and lifetime adversity may reduce brain serotonergic (5-HT) neurotransmission by epigenetic mechanisms. AIMS: We tested the relationships of childhood adversity and recent stress to serotonin 1A (5-HT1A) receptor genotype, DNA methylation of this gene in peripheral blood monocytes and in vivo 5-HT1A receptor binding potential (BPF) determined by positron emission tomography (PET) in 13 a priori brain regions, in participants with major depressive disorder (MDD) and healthy volunteers (controls). METHOD: Medication-free participants with MDD (n = 192: 110 female, 81 male, 1 other) and controls (n = 88: 48 female, 40 male) were interviewed about childhood adversity and recent stressors and genotyped for rs6295. DNA methylation was assayed at three upstream promoter sites (-1019, -1007, -681) of the 5-HT1A receptor gene. A subgroup (n = 119) had regional brain 5-HT1A receptor BPF quantified by PET. Multi-predictor models were used to test associations between diagnosis, recent stress, childhood adversity, genotype, methylation and BPF. RESULTS: Recent stress correlated positively with blood monocyte methylation at the -681 CpG site, adjusted for diagnosis, and had positive and region-specific correlations with 5-HT1A BPF in participants with MDD, but not in controls. In participants with MDD, but not in controls, methylation at the -1007 CpG site had positive and region-specific correlations with binding potential. Childhood adversity was not associated with methylation or BPF in participants with MDD. CONCLUSIONS: These findings support a model in which recent stress increases 5-HT1A receptor binding, via methylation of promoter sites, thus affecting MDD psychopathology.
Assuntos
Transtorno Depressivo Maior , Humanos , Masculino , Feminino , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/tratamento farmacológico , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/uso terapêutico , Metilação de DNA , Serotonina/metabolismo , Serotonina/uso terapêutico , Depressão , Encéfalo/patologia , Tomografia por Emissão de Pósitrons/métodos , Estresse Psicológico/genéticaRESUMO
BACKGROUND: Lifelong premature ejaculation (LPE) is one of the most common ejaculatory dysfunctions in men. The serotonin (5-HT) synthesis rate-limiting enzyme (TPH2) and receptor (HTR1A) in the 5-HT regulatory system may play a key role in the pathogenesis of LPE. However, there are few studies on the effects of TPH2 and HTR1A polymorphisms on LPE risk. We speculated that TPH2 and HTR1A polymorphisms may affect the occurrence and development of LPE in the Chinese Han population. METHODS: In this study, 91 patients with LPE and 362 normal controls aged 18 to 64 years were enrolled in the male urology department of Hainan General Hospital in China from January 2016 to December 2018. The SNPs in HTR1A and TPH2, which are related to 5-HT regulation, were selected as indexes to genotype the collected blood samples of participants. Logistic regression was used to analyze the correlation between SNPs of HTR1A and TPH2 with LPE susceptibility, as well as the relationship with leptin, 5-HT and folic acid levels. RESULTS: The results revealed that HTR1A-rs6295 increased LPE risk in recessive model. Rs11178996 in TPH2 significantly reduced susceptibility to LPE in allelic (odds ratio (OR) = 0.68, 95% confidence interval (95% CI) = 0.49-0.96, p = 0.027), codominant (OR = 0.58, 95% CI = 0.35-0.98, p = 0.040), dominant (OR = 0.58, 95% CI = 0.36-0.92, p = 0.020), and additive (OR = 0.71, 95% CI = 0.52-0.98, p = 0.039) models. Grs11179041Trs10879352 could reduce the risk of LPE (OR = 0.44, 95% CI = 0.22-0.90, p = 0.024) by haplotype analysis. CONCLUSION: HTR1A-rs6295 and TPH2-rs11178996 are associated with LPE risk in the Chinese Han population based on the finding of this study.
Assuntos
População do Leste Asiático , Ejaculação Precoce , Adolescente , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Povo Asiático/genética , Polimorfismo de Nucleotídeo Único/genética , Ejaculação Precoce/genética , Receptor 5-HT1A de Serotonina/genética , Serotonina , Triptofano Hidroxilase/genéticaRESUMO
BACKGROUND: Seeing that there are no data about associations between serotonin gene polymorphism and tryptophan catabolite concentration during PEG-IFN-α2a treatment, the aim of the current study is to examine (a) the associations between polymorphisms within the HTR1A, TPH2, and 5-HTT genes and the severity of depression symptoms and (b) the relationships among rs6295, rs4570625, and 5-HTTLPR rs25531polymorphisms and indoleamine 2,3-dioxygenase (IDO) activity, as well as kynurenine (KYN), tryptophan (TRP), kynurenic acid (KA), and anthranilic acid (AA) concentrations. MATERIALS AND METHODS: The study followed a prospective, longitudinal, single-center cohort design. The severity of the depressive symptoms of 101 adult patients with chronic HCV infections was measured during PEG-IFN-α2a/RBV treatment. We used the Montgomery-Åsberg Depression Rating Scale (MADRS) to assess the severity of depressive symptoms. The subjects were evaluated six times-at baseline and at weeks 2, 4, 8, 12, and 24. At all the time points, MADRS score, as well as KYN, TRP, KA, and AA concentrations, and IDO activity were measured. At baseline, rs6295, rs4570625, and 5-HTTLPR rs25531polymorphisms were assessed. RESULTS: Subjects with C/C genotypes of 5-HT1A and lower-expressing alleles (S/S, LG/LG, and S/LG) of 5-HTTLPR scored the highest total MADRS scores and recorded the highest increase in MADRS scores during treatment. We found associations between TRP concentrations and the TPH-2 and 5-HTTLPR rs25531 genotypes. CONCLUSIONS: Our findings provide new data that we believe can help better understand infection-induced depression as a distinct type of depression.
Assuntos
Depressão , Hepatite C Crônica , Interferon alfa-2 , Triptofano , Adulto , Humanos , Antivirais/uso terapêutico , Depressão/genética , Depressão/metabolismo , Hepatite C Crônica/complicações , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/genética , Interferon alfa-2/efeitos adversos , Interferon alfa-2/farmacologia , Interferon alfa-2/uso terapêutico , Cinurenina , Polietilenoglicóis/farmacologia , Polimorfismo Genético , Estudos Prospectivos , Receptor 5-HT1A de Serotonina/genética , Ribavirina/efeitos adversos , Ribavirina/farmacologia , Ribavirina/uso terapêutico , Triptofano/efeitos dos fármacos , Triptofano/metabolismo , Triptofano Hidroxilase/genética , Triptofano Oxigenase/genéticaRESUMO
We analyzed the expression of the serotonin receptors 5-HT1A, 5-HT2A, and 5-HT3A at four different stages of fetal lung development from 12 to 40 weeks of gestation, divided into four groups: the pseudoglandular stage (12-16th week of development; n = 8), the canalicular stage (16th-26th week of development; n = 7), the saccular stage (26th-36th week of development; n = 5), and the alveolar stage (36th-40th week of development; n = 5). The strongest expression of all three receptor types was found in the epithelium of the proximal airways during the pseudoglandular, canalicular, and saccular stages and in a vascular wall. 5-HT1A was also strongly expressed in the smooth muscle cells of the proximal airway. Vascular smooth muscle cells and endothelium occasionally showed a strong expression of 5-HT1A and 5-HT2A. In the alveolar stage, the expression of 5-HT1A, 5-HT2A, and 5-HT3A was detected in both type I (p1) and type II (p2) pneumocytes, with a stronger expression in p2. A significant decrease in percent the 5-HT2A area and in the integrated density was observed at the alveolar stage. On the other hand, a significant decrease in the percentage area but an increase in the integrated density was observed for 5-HT3A toward the alveolar stage, suggesting that a smaller number of cells expressed 5-HT3A but that they (p1 and p2) significantly increased their 5-HT3A expression at the alveolar stage. The results presented provided us with new data on the development and function of the serotonin system in the human fetal lung and gave us insight into their possible involvement in the pathogenesis of lung pathology, particularly that characteristic of the neonatal period.
Assuntos
Pulmão , Receptores de Serotonina , Recém-Nascido , Humanos , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Pulmão/metabolismo , Feto/metabolismo , Epitélio/metabolismo , Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1A de Serotonina/metabolismoRESUMO
Cannabidiol (CBD) is a potential antidepressant agent. We examined the association between the antidepressant effects of CBD and alterations in brain microRNAs in the unpredictable chronic mild stress (UCMS) model for depression. UCMS male rats were injected with vehicle or CBD (10 mg/kg) and tested for immobility time in the forced swim test. Alterations in miRNAs (miR16, miR124, miR135a) and genes that encode for the 5HT1a receptor, the serotonergic transporter SERT, ß-catenin, and CB1 were examined. UCMS increased immobility time in a forced swim test (i.e., depressive-like behavior) and altered the expression of miRNAs and mRNA in the ventromedial prefrontal cortex (vmPFC), raphe nucleus, and nucleus accumbens. Importantly, CBD restored UCMS-induced upregulation in miR-16 and miR-135 in the vmPFC as well as the increase in immobility time. CBD also restored the UCMS-induced decrease in htr1a, the gene that encodes for the serotonergic 5HT1a receptor; using a pharmacological approach, we found that the 5HT1a receptor antagonist WAY100135 blocked the antidepressant-like effect of CBD on immobility time. Our findings suggest that the antidepressant effects of CBD in a rat model for depression are associated with alterations in miR-16 and miR-135 in the vmPFC and are mediated by the 5HT1a receptor.
Assuntos
Canabidiol , MicroRNAs , Ratos , Masculino , Animais , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Canabidiol/metabolismo , Depressão/tratamento farmacológico , Depressão/genética , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Encéfalo/metabolismo , Córtex Pré-Frontal/metabolismo , MicroRNAs/metabolismo , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1A de Serotonina/metabolismo , Modelos Animais de DoençasRESUMO
The serotonin hypothesis of depression is still influential. We aimed to synthesise and evaluate evidence on whether depression is associated with lowered serotonin concentration or activity in a systematic umbrella review of the principal relevant areas of research. PubMed, EMBASE and PsycINFO were searched using terms appropriate to each area of research, from their inception until December 2020. Systematic reviews, meta-analyses and large data-set analyses in the following areas were identified: serotonin and serotonin metabolite, 5-HIAA, concentrations in body fluids; serotonin 5-HT1A receptor binding; serotonin transporter (SERT) levels measured by imaging or at post-mortem; tryptophan depletion studies; SERT gene associations and SERT gene-environment interactions. Studies of depression associated with physical conditions and specific subtypes of depression (e.g. bipolar depression) were excluded. Two independent reviewers extracted the data and assessed the quality of included studies using the AMSTAR-2, an adapted AMSTAR-2, or the STREGA for a large genetic study. The certainty of study results was assessed using a modified version of the GRADE. We did not synthesise results of individual meta-analyses because they included overlapping studies. The review was registered with PROSPERO (CRD42020207203). 17 studies were included: 12 systematic reviews and meta-analyses, 1 collaborative meta-analysis, 1 meta-analysis of large cohort studies, 1 systematic review and narrative synthesis, 1 genetic association study and 1 umbrella review. Quality of reviews was variable with some genetic studies of high quality. Two meta-analyses of overlapping studies examining the serotonin metabolite, 5-HIAA, showed no association with depression (largest n = 1002). One meta-analysis of cohort studies of plasma serotonin showed no relationship with depression, and evidence that lowered serotonin concentration was associated with antidepressant use (n = 1869). Two meta-analyses of overlapping studies examining the 5-HT1A receptor (largest n = 561), and three meta-analyses of overlapping studies examining SERT binding (largest n = 1845) showed weak and inconsistent evidence of reduced binding in some areas, which would be consistent with increased synaptic availability of serotonin in people with depression, if this was the original, causal abnormaly. However, effects of prior antidepressant use were not reliably excluded. One meta-analysis of tryptophan depletion studies found no effect in most healthy volunteers (n = 566), but weak evidence of an effect in those with a family history of depression (n = 75). Another systematic review (n = 342) and a sample of ten subsequent studies (n = 407) found no effect in volunteers. No systematic review of tryptophan depletion studies has been performed since 2007. The two largest and highest quality studies of the SERT gene, one genetic association study (n = 115,257) and one collaborative meta-analysis (n = 43,165), revealed no evidence of an association with depression, or of an interaction between genotype, stress and depression. The main areas of serotonin research provide no consistent evidence of there being an association between serotonin and depression, and no support for the hypothesis that depression is caused by lowered serotonin activity or concentrations. Some evidence was consistent with the possibility that long-term antidepressant use reduces serotonin concentration.