Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 13(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38920671

RESUMO

(1) Background: The effects of short-term social isolation during adulthood have not yet been fully established in rats behaviourally, and not at all transcriptomically in the medial prefrontal cortex (mPFC). (2) Methods: We measured the behavioural effects of housing adult male rats in pairs or alone for 10 days. We also used RNA sequencing to measure the accompanying gene expression alterations in the mPFC of male rats. (3) Results: The isolated animals exhibited reduced sociability and social novelty preference, but increased social interaction. There was no change in their aggression, anxiety, or depression-like activity. Transcriptomic analysis revealed a differential expression of 46 genes between the groups. The KEGG pathway analysis showed that differentially expressed genes are involved in neuroactive ligand-receptor interactions, particularly in the dopaminergic and peptidergic systems, and addiction. Subsequent validation confirmed the decreased level of three altered genes: regulator of G protein signalling 9 (Rgs9), serotonin receptor 2c (Htr2c), and Prodynorphin (Pdyn), which are involved in dopaminergic, serotonergic, and peptidergic function, respectively. Antagonizing Htr2c confirmed its role in social novelty discrimination. (4) Conclusions: Social homeostatic regulations include monoaminergic and peptidergic systems of the mPFC.


Assuntos
Córtex Pré-Frontal , Transdução de Sinais , Isolamento Social , Animais , Córtex Pré-Frontal/metabolismo , Masculino , Ratos , Monoaminas Biogênicas/metabolismo , Ratos Sprague-Dawley , Comportamento Animal , Receptor 5-HT2C de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/genética , Encefalinas/metabolismo , Encefalinas/genética , Precursores de Proteínas/metabolismo , Precursores de Proteínas/genética , Transcriptoma/genética , Regulação da Expressão Gênica
2.
Sci Adv ; 10(26): eadl2675, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941473

RESUMO

Declined memory is a hallmark of Alzheimer's disease (AD). Experiments in rodents and human postmortem studies suggest that serotonin (5-hydroxytryptamine, 5-HT) plays a role in memory, but the underlying mechanisms are unknown. Here, we investigate the role of 5-HT 2C receptor (5-HT2CR) in regulating memory. Transgenic mice expressing a humanized HTR2C mutation exhibit impaired plasticity of hippocampal ventral CA1 (vCA1) neurons and reduced memory. Further, 5-HT neurons project to and synapse onto vCA1 neurons. Disruption of 5-HT synthesis in vCA1-projecting neurons or deletion of 5-HT2CRs in the vCA1 impairs neural plasticity and memory. We show that a selective 5-HT2CR agonist, lorcaserin, improves synaptic plasticity and memory in an AD mouse model. Cumulatively, we demonstrate that hippocampal 5-HT2CR signaling regulates memory, which may inform the use of 5-HT2CR agonists in the treatment of dementia.


Assuntos
Doença de Alzheimer , Memória , Camundongos Transgênicos , Plasticidade Neuronal , Receptor 5-HT2C de Serotonina , Animais , Humanos , Receptor 5-HT2C de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/genética , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Serotonina/metabolismo , Modelos Animais de Doenças , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia
3.
Sci Rep ; 14(1): 10190, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702366

RESUMO

Dysfunction of central serotonergic neurons is known to cause depressive disorders in humans, who often show reproductive and/or glucose metabolism disorders. This study examined whether dorsal raphe (DR) serotonergic neurons sense high glucose availability to upregulate reproductive function via activating hypothalamic arcuate (ARC) kisspeptin neurons (= KNDy neurons), a dominant stimulator of gonadotropin-releasing hormone (GnRH)/gonadotropin pulses, using female rats and goats. RNA-seq and histological analysis revealed that stimulatory serotonin-2C receptor (5HT2CR) was mainly expressed in the KNDy neurons in female rats. The serotonergic reuptake inhibitor administration into the mediobasal hypothalamus (MBH), including the ARC, significantly blocked glucoprivic suppression of luteinizing hormone (LH) pulses and hyperglycemia induced by intravenous 2-deoxy-D-glucose (2DG) administration in female rats. A local infusion of glucose into the DR significantly increased in vivo serotonin release in the MBH and partly restored LH pulses and hyperglycemia in the 2DG-treated female rats. Furthermore, central administration of serotonin or a 5HT2CR agonist immediately evoked GnRH pulse generator activity, and central 5HT2CR antagonism blocked the serotonin-induced facilitation of GnRH pulse generator activity in ovariectomized goats. These results suggest that DR serotonergic neurons sense high glucose availability to reduce gluconeogenesis and upregulate reproductive function by activating GnRH/LH pulse generator activity in mammals.


Assuntos
Glucose , Cabras , Hormônio Liberador de Gonadotropina , Hormônio Luteinizante , Receptor 5-HT2C de Serotonina , Neurônios Serotoninérgicos , Animais , Hormônio Luteinizante/metabolismo , Feminino , Receptor 5-HT2C de Serotonina/metabolismo , Ratos , Neurônios Serotoninérgicos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Glucose/metabolismo , Serotonina/metabolismo , Kisspeptinas/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Dorsal da Rafe/metabolismo , Núcleo Dorsal da Rafe/efeitos dos fármacos , Ratos Sprague-Dawley
4.
Biomed Pharmacother ; 175: 116739, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759288

RESUMO

BACKGROUND: Ketamine, as a non-competitive antagonist of N-methyl-D-aspartate (NMDA) receptors, was originally used in general anesthesia. Epidemiological data show that ketamine has become one of the most commonly abused drugs in China. Ketamine administration might cause cognitive impairment; however, its molecular mechanism remains unclear. The glymphatic system is a lymphoid system that plays a key role in metabolic waste removal and cognitive regulation in the central nervous system. METHODS: Focusing on the glymphatic system, this study evaluated the behavioral performance and circulatory function of the glymphatic system by building a short-term ketamine administration model in mice, and detected the expression levels of the 5-HT2c receptor, ΔFosb, Pten, Akt, and Aqp4 in the hippocampus. Primary astrocytes were cultured to verify the regulatory relationships among related indexes using a 5-HT2c receptor antagonist, a 5-HT2c receptor short interfering RNA (siRNA), and a ΔFosb siRNA. RESULTS: Ketamine administration induced ΔFosb accumulation by increasing 5-HT2c receptor expression in mouse hippocampal astrocytes and primary astrocytes. ΔFosb acted as a transcription factor to recognize the AATGATTAAT bases in the 5' regulatory region of the Aqp4 gene (-1096 bp to -1087 bp), which inhibited Aqp4 expression, thus causing the circulatory dysfunction of the glymphatic system, leading to cognitive impairment. CONCLUSIONS: Although this regulatory mechanism does not involve the Pten/Akt pathway, this study revealed a new mechanism of ketamine-induced cognitive impairment in non-neuronal systems, and provided a theoretical basis for the safety of clinical treatment and the effectiveness of withdrawal.


Assuntos
Astrócitos , Disfunção Cognitiva , Sistema Glinfático , Hipocampo , Ketamina , Animais , Ketamina/farmacologia , Ketamina/toxicidade , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Camundongos , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Sistema Glinfático/efeitos dos fármacos , Sistema Glinfático/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Aquaporina 4/metabolismo , Aquaporina 4/genética , Receptor 5-HT2C de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/genética , Camundongos Endogâmicos C57BL , Células Cultivadas , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética
5.
Endocrinology ; 165(7)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38815086

RESUMO

The serotonin 2C receptor (5-HT2CR)-melanocortin pathway plays well-established roles in the regulation of feeding behavior and body weight homeostasis. Dysfunctions in this system, such as loss-of-function mutations in the Htr2c gene, can lead to hyperphagia and obesity. In this study, we aimed to investigate the potential therapeutic strategies for ameliorating hyperphagia, hyperglycemia, and obesity associated with a loss-of-function mutation in the Htr2c gene (Htr2cF327L/Y). We demonstrated that reexpressing functional 5-HT2CR solely in hypothalamic pro-opiomelanocortin (POMC) neurons is sufficient to reduce food intake and body weight in Htr2cF327L/Y mice subjected to a high-fat diet (HFD). In addition, 5-HT2CR expression restores the responsiveness of POMC neurons to lorcaserin, a selective agonist for 5-HT2CR. Similarly, administration of melanotan II, an agonist of the melanocortin receptor 4 (MC4R), effectively suppresses feeding and weight gain in Htr2cF327L/Y mice. Strikingly, promoting wheel-running activity in Htr2cF327L/Y mice results in a decrease in HFD consumption and improved glucose homeostasis. Together, our findings underscore the crucial role of the melanocortin system in alleviating hyperphagia and obesity related to dysfunctions of the 5-HT2CR, and further suggest that MC4R agonists and lifestyle interventions might hold promise in counteracting hyperphagia, hyperglycemia, and obesity in individuals carrying rare variants of the Htr2c gene.


Assuntos
Dieta Hiperlipídica , Hiperfagia , Obesidade , Pró-Opiomelanocortina , Receptor Tipo 4 de Melanocortina , Receptor 5-HT2C de Serotonina , Animais , Receptor 5-HT2C de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/genética , Masculino , Camundongos , Hiperfagia/metabolismo , Hiperfagia/genética , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/genética , Obesidade/metabolismo , Obesidade/genética , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/agonistas , alfa-MSH/farmacologia , alfa-MSH/análogos & derivados , Mutação com Perda de Função , Hipotálamo/metabolismo , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Ingestão de Alimentos/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Modelos Animais de Doenças , Hiperglicemia/metabolismo , Hiperglicemia/genética , Camundongos Endogâmicos C57BL , Benzazepinas , Peptídeos Cíclicos
6.
Epilepsia ; 65(7): e125-e130, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38738911

RESUMO

Because of its involvement in breathing control and neuronal excitability, dysregulation of the serotonin (5-HT) 2C receptor (5-HT2C) might play a key role in sudden unexpected death in epilepsy. Seizure-induced respiratory arrest is thus prevented by a 5-HT2B/C agonist in different seizure model. However, the specific contribution of 5-HT2C in chronic epilepsy-related respiratory dysfunction remains unknown. In a rat model of temporal lobe epilepsy (EPI rats), in which we previously reported interictal respiratory dysfunctions and a reduction of brainstem 5-HT tone, quantitative reverse transcriptase polymerase chain reaction showed overexpression of TPH2 (5-HT synthesis enzyme), SERT (5-HT reuptake transporter), and 5-HT2C transcript levels in the brainstem of EPI rats, and of RNA-specific adenosine deaminase (ADAR1, ADAR2) involved in the production of 5-HT2C isoforms. Interictal ventilation was assessed with whole-body plethysmography before and 2 h after administration of SB242084 (2 mg/kg), a specific antagonist of 5-HT2C. As expected, SB242084 administration induced a progressive decrease in ventilatory parameters and an alteration of breathing stability in both control and EPI rats. However, the size of the SB242084 effect was lower in EPI rats than in controls. Increased 5-HT2C gene expression in the brainstem of EPI rats could be part of a compensatory mechanism against epilepsy-related low 5-HT tone and expression of 5-HT2C isoforms for which 5-HT affinity might be lower.


Assuntos
Tronco Encefálico , Modelos Animais de Doenças , Epilepsia do Lobo Temporal , Receptor 5-HT2C de Serotonina , Animais , Receptor 5-HT2C de Serotonina/genética , Receptor 5-HT2C de Serotonina/metabolismo , Ratos , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/metabolismo , Tronco Encefálico/metabolismo , Tronco Encefálico/efeitos dos fármacos , Masculino , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Indóis/farmacologia , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Ratos Sprague-Dawley , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Aminopiridinas , Tiofenos
7.
Neuroendocrinology ; 114(8): 749-774, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718758

RESUMO

INTRODUCTION: Since the discovery of gonadotropin-inhibitory hormone (GnIH), it has been found to play a critical role in reproduction in vertebrates. Recently, a regulatory role of GnIH in appetite and energy metabolism has emerged, although its precise physiological mechanisms remain unknown. METHODS: Thus, the present study evaluated the effects of a single or long-term intraperitoneal GnIH treatment on the food intake, weight, and glucolipid metabolism of chickens, as well as investigating the possible neuroendocrinology factors and mechanisms involved in GnIH-induced obesity and glucolipid metabolism disorder. RESULTS: Our results show that the intraperitoneal administration of GnIH to chickens resulted in a marked body mass increase, hyperlipidemia, hyperglycemia, and glucose intolerance. Subsequently, the results of metabolomics studies and the pharmacological inhibition of the 5-HT2C receptor revealed that blocking the 5-HT2C receptor reinforced the effects of GnIH on food intake, body weight, and blood glucose and lipid levels, resulting in even worse cases of GnIH-induced hyperglycemia, hyperlipidemia, and hepatic lipid deposition. This suggests that, via the 5-HT2C receptor, peripheral 5-HT may act as a negative feedback regulator to interplay with GnIH and jointly control energy balance homeostasis in chickens. DISCUSSION: Our present study provides evidence of cross-talk between GnIH and 5-HT in food intake and energy metabolism at the in vivo pharmacological level, and it proposes a molecular basis for these interactions, suggesting that functional interactions between GnIH and 5-HT may open new avenues for understanding the mechanism of the neuroendocrine network involved in appetite and energy metabolism, as well as providing a new therapeutic strategy to prevent obesity, diabetes, and metabolic disorders.


Assuntos
Galinhas , Metabolismo Energético , Comportamento Alimentar , Receptor 5-HT2C de Serotonina , Serotonina , Animais , Metabolismo Energético/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/metabolismo , Serotonina/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Hormônios Hipotalâmicos/metabolismo , Masculino , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Hiperlipidemias/metabolismo , Hiperlipidemias/induzido quimicamente
8.
Psychopharmacology (Berl) ; 241(8): 1631-1644, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38594515

RESUMO

RATIONALE: Cognitive flexibility, the ability to adapt behaviour in response to a changing environment, is disrupted in several neuropsychiatric disorders, including obsessive-compulsive disorder and major depressive disorder. Evidence suggests that flexibility, which can be operationalised using reversal learning tasks, is modulated by serotonergic transmission. However, how exactly flexible behaviour and associated reinforcement learning (RL) processes are modulated by 5-HT action on specific receptors is unknown. OBJECTIVES: We investigated the effects of 5-HT2A receptor (5-HT2AR) and 5-HT2C receptor (5-HT2CR) antagonism on flexibility and underlying RL mechanisms. METHODS: Thirty-six male Lister hooded rats were trained on a touchscreen visual discrimination and reversal task. We evaluated the effects of systemic treatments with the 5-HT2AR and 5-HT2CR antagonists M100907 and SB-242084, respectively, on reversal learning and performance on probe trials where correct and incorrect stimuli were presented with a third, probabilistically rewarded, stimulus. Computational models were fitted to task choice data to extract RL parameters, including a novel model designed specifically for this task. RESULTS: 5-HT2AR antagonism impaired reversal learning only after an initial perseverative phase, during a period of random choice and then new learning. 5-HT2CR antagonism, on the other hand, impaired learning from positive feedback. RL models further differentiated these effects. 5-HT2AR antagonism decreased punishment learning rate (i.e. negative feedback) at high and low doses. The low dose also decreased reinforcement sensitivity (beta) and increased stimulus and side stickiness (i.e., the tendency to repeat a choice regardless of outcome). 5-HT2CR antagonism also decreased beta, but reduced side stickiness. CONCLUSIONS: These data indicate that 5-HT2A and 5-HT2CRs both modulate different aspects of flexibility, with 5-HT2ARs modulating learning from negative feedback as measured using RL parameters and 5-HT2CRs for learning from positive feedback assessed through conventional measures.


Assuntos
Cognição , Piperidinas , Receptor 5-HT2A de Serotonina , Receptor 5-HT2C de Serotonina , Reforço Psicológico , Reversão de Aprendizagem , Antagonistas do Receptor 5-HT2 de Serotonina , Animais , Masculino , Ratos , Reversão de Aprendizagem/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Piperidinas/farmacologia , Cognição/efeitos dos fármacos , Cognição/fisiologia , Relação Dose-Resposta a Droga , Comportamento Animal/efeitos dos fármacos , Fluorbenzenos/farmacologia , Aminopiridinas/farmacologia , Indóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA