Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Acta Oncol ; 62(12): 1757-1766, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37738252

RESUMO

BACKGROUND: Our previous study has revealed that EphA7 was upregulated in patient-derived esophageal squamous cell carcinoma (ESCC) xenografts with hyper-activated STAT3, but its mechanism was still unclear. MATERIALS AND METHODS: To assess the association between EphA7 and STAT3, western blotting, immunofluorescence, ChIP assay, and qRT-PCR were conducted. Truncated mutation and luciferase assay were performed to examine the promoter activity of EphA7. CCK-8 assay and colony formation were performed to assess the proliferation of ESCC. Cell-derived xenograft models were established to evaluate the effects of EphA7 on ESCC tumor growth. RNA-seq analyses were used to assess the effects of EphA7 on related signals. RESULTS: In this study, EphA7 was found upregulated in ESCC cell lines with high STAT3 activation, and immunofluorescence also showed that EphA7 was co-localized with phospho-STAT3 in ESCC cells. Interestingly, suppressing STAT3 activation by the STAT3 inhibitor Stattic markedly inhibited the protein expression of EphA7 in ESCC cells, in contrast, activation of STAT3 by IL-6 obviously upregulated the protein expression of EphA7. Moreover, the transcription of EphA7 was also mediated by the activation of STAT3 in ESCC cells, and the -2000∼-1500 region was identified as the key promoter of EphA7. Our results also indicated that EphA7 enhanced the cell proliferation of ESCC, and silence of EphA7 significantly suppressed ESCC tumor growth. Moreover, EphA7 silence markedly abolished STAT3 activation-derived cell proliferation of ESCC. Additionally, RNA-seq analyses indicated that several tumor-related signaling pathways were significantly changed after EphA7 downregulation in ESCC cells. CONCLUSION: Our results showed that the transcriptional expression of EphA7 was increased by activated STAT3, and the STAT3 signaling may act through EphA7 to promote the development of ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Receptor EphA7 , Fator de Transcrição STAT3 , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Receptor EphA7/metabolismo
2.
Clin Transl Oncol ; 24(7): 1274-1289, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35112312

RESUMO

Ephrin receptor A7 (EphA7) is a member of the Eph receptor family. It is widely involved in signal transduction between cells, regulates cell proliferation and differentiation, and participates in developing neural tubes and brain. In addition, EphA7 also has a dual role of tumor promoter and tumor suppressor. It can participate in cell proliferation, migration and apoptosis through various mechanisms, and affect tumor differentiation, staging and prognosis. EphA7 may be a potential diagnostic marker and tumor treatment target. This article reviews the effects of EphA7 on a variety of tumor biological processes and pathological characteristics, as well as specific effects and regulatory mechanisms.


Assuntos
Neoplasias , Receptor EphA7 , Apoptose , Proliferação de Células , Genes Supressores de Tumor , Humanos , Neoplasias/genética , Receptor EphA7/genética , Receptor EphA7/metabolismo , Transdução de Sinais/fisiologia
3.
Anal Cell Pathol (Amst) ; 2022: 4220786, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35103233

RESUMO

Basal cell carcinoma (BCC) is the most common malignancy worldwide, with increasing incidence. BCCs present low mortality but high morbidity, and its pathogenesis remains unclear. Eph receptors have been implicated in tumorigenesis. EphA7 plays a role as a tumor suppressor in certain cancers. We checked EphA7 expression levels and methylation status in a set of BCCs, benign skin diseases, and compound nevus tissue samples using immunohistochemistry. EphA7 protein was positively expressed in normal basal cells, benign skin diseases, and compound nevus cells, but lost in areas of BCC tissues. We detected hypermethylation in BCC tissue samples with reduced expression of EphA7. There is a significant relationship between the expression level of EphA7 receptor protein and the methylation status of CpG islands in the EphA7 promoter region (P < 0.001). To our knowledge, this is the first study to report the EphA7 expression profile and hypermethylation of EphA7 in BCC. The role of the EphA7 gene and the status of hypermethylation in tumorigenesis and treatment of BCC warrant further investigation.


Assuntos
Carcinoma Basocelular , Ilhas de CpG , Metilação de DNA , Receptor EphA7 , Neoplasias Cutâneas , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Humanos , Regiões Promotoras Genéticas , Receptor EphA7/biossíntese , Receptor EphA7/genética , Receptor EphA7/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo
4.
J Neurosci ; 41(22): 4795-4808, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33906900

RESUMO

Coordination of skilled movements and motor planning relies on the formation of regionally restricted brain circuits that connect cortex with subcortical areas during embryonic development. Layer 5 neurons that are distributed across most cortical areas innervate the pontine nuclei (basilar pons) by protrusion and extension of collateral branches interstitially along their corticospinal extending axons. Pons-derived chemotropic cues are known to attract extending axons, but molecules that regulate collateral extension to create regionally segregated targeting patterns have not been identified. Here, we discovered that EphA7 and EfnA5 are expressed in the cortex and the basilar pons in a region-specific and mutually exclusive manner, and that their repulsive activities are essential for segregating collateral extensions from corticospinal axonal tracts in mice. Specifically, EphA7 and EfnA5 forward and reverse inhibitory signals direct collateral extension such that EphA7-positive frontal and occipital cortical areas extend their axon collaterals into the EfnA5-negative rostral part of the basilar pons, whereas EfnA5-positive parietal cortical areas extend their collaterals into the EphA7-negative caudal part of the basilar pons. Together, our results provide a molecular basis that explains how the corticopontine projection connects multimodal cortical outputs to their subcortical targets.SIGNIFICANCE STATEMENT Our findings put forward a model in which region-to-region connections between cortex and subcortical areas are shaped by mutually exclusive molecules to ensure the fidelity of regionally restricted circuitry. This model is distinct from earlier work showing that neuronal circuits within individual cortical modalities form in a topographical manner controlled by a gradient of axon guidance molecules. The principle that a shared molecular program of mutually repulsive signaling instructs regional organization-both within each brain region and between connected brain regions-may well be applicable to other contexts in which information is sorted by converging and diverging neuronal circuits.


Assuntos
Orientação de Axônios/fisiologia , Efrina-A5/metabolismo , Neocórtex/embriologia , Vias Neurais/embriologia , Ponte/embriologia , Receptor EphA7/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/metabolismo , Vias Neurais/metabolismo , Ponte/patologia
5.
BMC Med ; 19(1): 26, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33526018

RESUMO

BACKGROUND: A critical and challenging process in immunotherapy is to identify cancer patients who could benefit from immune checkpoint inhibitors (ICIs). Exploration of predictive biomarkers could help to maximize the clinical benefits. Eph receptors have been shown to play essential roles in tumor immunity. However, the association between EPH gene mutation and ICI response is lacking. METHODS: Clinical data and whole-exome sequencing (WES) data from published studies were collected and consolidated as a discovery cohort to analyze the association between EPH gene mutation and efficacy of ICI therapy. Another independent cohort from Memorial Sloan Kettering Cancer Center (MSKCC) was adopted to validate our findings. The Cancer Genome Atlas (TCGA) cohort was used to perform anti-tumor immunity and pathway enrichment analysis. RESULTS: Among fourteen EPH genes, EPHA7-mutant (EPHA7-MUT) was enriched in patients responding to ICI therapy (FDR adjusted P < 0.05). In the discovery cohort (n = 386), significant differences were detected between EPHA7-MUT and EPHA7-wildtype (EPHA7-WT) patients regarding objective response rate (ORR, 52.6% vs 29.1%, FDR adjusted P = 0.0357) and durable clinical benefit (DCB, 70.3% vs 42.7%, FDR adjusted P = 0.0200). In the validation cohort (n = 1144), significant overall survival advantage was observed in EPHA7-MUT patients (HR = 0.62 [95% confidence interval, 0.39 to 0.97], multivariable adjusted P = 0.0367), which was independent of tumor mutational burden (TMB) and copy number alteration (CNA). Notably, EPHA7-MUT patients without ICI therapy had significantly worse overall survival in TCGA cohort (HR = 1.33 [95% confidence interval, 1.06 to 1.67], multivariable adjusted P = 0.0139). Further gene set enrichment analysis revealed enhanced anti-tumor immunity in EPHA7-MUT tumor. CONCLUSIONS: EPHA7-MUT successfully predicted better clinical outcomes in ICI-treated patients across multiple cancer types, indicating that EPHA7-MUT could serve as a potential predictive biomarker for immune checkpoint inhibitors.


Assuntos
Inibidores de Checkpoint Imunológico/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptor EphA7/metabolismo , Biomarcadores Tumorais/genética , Estudos de Coortes , Variações do Número de Cópias de DNA , Humanos , Imunoterapia , Masculino , Pessoa de Meia-Idade , Mutação
6.
Braz J Med Biol Res ; 54(2): e9161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33439936

RESUMO

Patients with osteosarcoma (OS) usually have poor overall survival because of frequent metastasis. Long non-coding RNAs (lncRNAs) have been reported to be associated with tumorigenesis and metastasis. In this study, we investigated the expression and roles of lncRNA human histocompatibility leukocyte antigen (HLA) complex P5 (HCP5) in OS, aiming to provide a novel molecular mechanism for OS. HCP5 was up-regulated both in OS tissues and cell lines and high expression of HCP5 was associated to low survival in OS patients. Down-regulation of HCP5 inhibited cell proliferation, migration, and invasion, suggesting its carcinogenic role in OS. miR-101 was targeted by HCP5 and its expression was decreased in OS. The inhibitor of miR-101 reversed the impact of HCP5 down-regulation on cell proliferation, apoptosis, and metastasis in OS. Ephrin receptor 7 (EPHA7) was proved to be a target of miR-101 and had ability to recover the effects of miR-101 inhibitor in OS. In conclusion, lncRNA HCP5 knockdown suppressed cell proliferation, migration, and invasion, and induced apoptosis through depleting the expression of EPHA7 by binding to miR-101, providing a potential therapeutic strategy of HCP5 in OS.


Assuntos
Neoplasias Ósseas , MicroRNAs/metabolismo , Osteossarcoma , RNA Longo não Codificante/genética , Receptor EphA7/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Osteossarcoma/genética , Osteossarcoma/patologia
7.
Mol Cell Biochem ; 476(1): 213-220, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32914261

RESUMO

A soluble form of EphA7 (sEphA7) has been found to antagonize the role of full-length EphA7 (EphA7-FL) to stabilize the membrane level of the tight junction protein Claudin6 (CLDN6) during Xenopus pronephros development. However, the mechanism underlying this antagonistic effect remains unclear. In this study, we identified Nicalin, a Nicastrin-like protein, as a novel sEphA7-interacting protein using immunoprecipitation (IP)/mass spectrometry (MS). In HEK293 cells, Nicalin interacted with sEphA7 and they predominantly co-localized in the endoplasmic reticulum (ER). Interestingly, Nicalin diminished the protein level of sEphA7 in the membranous fraction but increased that in the insoluble cytoplasmic fraction with a reduced molecular weight, suggesting that Nicalin restricts the entry of sEphA7 into the ER for further modification. sEphA7 probably acted as a chaperone and enhanced the membrane level of EphA7-FL and the formation of EphA7 complex, however, this effect was reversed by Nicalin. Our work suggested that Nicalin limits sEphA7 secretion, thereby preventing the formation of EphA7 complex. These results demonstrated the potential role of Nicalin in regulating EphA7 expression and revealed a potential mechanism underlying the antagonistic effect between sEphA7 and EphA7-FL.


Assuntos
Claudinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Receptor EphA7/metabolismo , Animais , Biotinilação , Membrana Celular/metabolismo , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Transdução de Sinais , Xenopus , Proteínas de Xenopus/metabolismo
8.
Mol Med Rep ; 23(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33236144

RESUMO

Micro (mi)RNAs serve crucial roles in cancer development although little is known about their cellular mechanisms in the pathogenesis of melanoma. The present study explored the regulatory roles of miR­18a­5p in melanoma cell proliferation, apoptosis and autophagy, in addition to its target gene in melanoma cells. miRNA and ephrin receptor A7 (EPHA7) mRNA were analyzed by reverse transcription­quantitative PCR. Cell Counting Kit­8 and colony formation assays were performed to examine the cell proliferation rate. Hoechst staining and flow cytometry were performed to investigate cell apoptosis. Western blotting was used to estimate the abundance of proteins. Dual-luciferase reporter assay verified the binding of miRNA with target gene sequences. Melanoma tissues and cell lines exhibited markedly elevated miR­18a­5p expression. miR­18a­5p inhibitor inhibited proliferation rates, and triggered apoptosis and autophagy marker protein expression in WM266­4 and A375 cells. It also negatively regulated EPHA7 expression in WM266­4 and A375 cells by directly binding at the 3'­untranslated region of EPHA7. miR­18a­5p mimics reversed the EPHA7 overexpression­induced suppression of proliferation, and the EPHA7 overexpression­induced promotion of apoptosis and autophagy. miR­18a­5p triggered proliferation of melanoma cells and inhibited apoptosis and autophagy by directly targeting and inhibiting EPHA7 expression. Thus, the present study aided our understanding of miRNA­mediated melanoma pathogenesis.


Assuntos
Apoptose , Autofagia , Proliferação de Células , Melanoma/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Neoplásico/metabolismo , Receptor EphA7/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Melanoma/genética , Melanoma/patologia , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA Neoplásico/genética , Receptor EphA7/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
9.
Braz. j. med. biol. res ; 54(2): e9161, 2021. graf
Artigo em Inglês | LILACS | ID: biblio-1153511

RESUMO

Patients with osteosarcoma (OS) usually have poor overall survival because of frequent metastasis. Long non-coding RNAs (lncRNAs) have been reported to be associated with tumorigenesis and metastasis. In this study, we investigated the expression and roles of lncRNA human histocompatibility leukocyte antigen (HLA) complex P5 (HCP5) in OS, aiming to provide a novel molecular mechanism for OS. HCP5 was up-regulated both in OS tissues and cell lines and high expression of HCP5 was associated to low survival in OS patients. Down-regulation of HCP5 inhibited cell proliferation, migration, and invasion, suggesting its carcinogenic role in OS. miR-101 was targeted by HCP5 and its expression was decreased in OS. The inhibitor of miR-101 reversed the impact of HCP5 down-regulation on cell proliferation, apoptosis, and metastasis in OS. Ephrin receptor 7 (EPHA7) was proved to be a target of miR-101 and had ability to recover the effects of miR-101 inhibitor in OS. In conclusion, lncRNA HCP5 knockdown suppressed cell proliferation, migration, and invasion, and induced apoptosis through depleting the expression of EPHA7 by binding to miR-101, providing a potential therapeutic strategy of HCP5 in OS.


Assuntos
Humanos , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Osteossarcoma/genética , Osteossarcoma/patologia , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Receptor EphA7/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Invasividade Neoplásica
10.
PLoS One ; 15(12): e0231561, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33275600

RESUMO

The shape of a neuron facilitates its functionality within neural circuits. Dendrites integrate incoming signals from axons, receiving excitatory input onto small protrusions called dendritic spines. Therefore, understanding dendritic growth and development is fundamental for discerning neural function. We previously demonstrated that EphA7 receptor signaling during cortical development impacts dendrites in two ways: EphA7 restricts dendritic growth early and promotes dendritic spine formation later. Here, the molecular basis for this shift in EphA7 function is defined. Expression analyses reveal that EphA7 full-length (EphA7-FL) and truncated (EphA7-T1; lacking kinase domain) isoforms are dynamically expressed in the developing cortex. Peak expression of EphA7-FL overlaps with dendritic elaboration around birth, while highest expression of EphA7-T1 coincides with dendritic spine formation in early postnatal life. Overexpression studies in cultured neurons demonstrate that EphA7-FL inhibits both dendritic growth and spine formation, while EphA7-T1 increases spine density. Furthermore, signaling downstream of EphA7 shifts during development, such that in vivo inhibition of mTOR by rapamycin in EphA7-mutant neurons ameliorates dendritic branching, but not dendritic spine phenotypes. Finally, direct interaction between EphA7-FL and EphA7-T1 is demonstrated in cultured cells, which results in reduction of EphA7-FL phosphorylation. In cortex, both isoforms are colocalized to synaptic fractions and both transcripts are expressed together within individual neurons, supporting a model where EphA7-T1 modulates EphA7-FL repulsive signaling during development. Thus, the divergent functions of EphA7 during cortical dendrite development are explained by the presence of two variants of the receptor.


Assuntos
Córtex Cerebral/embriologia , Dendritos/metabolismo , Receptor EphA7/metabolismo , Animais , Axônios/metabolismo , Células Cultivadas , Córtex Cerebral/metabolismo , Espinhas Dendríticas/metabolismo , Masculino , Camundongos Endogâmicos C57BL/embriologia , Neurônios/metabolismo , Organogênese , Isoformas de Proteínas/fisiologia , Ratos , Ratos Sprague-Dawley/embriologia , Receptor EphA7/fisiologia , Transdução de Sinais
11.
Artigo em Inglês | MEDLINE | ID: mdl-32843430

RESUMO

Although cutaneous squamous cell carcinoma (cSCC) is treatable in the majority of cases, deadly invasive and metastatic cases do occur. To date there are neither reliable predictive biomarkers of disease progression nor FDA-approved targeted therapies as standard of care. To address these issues, we screened patient-derived primary cultured cells from invasive/metastatic cSCC with 107 small-molecule inhibitors. In-house bioinformatics tools were used to cross-analyze drug responses and DNA mutations in tumors detected by whole-exome sequencing (WES). Aberrations in molecular pathways with evidence of potential drug targets were identified, including the Eph-ephrin and neutrophil degranulation signaling pathways. Using a screening panel of siRNAs, we identified EPHA6 and EPHA7 as targets within the Eph-ephrin pathway responsible for mitigating decreased cell viability. These studies form a plausible foundation for detecting biomarkers of high-risk progressive disease applicable in dermatopathology and for patient-specific therapeutic options for invasive/metastatic cSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/metabolismo , Sobrevivência Celular/genética , Progressão da Doença , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Genômica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Receptor EphA6/antagonistas & inibidores , Receptor EphA6/metabolismo , Receptor EphA7/antagonistas & inibidores , Receptor EphA7/metabolismo , Transdução de Sinais/genética , Neoplasias Cutâneas/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Sequenciamento do Exoma/métodos
12.
Eur Rev Med Pharmacol Sci ; 24(11): 6139-6149, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32572879

RESUMO

OBJECTIVE: Non-small cell lung cancer (NSCLC) is a primary subtype of lung cancers which has a high morbidity and poor prognosis. Emerging evidence has demonstrated that aberrantly expressed microRNAs (miRNAs) were implicated in the regulatory functions of multiple processes during tumorigenesis. In the current study, we explored the functional roles and underlying mechanisms of miR-448 in NSCLC. PATIENTS AND METHODS: Quantitative real-time polymerase chain reaction assays were conducted to measure miR-448 expressions in 51 pairs of NSCLC tissues and corresponding normal tissues. Moreover, the relationship between miR-448 expressions and clinicopathological characteristics of NSCLC patients was also determined. We then performed transwell assays to explore the functions of miR-448 in NSCLC cell invasion and migration. As we had identified EPHA7 as a functional target of miR-448 in NSCLC cells, the clinical significance of EPHA7 in NSCLC patients was further investigated. Finally, we detected the influence of miR-448 on tumor growth rate and tumor size of NSCLC using tumor xenografts. RESULTS: Underexpressed miR-448 was identified in NSCLC, and low miR-448 expression was confirmed to be associated with the poor prognosis and adverse clinicopathologic features of NSCLC patients. Moreover, functional assays demonstrated that miR-448 overexpression suppressed NSCLC cell proliferation, invasion and migration. EPHA7 was identified as a direct target of miR-448. Additionally, miR-448 restoration suppressed in vivo NSCLC cell growth. Finally, our studies also indicated that miR-448 exerted anti-NSCLC functions via regulating PI3K/AKT signaling pathway and EMT. CONCLUSIONS: These results showed that miR-448/EPHA7 axis maybe one of the useful diagnostic and prognostic biomarkers for NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Movimento Celular , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor EphA7/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Proliferação de Células , Humanos , Neoplasias Pulmonares/patologia , Camundongos , MicroRNAs/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Receptor EphA7/genética , Transdução de Sinais
13.
Am J Physiol Endocrinol Metab ; 319(1): E81-E90, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32396496

RESUMO

We have previously shown that systemic injection of erythropoietin-producing hepatocellular receptor A7 (EPHA7)-Fc raises serum luteinizing hormone (LH) levels before ovulation in female rats, indicating the induction of EPHA7 in ovulation. In this study, we aimed to identify the mechanism and hypothalamus-pituitary-ovary (HPO) axis level underlying the promotion of LH secretion by EPHA7. Using an ovariectomized (OVX) rat model, in conjunction with low-dose 17ß-estradiol (E2) treatment, we investigated the association between EPHA7-ephrin (EFN)A5 signaling and E2 negative feedback. Various rat models (OVX, E2-treated OVX, and abarelix treated) were injected with the recombinant EPHA7-Fc protein through the caudal vein to investigate the molecular mechanism underlying the promotion of LH secretion by EPHA7. Efna5 was observed strongly expressed in the arcuate nucleus of the female rat by using RNAscope in situ hybridization. Our results indicated that E2, combined with estrogen receptor (ER)α, but not ERß, inhibited Efna5 and gonadotropin-releasing hormone 1 (Gnrh1) expressions in the hypothalamus. In addition, the systemic administration of EPHA7-Fc restrained the inhibition of Efna5 and Gnrh1 by E2, resulting in increased Efna5 and Gnrh1 expressions in the hypothalamus as well as increased serum LH levels. Collectively, our findings demonstrated the involvement of EPHA7-EFNA5 signaling in the regulation of LH and the E2 negative feedback pathway in the hypothalamus, highlighting the functional role of EPHA7 in female reproduction.


Assuntos
Efrina-A5/metabolismo , Receptor alfa de Estrogênio/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Hormônio Luteinizante/metabolismo , Precursores de Proteínas/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Efrina-A5/efeitos dos fármacos , Efrina-A5/genética , Estradiol/farmacologia , Receptor beta de Estrogênio/metabolismo , Estrogênios/farmacologia , Retroalimentação Fisiológica/efeitos dos fármacos , Retroalimentação Fisiológica/fisiologia , Feminino , Hormônio Liberador de Gonadotropina/efeitos dos fármacos , Antagonistas de Hormônios/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/efeitos dos fármacos , Hormônio Luteinizante/efeitos dos fármacos , Oligopeptídeos/farmacologia , Ovariectomia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Precursores de Proteínas/efeitos dos fármacos , Ratos , Receptor EphA7/genética , Receptor EphA7/metabolismo , Receptor EphA7/farmacologia , Proteínas Recombinantes
14.
Elife ; 92020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32314958

RESUMO

The conversion of proliferating skeletal muscle precursors (myoblasts) to terminally-differentiated myocytes is a critical step in skeletal muscle development and repair. We show that EphA7, a juxtacrine signaling receptor, is expressed on myocytes during embryonic and fetal myogenesis and on nascent myofibers during muscle regeneration in vivo. In EphA7-/- mice, hindlimb muscles possess fewer myofibers at birth, and those myofibers are reduced in size and have fewer myonuclei and reduced overall numbers of precursor cells throughout postnatal life. Adult EphA7-/- mice have reduced numbers of satellite cells and exhibit delayed and protracted muscle regeneration, and satellite cell-derived myogenic cells from EphA7-/- mice are delayed in their expression of differentiation markers in vitro. Exogenous EphA7 extracellular domain will rescue the null phenotype in vitro, and will also enhance commitment to differentiation in WT cells. We propose a model in which EphA7 expression on differentiated myocytes promotes commitment of adjacent myoblasts to terminal differentiation.


Assuntos
Diferenciação Celular/fisiologia , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Receptor EphA7/metabolismo , Animais , Comunicação Celular/fisiologia , Camundongos , Camundongos Knockout
15.
Stem Cells Transl Med ; 9(1): 120-130, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31471947

RESUMO

The presence of pericytes (PCs) with multipotency and broad distribution along capillary suggests that microvasculature plays a role not only as a duct for blood fluid transport but also as a stem cell niche that contributes to tissue maintenance and regeneration. The lack of an appropriate marker for multipotent PCs still limits our understanding of their pathophysiological roles. We identified the novel marker EphA7 to detect multipotent PCs using microarray analysis of an immortalized PC library. PCs were isolated from microvessels of mouse subcutaneous adipose tissues, then EphA7+ PCs called capillary stem cells (CapSCs) were separated from EphA7- control PCs (ctPCs) using fluorescence-activated cell sorting system. CapSCs had highly multipotency that enabled them to differentiate into mesenchymal and neuronal lineages compared with ctPCs. CapSCs also differentiated into endothelial cells and PCs to form capillary-like structures by themselves. Transplantation of CapSCs into ischemic tissues significantly improved blood flow recovery in hind limb ischemia mouse model due to vascular formation compared with that of ctPCs and adipose stromal cells. These data demonstrate that EphA7 identifies a subpopulation of multipotent PCs that have high angiogenesis and regenerative potency and are an attractive target for regenerative therapies.


Assuntos
Capilares/metabolismo , Isquemia/imunologia , Células-Tronco Multipotentes/metabolismo , Pericitos/metabolismo , Receptor EphA7/metabolismo , Animais , Diferenciação Celular , Humanos , Camundongos
16.
J Cell Biochem ; 121(4): 2962-2969, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31709597

RESUMO

Long noncoding RNAs have been demonstrated to contribute to the development and progression of various cancers. However, the underlying regulatory mechanisms of KCNQ1OT1 in tumorigenesis of maxillary sinus squamous cell carcinoma (MSSCC) remain unknown. Herein, we found that KCNQ1OT1 expression was markedly upregulated in MSSCC tissues and MSSCC cell line (IMC-3) by using quantitative reverse transcription-polymerase chain reaction. Loss-of-function experiments revealed that the deletion of KCNQ1OT1 inhibited cell proliferation, migration, and invasion. Moreover, we confirmed KCNQ1OT1 could directly interact with miR-204 by bioinformatic prediction and dual luciferase assay, and miR-204 inhibitor markedly reversed MSSCC tumor phenotypes induced by shKCNQ1OT1. Finally, we demonstrated that KCNQ1OT1/miR-204 facilitated MSSCC progression by regulating Eph receptor A7 (EphA7). Taken together, these results revealed a novel regulatory mechanism KCNQ1OT1/miR-204/EphA7 axis, which could provide a new understanding of MSSCC tumorigenesis and develop potential targets for MSSCC therapy.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Neoplasias Maxilares/metabolismo , Invasividade Neoplásica , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Biologia Computacional , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Luciferases/metabolismo , Seio Maxilar/metabolismo , MicroRNAs/metabolismo , Fenótipo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Receptor EphA7/metabolismo
17.
Cell Death Differ ; 27(5): 1644-1659, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31685980

RESUMO

Zinc finger protein 422 (Zfp422) is a widely expressed zinc finger protein that serves as a transcriptional factor to regulate downstream gene expression, but until now, little is known about its roles in myogenesis. We found here that Zfp422 plays a critical role in skeletal muscle development and regeneration. It highly expresses in mouse skeletal muscle during embryonic development. Specific knockout of Zfp422 in skeletal muscle impaired embryonic muscle formation. Satellite cell-specific Zfp422 deletion severely inhibited muscle regeneration. Myoblast differentiation and myotube formation were suppressed in Zfp422-deleted C2C12 cells, isolated primary myoblasts, and satellite cells. Chromatin Immunoprecipitation Sequencing (ChIP-Seq) revealed that Zfp422 regulated ephrin type-A receptor 7 (EphA7) expression by binding an upstream 169-bp DNA sequence, which was proved to be an enhancer of EphA7. Knocking EphA7 down in C2C12 cells or deleting Zfp422 in myoblasts will inhibit cell apoptosis which is required for myoblast differentiation. These results indicate that Zfp422 is essential for skeletal muscle differentiation and fusion, through regulating EphA7 expression to maintain proper apoptosis.


Assuntos
Apoptose , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Músculo Esquelético/citologia , Mioblastos/citologia , Mioblastos/metabolismo , Proteínas Nucleares/metabolismo , Receptor EphA7/metabolismo , Animais , Apoptose/genética , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/genética , Músculo Esquelético/embriologia , Proteínas Nucleares/genética , Regeneração , Células Satélites de Músculo Esquelético/citologia
18.
Cell Death Dis ; 10(7): 514, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273190

RESUMO

Accumulating evidence suggested the participation of long noncoding RNAs (lncRNAs) in regulating various biological processes so as to affecting cancer progression. However, the functional role of most lncRNAs in colorectal carcer (CRC) is still largely covered. In the present study, we disclosed SNHG14 as a carcinogene in CRC development, as it was low-expressed in normal colon tissues but markedly upregulated in CRC cell lines. Besides, SNHG14 contributed to CRC cell proliferation, motility and EMT in vitro, and inhibition of it confined CRC tumor growth and liver metastasis in vivo. Next, the mechanistic investigations confirmed that SNHG14-promoted CRC progression was mediated by EPHA7, which was negatively regulated by SNHG14 in CRC via an EZH2-dependent way. Importantly, EZH2 was proved as a transcription factor of EPHA7 and functioned as a repressor in EPHA7 transcription by enhancing methylation on EPHA7 promoter. Meanwhile, SNHG14 increased EZH2 expression in CRC via stabilizing its mRNA by interacting with FUS, and via freeing its mRNA from miR-186-5p-induced silence. All in all, our observations demonstrated that SNHG14 serves as a facilitator in CRC through targeting EZH2-repressed EPHA7 by enhancing EZH2 via recruiting FUS and absorbing miR-186-5p, indicating a promising new road for CRC diagnosis and treatment.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/metabolismo , Receptor EphA7/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Epigênese Genética , Inativação Gênica , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Mutação/genética , Metástase Neoplásica , Fenótipo , Ligação Proteica , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Transcrição Gênica , Carga Tumoral , Regulação para Cima/genética
19.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31118261

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma and is associated with two B cell malignancies, primary effusion lymphoma (PEL) and the plasmablastic variant of multicentric Castleman's disease. On several adherent cell types, EphA2 functions as a cellular receptor for the gH/gL glycoprotein complex of KSHV. KSHV gH/gL also has previously been found to interact weakly with other members of the Eph family of receptor tyrosine kinases (Ephs), and other A-type Ephs have been shown to be able to compensate for the absence of EphA2 using overexpression systems. However, whether these interactions are of functional consequence at endogenous protein levels has remained unclear so far. Here, we demonstrate for the first time that endogenously expressed EphA7 in BJAB B cells is critical for the cell-to-cell transmission of KSHV from producer iSLK cells to BJAB target cells. The BJAB lymphoblastoid cell line often serves as a model for B cell infection and expresses only low levels of all Eph family receptors other than EphA7. Endogenous EphA7 could be precipitated from the cellular lysate of BJAB cells using recombinant gH/gL, and knockout of EphA7 significantly reduced transmission of KSHV into BJAB target cells. Knockout of EphA5, the second most expressed A-type Eph in BJAB cells, had a similar, although less pronounced, effect on KSHV infection. Receptor function of EphA7 was conserved for cell-free infection by the related rhesus monkey rhadinovirus (RRV), which is relatively even more dependent on EphA7 for infection of BJAB cells.IMPORTANCE Infection of B cells is relevant for two KSHV-associated malignancies, the plasmablastic variant of multicentric Castleman's disease and PEL. Therefore, elucidating the process of B cell infection is important for the understanding of KSHV pathogenesis. While the high-affinity receptor for the gH/gL glycoprotein complex, EphA2, has been shown to function as an entry receptor for various types of adherent cells, the gH/gL complex can also interact with other Eph receptor tyrosine kinases with lower avidity. We analyzed the Eph interactions required for infection of BJAB cells, a model for B cell infection by KSHV. We identified EphA7 as the principal Eph receptor for infection of BJAB cells by KSHV and the related rhesus monkey rhadinovirus. While two analyzed PEL cell lines exhibited high EphA2 and low EphA7 expression, a third PEL cell line, BCBL-1, showed high EphA7 and low EphA2 expression, indicating a possible relevance for KSHV pathology.


Assuntos
Linfócitos B/metabolismo , Receptor EphA7/metabolismo , Receptores Virais/metabolismo , Rhadinovirus/fisiologia , Internalização do Vírus , Animais , Linfócitos B/patologia , Linfócitos B/virologia , Linhagem Celular Tumoral , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/fisiologia , Humanos , Linfoma de Efusão Primária/metabolismo , Linfoma de Efusão Primária/patologia , Macaca mulatta , Receptor EphA7/genética , Receptores Virais/genética , Rhadinovirus/genética , Rhadinovirus/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
20.
Sci Rep ; 9(1): 263, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670742

RESUMO

Tumour sequencing identifies highly recurrent point mutations in cancer driver genes, but rare functional mutations are hard to distinguish from large numbers of passengers. We developed a novel computational platform applying a multi-modal approach to filter out passengers and more robustly identify putative driver genes. The primary filter identifies enrichment of cancer mutations in CATH functional families (CATH-FunFams) - structurally and functionally coherent sets of evolutionary related domains. Using structural representatives from CATH-FunFams, we subsequently seek enrichment of mutations in 3D and show that these mutation clusters have a very significant tendency to lie close to known functional sites or conserved sites predicted using CATH-FunFams. Our third filter identifies enrichment of putative driver genes in functionally coherent protein network modules confirmed by literature analysis to be cancer associated. Our approach is complementary to other domain enrichment approaches exploiting Pfam families, but benefits from more functionally coherent groupings of domains. Using a set of mutations from 22 cancers we detect 151 putative cancer drivers, of which 79 are not listed in cancer resources and include recently validated cancer associated genes EPHA7, DCC netrin-1 receptor and zinc-finger protein ZNF479.


Assuntos
Neoplasias/genética , Oncogenes/genética , Mapas de Interação de Proteínas/genética , Biologia Computacional/métodos , Receptor DCC/genética , Receptor DCC/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Bases de Dados Genéticas/estatística & dados numéricos , Conjuntos de Dados como Assunto , Humanos , Mutação Puntual , Mapeamento de Interação de Proteínas/métodos , Receptor EphA7/genética , Receptor EphA7/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA