Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
J Am Soc Nephrol ; 33(3): 565-582, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35091451

RESUMO

BACKGROUND: Endothelial cell injury is a common nidus of renal injury in patients and consistent with the high prevalence of AKI reported during the coronavirus disease 2019 pandemic. This cell type expresses integrin α5 (ITGA5), which is essential to the Tie2 signaling pathway. The microRNA miR-218-5p is upregulated in endothelial progenitor cells (EPCs) after hypoxia, but microRNA regulation of Tie2 in the EPC lineage is unclear. METHODS: We isolated human kidney-derived EPCs (hkEPCs) and surveyed microRNA target transcripts. A preclinical model of ischemic kidney injury was used to evaluate the effect of hkEPCs on capillary repair. We used a genetic knockout model to evaluate the effect of deleting endogenous expression of miR-218 specifically in angioblasts. RESULTS: After ischemic in vitro preconditioning, miR-218-5p was elevated in hkEPCs. We found miR-218-5p bound to ITGA5 mRNA transcript and decreased ITGA5 protein expression. Phosphorylation of 42/44 MAPK decreased by 73.6% in hkEPCs treated with miR-218-5p. Cells supplemented with miR-218-5p downregulated ITGA5 synthesis and decreased 42/44 MAPK phosphorylation. In a CD309-Cre/miR-218-2-LoxP mammalian model (a conditional knockout mouse model designed to delete pre-miR-218-2 exclusively in CD309+ cells), homozygotes at e18.5 contained avascular glomeruli, whereas heterozygote adults showed susceptibility to kidney injury. Isolated EPCs from the mouse kidney contained high amounts of ITGA5 and showed decreased migratory capacity in three-dimensional cell culture. CONCLUSIONS: These results demonstrate the critical regulatory role of miR-218-5p in kidney EPC migration, a finding that may inform efforts to treat microvascular kidney injury via therapeutic cell delivery.


Assuntos
Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Integrina alfa5/metabolismo , MicroRNAs/fisiologia , Injúria Renal Aguda/patologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor TIE-2/fisiologia , Transdução de Sinais/fisiologia
2.
Theranostics ; 11(16): 7715-7734, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335960

RESUMO

Rationale: Emerging evidence indicates that the growth of blood vessels and osteogenesis is tightly coordinated during bone development. However, the molecular regulators of intercellular communication in the bone microenvironment are not well studied. Therefore, we aim to investigate whether BMMSC-Exo promotes osteogenesis and angiogenesis via transporting lnc-H19 in the CBS- heterozygous mouse model. Methods: Using RT2 lncRNA PCR array screening, we identify a bone-specific, long noncoding RNA-H19 (lncRNA-H19/lnc-H19) in exosomes derived from bone marrow mesenchymal stem cells (BMMSC-Exo) during osteogenesis. Using bioinformatics analysis, we further discovered the seed sequence of miR-106a that could bind to lnc-H19. A luciferase reporter assay was performed to demonstrate the direct binding of miR-106a to the target gene angiopoietin 1 (Angpt1). We employed an immunocompromised Nude mouse model, to evaluate the effects of BMMSC-Exo on angiogenesis in vivo. Using a micro-CT scan, we monitored microstructural changes of bone in the experimental mice. Results: BMMSC-Exo possessed exosomal characteristics including exosome size, and typical markers including CD63, CD9, and TSD101. In vitro, BMMSC-Exo significantly promoted endothelial angiogenesis and osteogenesis. Mechanistic studies have shown that exosomal lnc-H19 acts as "sponges" to absorb miR-106 and regulate the expression of angiogenic factor, Angpt1 that activates lnc-H19/Tie2-NO signaling in mesenchymal and endothelial cells. Both of these effects on osteogenesis and angiogenesis are inhibited by antagonizing Tie2 signaling. Treatment of BMMSC-Exo also restored the bone formation and mechanical quality in vivo. Conclusion: These findings provide a novel insight into how the extracellular role of exosomal lnc-H19 affects osteogenesis and angiogenesis through competing endogenous RNA networks.


Assuntos
MicroRNAs/genética , Osteogênese/genética , RNA Longo não Codificante/genética , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Angiopoietina-1/fisiologia , Animais , Osso e Ossos/metabolismo , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Exossomos/genética , Genes Supressores de Tumor , Células-Tronco Mesenquimais/metabolismo , Camundongos , Neovascularização Patológica/genética , Óxido Nítrico/metabolismo , RNA Longo não Codificante/metabolismo , Receptor TIE-2/metabolismo , Receptor TIE-2/fisiologia , Transdução de Sinais/genética
3.
Transl Res ; 235: 129-143, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33894400

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is a genetic disease characterized by vascular dysplasia. Mutations of the endoglin (ENG) gene that encodes a co-receptor of the transforming growth factor ß1 signaling pathway cause type I HHT. ENG is primarily expressed in endothelial cells (ECs), but its interaction with other key angiogenic pathways to control angiogenesis has not been well addressed. The aim of this study is to investigate ENG interplay with VEGFR2, FGFR1 and TIE2 in primary human ECs. ENG was knocked-down with siRNA in human umbilical vein ECs (HUVECs) and human lung microvascular ECs (HMVEC-L). Gene expression was measured by RT-qPCR and Western blotting. Cell signaling pathway activation was analyzed by detecting phosphor-ERK and phosphor-AKT levels. Cell migration and apoptosis were assessed using the Boyden chamber assay and the CCK-8 Kit, respectively. Loss of ENG in HUVECs led to significantly reduced expression of VEGFR2 but not TIE2 or FGFR1, which was also confirmed in HMVEC-L. HUVECs lacking ENG had significantly lower levels of active Rac1 and a substantial reduction of the transcription factor Sp1, an activator of VEGFR2 transcription, in nuclei. Furthermore, VEGF- but not bFGF- or angiopoietin-1-induced phosphor-ERK and phosphor-AKT were suppressed in ENG deficient HUVECs. Functional analysis revealed that ENG knockdown inhibited cell migratory but enhanced anti-apoptotic activity induced by VEGF. In contrast, bFGF, angiopoietin-1 and -2 induced HUVEC migration and anti-apoptotic activities were not affected by ENG knockdown. In conclusion, ENG deficiency alters the VEGF/VEGFR2 pathway, which may play a role in HHT pathogenesis.


Assuntos
Endoglina/fisiologia , Células Endoteliais/fisiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/fisiologia , Receptor TIE-2/fisiologia , Telangiectasia Hemorrágica Hereditária/etiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Proteínas Proto-Oncogênicas c-akt/fisiologia
4.
Cancer Res ; 81(11): 3092-3104, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33574087

RESUMO

Regulatory T cells (Tregs) are known to inhibit antitumor immunity, yet the specific mechanism by which intratumoral Tregs promote tumor growth remains unclear. To better understand the roles of intratumoral Tregs, we selectively depleted tumor-infiltrating Tregs using anti-CD25-F(ab')2 near-infrared photoimmunotherapy. Depletion of tumor-infiltrating Tregs induced transient but synchronized IFNγ expression in CD8 T and natural killer (NK) cells. Despite the small fraction of CD8 T and NK cells contained within examined tumors, IFNγ produced by these CD8 T and NK cells led to efficient and rapid tumor vessel regression, intratumoral ischemia, and tumor necrosis/apoptosis and growth suppression. IFNγ receptor expression on vascular endothelial cells was required for these effects. Similar findings were observed in the early phase of systemic Treg depletion in tumor-bearing Foxp3DTR mice; combination with IL15 therapy further inhibited tumor growth and achieved increased complete regression. These results indicate the pivotal roles of intratumoral Tregs in maintaining tumor vessels and tumor growth by suppressing CD8 T and NK cells from producing IFNγ, providing insight into the mechanism of Treg-targeting therapies. SIGNIFICANCE: Intratumoral Treg depletion induces synchronized intratumoral CD8 T- and NK-cell activation, IFNγ-dependent tumor vessel regression, and ischemic tumor necrosis/apoptosis, indicating the roles of intratumoral Tregs to support the tumor vasculature. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/11/3092/F1.large.jpg.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Fatores de Transcrição Forkhead/fisiologia , Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/prevenção & controle , Receptor TIE-2/fisiologia , Receptores de Interferon/fisiologia , Linfócitos T Reguladores/imunologia , Animais , Células Endoteliais/imunologia , Feminino , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon gama
5.
J Hematol Oncol ; 13(1): 123, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928251

RESUMO

BACKGROUND: Conventional therapeutic approaches for tumor angiogenesis, which are primarily focused on the inhibition of active angiogenesis to starve cancerous cells, target the vascular endothelial growth factor signaling pathway. This aggravates hypoxia within the tumor core and ultimately leads to increased tumor proliferation and metastasis. To overcome this limitation, we developed nanoparticles with antiseptic activity that target tumor vascular abnormalities. METHODS: Ferritin-based protein C nanoparticles (PCNs), known as TFG and TFMG, were generated and tested in Lewis lung carcinoma (LLC) allograft and MMTV-PyMT spontaneous breast cancer models. Immunohistochemical analysis was performed on tumor samples to evaluate the tumor vasculature. Western blot and permeability assays were used to explore the role and mechanism of the antitumor effects of PCNs in vivo. For knocking down proteins of interest, endothelial cells were transfected with siRNAs. Statistical analysis was performed using one-way ANOVA followed by post hoc Dunnett's multiple comparison test. RESULTS: PCNs significantly inhibited hypoxia and increased pericyte coverage, leading to the inhibition of tumor growth and metastasis, while increasing survival in LLC allograft and MMTV-PyMT spontaneous breast cancer models. The coadministration of cisplatin with PCNs induced a synergistic suppression of tumor growth by improving drug delivery as evidenced by increased blood prefusion and decreased vascular permeability. Moreover, PCNs altered the immune cell profiles within the tumor by increasing cytotoxic T cells and M1-like macrophages with antitumor activity. PCNs induced PAR-1/PAR-3 heterodimerization through EPCR occupation and PAR-1 activation, which resulted in Gα13-RhoA-mediated-Tie2 activation and stabilized vascular tight junctions via the Akt-FoxO3a signaling pathway. CONCLUSIONS: Cancer treatment targeting the tumor vasculature by inducing antitumor immune responses and enhancing the delivery of a chemotherapeutic agent with PCNs resulted in tumor regression and may provide an effective therapeutic strategy.


Assuntos
Apoferritinas/uso terapêutico , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Nanopartículas/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Proteína C/uso terapêutico , Receptor TIE-2/fisiologia , Remodelação Vascular/efeitos dos fármacos , Inibidores da Angiogênese/uso terapêutico , Animais , Antineoplásicos Alquilantes/administração & dosagem , Antineoplásicos Alquilantes/uso terapêutico , Apoferritinas/administração & dosagem , Bevacizumab/uso terapêutico , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Carcinoma Pulmonar de Lewis/patologia , Hipóxia Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Cisplatino/uso terapêutico , Técnicas de Cocultura , Sistemas de Liberação de Medicamentos , Sinergismo Farmacológico , Células Endoteliais/efeitos dos fármacos , Feminino , Masculino , Neoplasias Mamárias Experimentais/irrigação sanguínea , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas de Neoplasias/fisiologia , Pericitos/metabolismo , Proteína C/administração & dosagem , Organismos Livres de Patógenos Específicos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
6.
Sci Rep ; 10(1): 9613, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541815

RESUMO

Wet age-related macular degeneration (AMD), which can cause progressive blindness, is characterised by choroid neovascularization (CNV) in the macular area. Although close attention has been paid to AMD, and anti-vascular endothelial growth factor (VEGF) drugs are available, its complex pathogenesis is still elusive. Tie2-expressing macrophages (TEMs) have been found to promote angiogenesis in remodel tissues and tumours. This study aimed to elucidate the role of macrophage Tie2 signalling in laser-induced CNV (LCNV). We observed that TEMs were responsible for the severity of CNV. Mechanistically, TEM deletion resulted in impaired LCNV due to the suppression of inflammatory angiogenesis and the promotion of apoptosis. We also observed that TEMs prevented apoptosis of b.End3 cells, but promoted their migration, proliferation and tube formation via VEGF, extracellular signal-regulated kinase (ERK) and v-akt murine thymoma viral oncogene (AKT)-dependent signalling pathways. The flow cytometry results comparing dry AMD patients and healthy controls with wet AMD patients showed that the percentage of Tie2+CD14+ cells was higher in the wet AMD patients' peripheral blood. This study demonstrates that Tie2 expression by macrophages intensifies CNV in LCNV murine models, thereby proposing an additional intervention option to inhibit CNV.


Assuntos
Neovascularização de Coroide/metabolismo , Macrófagos/metabolismo , Receptor TIE-2/metabolismo , Indutores da Angiogênese/metabolismo , Animais , Apoptose , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Hylobatidae , Lasers , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Receptor TIE-2/fisiologia , Transdução de Sinais , Degeneração Macular Exsudativa/metabolismo
7.
Circulation ; 139(17): 2049-2063, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30744395

RESUMO

BACKGROUND: Hereditary hemorrhagic telangiectasia is an autosomal dominant vascular disorder caused by heterozygous, loss-of-function mutations in 4 transforming growth factor beta (TGFß) pathway members, including the central transcriptional mediator of the TGFß pathway, Smad4. Loss of Smad4 causes the formation of inappropriate, fragile connections between arteries and veins called arteriovenous malformations (AVMs), which can hemorrhage leading to stroke, aneurysm, or death. Unfortunately, the molecular mechanisms underlying AVM pathogenesis remain poorly understood, and the TGFß downstream effectors responsible for hereditary hemorrhagic telangiectasia-associated AVM formation are currently unknown. METHODS: To identify potential biological targets of the TGFß pathway involved in AVM formation, we performed RNA- and chromatin immunoprecipitation-sequencing experiments on BMP9 (bone morphogenetic protein 9)-stimulated endothelial cells (ECs) and isolated ECs from a Smad4-inducible, EC-specific knockout ( Smad4-iECKO) mouse model that develops retinal AVMs. These sequencing studies identified the angiopoietin-Tek signaling pathway as a downstream target of SMAD4. We used monoclonal blocking antibodies to target a specific component in this pathway and assess its effects on AVM development. RESULTS: Sequencing studies uncovered 212 potential biological targets involved in AVM formation, including the EC surface receptor, TEK (TEK receptor tyrosine kinase) and its antagonistic ligand, ANGPT2 (angiopoietin-2). In Smad4-iECKO mice, Angpt2 expression is robustly increased, whereas Tek levels are decreased, resulting in an overall reduction in angiopoietin-Tek signaling. We provide evidence that SMAD4 directly represses Angpt2 transcription in ECs. Inhibition of ANGPT2 function in Smad4-deficient mice, either before or after AVMs form, prevents and alleviates AVM formation and normalizes vessel diameters. These rescue effects are attributed to a reversion in EC morphological changes, such as cell size and shape that are altered in the absence of Smad4. CONCLUSIONS: Our studies provide a novel mechanism whereby the loss of Smad4 causes increased Angpt2 transcription in ECs leading to AVM formation, increased blood vessel calibers, and changes in EC morphology in the retina. Blockade of ANGPT2 function in an in vivo Smad4 model of hereditary hemorrhagic telangiectasia alleviated these vascular phenotypes, further implicating ANGPT2 as an important TGFß downstream mediator of AVM formation. Therefore, alternative approaches that target ANGPT2 function may have therapeutic value for the alleviation of hereditary hemorrhagic telangiectasia symptoms, such as AVMs.


Assuntos
Angiopoietina-2/antagonistas & inibidores , Malformações Arteriovenosas/prevenção & controle , Proteína Smad4/deficiência , Telangiectasia Hemorrágica Hereditária/complicações , Angiopoietina-2/biossíntese , Angiopoietina-2/genética , Animais , Malformações Arteriovenosas/etiologia , Malformações Arteriovenosas/metabolismo , Malformações Arteriovenosas/patologia , Tamanho Celular , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Receptor TIE-2/fisiologia , Transdução de Sinais , Proteína Smad4/genética , Proteína Smad4/fisiologia , Telangiectasia Hemorrágica Hereditária/genética , Transcrição Gênica , Fator de Crescimento Transformador beta/metabolismo
8.
Cell Signal ; 51: 211-221, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30077653

RESUMO

The inflammatory response is essential for eradication of lipopolysaccharide (LPS) presenting microbial invaders but requires exquisite regulation to prevent detrimental vascular inflammation. Endothelial cells play active roles in both the initiation of inflammation, through the detection of LPS by Toll-like Receptor 4 (TLR4), and the resolution of inflammation, through the actions of the receptor tyrosine kinase, Tie2. The process by which Tie2 attenuates LPS-TLR4 driven inflammation is poorly understood. To investigate the effects of Tie2 on TLR4 signalling, Nf-κB activation was monitored in cells expressing Tie2 mutants harboring tyrosine (Y) to phenylalanine (F) substitutions in the cytoplasmic domain. Tie2 attenuated LPS induced Nf-κB activation in a manner requiring Tie2 kinase activation, the carboxy-terminal tyrosine residue Y1100 and downstream Erk1/2 signalling. Tyrosine 1100 was also required for the Tie2 dependent decrease in expression of the TLR4 signalling proteins, TRAF6 and IRAK1 and stabilization of the Nf-κB inhibitor, IκBα. In contrast, upregulation of known TLR4 antagonist miRNA-146b-5p required all three tyrosine phosphorylation sites in Tie2. Finally, we confirmed in an in vivo model that activation of Tie2 signalling reduces LPS mediated inflammation. Our results show that Y1100 initiated Erk1/2 signalling is essential for the anti-inflammatory effect of Tie2 on TLR4 mediated inflammation.


Assuntos
Inflamação/imunologia , Receptor TIE-2/fisiologia , Receptor 4 Toll-Like/imunologia , Animais , Células Endoteliais , Células HEK293 , Humanos , Quinases Associadas a Receptores de Interleucina-1/imunologia , Peptídeos e Proteínas de Sinalização Intracelular , Lipopolissacarídeos/imunologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos , Modelos Animais , Inibidor de NF-kappaB alfa/imunologia , NF-kappa B/imunologia , Receptor TIE-2/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/imunologia
9.
Crit Care Med ; 46(9): e928-e936, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29979219

RESUMO

OBJECTIVES: Tie2 is a tyrosine kinase receptor expressed by endothelial cells that maintains vascular barrier function. We recently reported that diverse critical illnesses acutely decrease Tie2 expression and that experimental Tie2 reduction suffices to recapitulate cardinal features of the septic vasculature. Here we investigated molecular mechanisms driving Tie2 suppression in settings of critical illness. DESIGN: Laboratory and animal research, postmortem kidney biopsies from acute kidney injury patients and serum from septic shock patients. SETTING: Research laboratories and ICU of Hannover Medical School, Harvard Medical School, and University of Groningen. PATIENTS: Deceased septic acute kidney injury patients (n = 16) and controls (n = 12) and septic shock patients (n = 57) and controls (n = 22). INTERVENTIONS: Molecular biology assays (Western blot, quantitative polymerase chain reaction) + in vitro models of flow and transendothelial electrical resistance experiments in human umbilical vein endothelial cells; murine cecal ligation and puncture and lipopolysaccharide administration. MEASUREMENTS AND MAIN RESULTS: We observed rapid reduction of both Tie2 messenger RNA and protein in mice following cecal ligation and puncture. In cultured endothelial cells exposed to tumor necrosis factor-α, suppression of Tie2 protein was more severe than Tie2 messenger RNA, suggesting distinct regulatory mechanisms. Evidence of protein-level regulation was found in tumor necrosis factor-α-treated endothelial cells, septic mice, and septic humans, all three of which displayed elevation of the soluble N-terminal fragment of Tie2. The matrix metalloprotease 14 was both necessary and sufficient for N-terminal Tie2 shedding. Since clinical settings of Tie2 suppression are often characterized by shock, we next investigated the effects of laminar flow on Tie2 expression. Compared with absence of flow, laminar flow induced both Tie2 messenger RNA and the expression of GATA binding protein 3. Conversely, septic lungs exhibited reduced GATA binding protein 3, and knockdown of GATA binding protein 3 in flow-exposed endothelial cells reduced Tie2 messenger RNA. Postmortem tissue from septic patients showed a trend toward reduced GATA binding protein 3 expression that was associated with Tie2 messenger RNA levels (p < 0.005). CONCLUSIONS: Tie2 suppression is a pivotal event in sepsis that may be regulated both by matrix metalloprotease 14-driven Tie2 protein cleavage and GATA binding protein 3-driven flow regulation of Tie2 transcript.


Assuntos
Receptor TIE-2/fisiologia , Sepse/fisiopatologia , Adulto , Idoso , Animais , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Estudos Prospectivos , Receptor TIE-2/biossíntese
10.
J Am Soc Nephrol ; 29(4): 1097-1107, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29237738

RESUMO

Urinary concentrating ability is central to mammalian water balance and depends on a medullary osmotic gradient generated by a countercurrent multiplication mechanism. Medullary hyperosmolarity is protected from washout by countercurrent exchange and efficient removal of interstitial fluid resorbed from the loop of Henle and collecting ducts. In most tissues, lymphatic vessels drain excess interstitial fluid back to the venous circulation. However, the renal medulla is devoid of classic lymphatics. Studies have suggested that the fenestrated ascending vasa recta (AVRs) drain the interstitial fluid in this location, but this function has not been conclusively shown. We report that late gestational deletion of the angiopoietin receptor endothelial tyrosine kinase 2 (Tie2) or both angiopoietin-1 and angiopoietin-2 prevents AVR formation in mice. The absence of AVR associated with rapid accumulation of fluid and cysts in the medullary interstitium, loss of medullary vascular bundles, and decreased urine concentrating ability. In transgenic reporter mice with normal angiopoietin-Tie2 signaling, medullary AVR exhibited an unusual hybrid endothelial phenotype, expressing lymphatic markers (prospero homeobox protein 1 and vascular endothelial growth factor receptor 3) as well as blood endothelial markers (CD34, endomucin, platelet endothelial cell adhesion molecule 1, and plasmalemmal vesicle-associated protein). Taken together, our data redefine the AVRs as Tie2 signaling-dependent specialized hybrid vessels and provide genetic evidence of the critical role of AVR in the countercurrent exchange mechanism and the structural integrity of the renal medulla.


Assuntos
Angiopoietina-1/fisiologia , Angiopoietina-2/fisiologia , Líquido Extracelular/metabolismo , Capacidade de Concentração Renal/fisiologia , Medula Renal/irrigação sanguínea , Receptor TIE-2/fisiologia , Angiopoietina-1/deficiência , Angiopoietina-1/genética , Angiopoietina-2/deficiência , Angiopoietina-2/genética , Animais , Padronização Corporal , Linhagem da Célula , Endotélio Vascular , Genes Reporter , Idade Gestacional , Proteínas de Homeodomínio/análise , Doenças Renais Císticas/genética , Medula Renal/embriologia , Medula Renal/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miofibroblastos/patologia , Osmose , Receptor TIE-2/deficiência , Receptor TIE-2/genética , Circulação Renal , Transdução de Sinais , Proteínas Supressoras de Tumor/análise , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/análise
11.
J Am Soc Nephrol ; 28(7): 1973-1982, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28465380

RESUMO

Systemic inflammation is a hallmark of commonly encountered diseases ranging from bacterial sepsis to sterile syndromes such as major trauma. Derangements in the host vasculature contribute to the cardinal manifestations of sepsis in profound ways. Recent studies of control pathways regulating the vascular endothelium have illuminated how this single cell layer toggles between quiescence and activation to affect the development of shock and multiorgan dysfunction. This article focuses on one such control pathway, the Tie2 receptor and its ligands the angiopoietins, to describe a growing body of genetic, biochemical, mechanistic, and human studies that implicate Tie2 as a critical switch. In health, activated Tie2 maintains the endothelium in a quiescent state characterized by dynamic barrier function and antiadhesion against circulating leukocytes. In sepsis and related diseases, expression of the angiopoietins becomes markedly imbalanced and Tie2 signaling is greatly attenuated. These rapid molecular changes potentiate pathophysiologic responses throughout the body, resulting in injurious vascular leakage and organ inflammation. The Tie2 axis, therefore, may be a promising avenue for future translational studies.


Assuntos
Angiopoietinas/fisiologia , Inflamação/etiologia , Receptor TIE-2/fisiologia , Transdução de Sinais , Animais , Humanos
12.
Actas Dermosifiliogr ; 108(6): 515-523, 2017.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-28162227

RESUMO

Angiogenesis is the growth of new blood vessels from pre-existing vessels. It is a biological process essential in physiological wound healing or pathological inflammation and tumor growth, which underlies a complex interplay of stimulating and inhibiting signals. Extracellular matrix, cells of innate and adaptive immunity and endothelial cells itself are a major source of angiogenic factors that activate or inhibit specific receptors and consequently influence intracellular signaling pathways. Most inflammatory and neoplastic diseases in dermatology are characterized by excessive angiogenesis, such as psoriasis, atopic dermatitis, as well as melanoma, non-melanoma skin cancer, but also benign vascular neoplasia. In this article we describe current knowledge of angiogenesis and its most relevant mechanisms in different dermatological disorders with particular emphasis on the angiogenic factors (vascular endothelial growth factor) and angiopoietins as a target of current and future directions of anti-angiogenic therapy.


Assuntos
Neovascularização Patológica/etiologia , Neovascularização Fisiológica , Dermatopatias/complicações , Inibidores da Angiogênese/efeitos adversos , Inibidores da Angiogênese/uso terapêutico , Proteínas Angiogênicas/fisiologia , Angiopoietinas/antagonistas & inibidores , Angiopoietinas/fisiologia , Resistencia a Medicamentos Antineoplásicos , Hemangioma/tratamento farmacológico , Hemangioma/fisiopatologia , Humanos , Melanoma/complicações , Melanoma/tratamento farmacológico , Melanoma/imunologia , Melanoma/fisiopatologia , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/fisiologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/fisiopatologia , Psoríase/tratamento farmacológico , Psoríase/fisiopatologia , Receptor TIE-2/antagonistas & inibidores , Receptor TIE-2/fisiologia , Pele/irrigação sanguínea , Dermatopatias/imunologia , Dermatopatias/fisiopatologia , Neoplasias Cutâneas/irrigação sanguínea , Neoplasias Cutâneas/complicações , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/fisiopatologia
13.
J Physiol ; 595(5): 1575-1591, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27868196

RESUMO

KEY POINTS: Combining nitric oxide (NO)-mediated increased blood flow with angiopoietin-1-Tie2 receptor signalling induces arteriolargenesis - the formation of arterioles from capillaries - in a model of physiological angiogenesis. This NO-Tie-mediated arteriolargenesis requires endogenous vascular endothelial growth factor (VEGF) signalling. Inhibition of VEGF signalling increases pericyte coverage in microvessels. Together these findings indicate that generation of functional neovasculature requires close titration of NO-Tie2 signalling and localized VEGF induction, suggesting that the use of exogenous VEGF expression as a therapeutic for neovascularization may not be successful. ABSTRACT: Signalling through vascular endothelial growth factor (VEGF) receptors and the tyrosine kinase with IgG and EGF domains-2 (Tie2) receptor by angiopoietins is required in combination with blood flow for the formation of a functional vascular network. We tested the hypothesis that VEGF and angiopoietin-1 (Ang1) contribute differentially to neovascularization induced by nitric oxide (NO)-mediated vasodilatation, by comparing the phenotype of new microvessels in the mesentery during induction of vascular remodelling by over-expression of endothelial nitric oxide synthase in the fat pad of the adult rat mesentery during inhibition of angiopoietin signalling with soluble Tie2 (sTie2) and VEGF signalling with soluble Fms-like tyrosine kinase receptor-1 (sFlt1). We found that NO-mediated angiogenesis was blocked by inhibition of VEGF with sFlt1 (from 881 ± 98% increase in functional vessel area to 279 ± 72%) and by inhibition of angiopoietin with sTie2 (to 337 ± 67%). Exogenous angiopoietin-1 was required to induce arteriolargenesis (8.6 ± 1.3% of vessels with recruitment of vascular smooth muscle cells; VSMCs) in the presence of enhanced flow. sTie2 and sFlt1 both inhibited VSMC recruitment (both 0%), and VEGF inhibition increased pericyte recruitment to newly formed vessels (from 27 ± 2 to 54 ± 3% pericyte ensheathment). We demonstrate that a fine balance of VEGF and angiopoietin signalling is required for the formation of a functional vascular network. Endogenous VEGF signalling prevents excess neovessel pericyte coverage, and is required for VSMC recruitment during increased nitric oxide-mediated vasodilatation and angiopoietin signalling (NO-Tie-mediated arteriogenesis). Therapeutic vascular remodelling paradigms may therefore require treatments that modulate blood flow to utilize endogenous VEGF, in combination with exogenous Ang1, for effective neovascularization.


Assuntos
Angiopoietina-1/fisiologia , Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Masculino , Mesentério/irrigação sanguínea , Mesentério/fisiologia , Ratos Wistar , Receptor TIE-2/fisiologia , Fluxo Sanguíneo Regional , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/fisiologia
14.
Curr Diab Rep ; 16(12): 126, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27778249

RESUMO

Tie2 is a tyrosine kinase receptor located predominantly on vascular endothelial cells that plays a central role in vascular stability. Angiopoietin-1 (Angpt1), produced by perivascular cells, binds, clusters, and activates Tie2, leading to Tie2 autophosphorylation and downstream signaling. Activated Tie2 increases endothelial cell survival, adhesion, and cell junction integrity, thereby stabilizing the vasculature. Angiopoietin-2 (Angpt2) and vascular endothelial-protein tyrosine phosphatase (VE-PTP) are negative regulators increased by hypoxia; they inactivate Tie2, destabilizing the vasculature and increasing responsiveness to vascular endothelial growth factor (VEGF) and other inflammatory cytokines that stimulate vascular leakage and neovascularization. AKB-9778 is a small-molecule antagonist of VE-PTP which increases phosphorylation of Tie2 even in the presence of high Angpt2 levels. In preclinical studies, AKB-9778 reduced VEGF-induced leakage and ocular neovascularization (NV) and showed additive benefit when combined with VEGF suppression. In two clinical trials in diabetic macular edema (DME) patients, subcutaneous injections of AKB-9778 were safe and provided added benefit to VEGF suppression. Preliminary data suggest that AKB-9778 monotherapy improves diabetic retinopathy. These data suggest that Tie2 activation may be a valuable strategy to treat or prevent diabetic retinopathy.


Assuntos
Compostos de Anilina/uso terapêutico , Retinopatia Diabética/tratamento farmacológico , Edema Macular/tratamento farmacológico , Receptor TIE-2/antagonistas & inibidores , Ácidos Sulfônicos/uso terapêutico , Angiopoietina-1/fisiologia , Angiopoietina-2/fisiologia , Humanos , Receptor TIE-2/fisiologia , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/fisiologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Cell Rep ; 12(11): 1761-73, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26344773

RESUMO

Tie1 is a mechanistically poorly characterized endothelial cell (EC)-specific orphan receptor. Yet, Tie1 deletion is embryonic lethal and Tie1 has been implicated in critical vascular pathologies, including atherosclerosis and tumor angiogenesis. Here, we show that Tie1 does not function independently but exerts context-dependent effects on the related receptor Tie2. Tie1 was identified as an EC activation marker that is expressed during angiogenesis by a subset of angiogenic tip and remodeling stalk cells and downregulated in the adult quiescent vasculature. Functionally, Tie1 expression by angiogenic EC contributes to shaping the tip cell phenotype by negatively regulating Tie2 surface presentation. In contrast, Tie1 acts in remodeling stalk cells cooperatively to sustain Tie2 signaling. Collectively, our data support an interactive model of Tie1 and Tie2 function, in which dynamically regulated Tie1 versus Tie2 expression determines the net positive or negative effect of Tie1 on Tie2 signaling.


Assuntos
Receptor de TIE-1/fisiologia , Receptor TIE-2/fisiologia , Remodelação Vascular/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células Endoteliais/citologia , Células Endoteliais/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/fisiologia , Receptor de TIE-1/genética , Receptor de TIE-1/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Vasos Retinianos/fisiologia , Transdução de Sinais
17.
Am J Physiol Endocrinol Metab ; 309(1): E22-34, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25944879

RESUMO

Reduced capillary density is a feature of skeletal muscle (SkM) in type 2 diabetes (T2D), which is associated with multiple metabolic and functional abnormalities. SkM has been identified as a secretory tissue, releasing myokines that regulate multiple processes, including vascularization. We sought to determine how myokines secreted from T2D myotubes might influence SkM angiogenesis. Conditioned media (CM) were generated by myotubes from T2D and nondiabetic (ND) subjects. Primary human endothelial cells (HUVEC) and SkM explants were exposed to CM or recombinant myokines, and tube number or capillary outgrowth was determined as well as measurement of protein expression and phosphorylation. CM from ND myotubes stimulated tube formation of HUVEC to a greater extent than T2D myotubes (T2D-CM = 100%, ND-CM = 288 ± 90% after 48 h, P < 0.05). The effects of T2D myotube CM were mediated by IL-8, not IL-15 or GROα, and were due not to cell damage but rather through regulating tube production and maintenance (response to T2D-IL-8 = 100%, response to ND-IL-8 = 263 ± 46% after 48 h, P < 0.05). A similar effect was seen in SkM explants with exposure to IL-8. The dose-dependent effect of IL-8 on tube formation was also observable in the PI3K and FAK signaling pathways and mediated at least in part by PI3K, leading to regulation of Tie2 expression. These results suggest that elevated levels of IL-8 secreted from T2D myotubes create a muscle microenvironment that supports reduced capillarization in T2D. Impaired vascularization of SkM limits the availability of substrates, including glucose and contributes to the T2D phenotype.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Interleucina-8/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Receptor TIE-2/fisiologia , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Diabetes Mellitus Tipo 2/patologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-8/sangue , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Transdução de Sinais/fisiologia
18.
Arterioscler Thromb Vasc Biol ; 34(6): 1221-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24764452

RESUMO

OBJECTIVE: The genetic program underlying lymphatic development is still incompletely understood. This study aims to dissect the role of receptor tyrosine kinase with immunoglobulin-like and EGF (epidermal growth factor)-like domains 1 (Tie1) and Tie2 in lymphatic formation using genetically modified mouse models. APPROACH AND RESULTS: We generated conditional knockout mouse models targeting Tie1, Tie2, and angiopoietin-2 in this study. Tie1(ΔICD/ΔICD) mice, with its intracellular domain targeted, appeared normal at E10.5 but displayed subcutaneous edema by E13.5. Lymph sac formation occurred in Tie1(ΔICD/ΔICD) mice, but they had defects with the remodeling of primary lymphatic network to form collecting vessels and valvulogenesis. Consistently, induced deletion of Tie1-ICD postnatally using a ubiquitous Cre deleter led to abnormal lymphangiogenesis and valve formation in Tie1-ICD(iUCKO/-) mice. In comparison with the lymphatic phenotype of Tie1 mutants, we found that the diameter of lymphatic capillaries was significantly less in mice deficient of angiopoietin-2, besides the disruption of collecting lymphatic vessel formation as previously reported. There was also no lymphedema observed in Ang2(-/-) mice during embryonic development, which differs from that of Tie1(ΔICD/ΔICD) mice. We further investigated whether Tie1 exerted its function via Tie2 during lymphatic development. To our surprise, genetic deletion of Tie2 (Tie2(iUCKO/-)) in neonate mice did not affect lymphatic vessel growth and maturation. CONCLUSIONS: In contrast to the important role of Tie2 in the regulation of blood vascular development, Tie1 is crucial in the process of lymphatic remodeling and maturation, which is independent of Tie2.


Assuntos
Linfangiogênese/fisiologia , Vasos Linfáticos/fisiologia , Receptor de TIE-1/fisiologia , Receptor TIE-2/fisiologia , Angiopoietina-2/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de TIE-1/genética , Receptor TIE-2/genética , Transdução de Sinais
19.
J Clin Invest ; 124(2): 824-34, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24430181

RESUMO

The endothelial Tie1 receptor is ligand-less, but interacts with the Tie2 receptor for angiopoietins (Angpt). Angpt2 is expressed in tumor blood vessels, and its blockade inhibits tumor angiogenesis. Here we found that Tie1 deletion from the endothelium of adult mice inhibits tumor angiogenesis and growth by decreasing endothelial cell survival in tumor vessels, without affecting normal vasculature. Treatment with VEGF or VEGFR-2 blocking antibodies similarly reduced tumor angiogenesis and growth; however, no additive inhibition was obtained by targeting both Tie1 and VEGF/VEGFR-2. In contrast, treatment of Tie1-deficient mice with a soluble form of the extracellular domain of Tie2, which blocks Angpt activity, resulted in additive inhibition of tumor growth. Notably, Tie1 deletion decreased sprouting angiogenesis and increased Notch pathway activity in the postnatal retinal vasculature, while pharmacological Notch suppression in the absence of Tie1 promoted retinal hypervasularization. Moreover, substantial additive inhibition of the retinal vascular front migration was observed when Angpt2 blocking antibodies were administered to Tie1-deficient pups. Thus, Tie1 regulates tumor angiogenesis, postnatal sprouting angiogenesis, and endothelial cell survival, which are controlled by VEGF, Angpt, and Notch signals. Our results suggest that targeting Tie1 in combination with Angpt/Tie2 has the potential to improve antiangiogenic therapy.


Assuntos
Angiopoietina-1/antagonistas & inibidores , Células Endoteliais/citologia , Endotélio Vascular/metabolismo , Deleção de Genes , Receptor de TIE-1/genética , Vasos Retinianos/patologia , Inibidores da Angiogênese/química , Angiopoietina-1/metabolismo , Animais , Apoptose , Sobrevivência Celular , Homozigoto , Ligantes , Camundongos , Camundongos Transgênicos , Transplante de Neoplasias , Neovascularização Patológica , Fenótipo , Receptor de TIE-1/fisiologia , Receptor TIE-2/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-24478383

RESUMO

The Eph and Tie cell surface receptors mediate a variety of signaling events during development and in the adult organism. As other receptor tyrosine kinases, they are activated on binding of extracellular ligands and their catalytic activity is tightly regulated on multiple levels. The Eph and Tie receptors display some unique characteristics, including the requirement of ligand-induced receptor clustering for efficient signaling. Interestingly, both Ephs and Ties can mediate different, even opposite, biological effects depending on the specific ligand eliciting the response and on the cellular context. Here we discuss the structural features of these receptors, their interactions with various ligands, as well as functional implications for downstream signaling initiation. The Eph/ephrin structures are already well reviewed and we only provide a brief overview on the initial binding events. We go into more detail discussing the Tie-angiopoietin structures and recognition.


Assuntos
Receptor TIE-2/fisiologia , Receptores da Família Eph/fisiologia , Transdução de Sinais , Angiopoietinas/química , Angiopoietinas/metabolismo , Sítios de Ligação , Ativação Enzimática , Ligantes , Modelos Moleculares , Estrutura Terciária de Proteína , Receptor TIE-2/química , Receptor TIE-2/metabolismo , Receptores da Família Eph/química , Receptores da Família Eph/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA