Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 932
Filtrar
1.
ACS Appl Mater Interfaces ; 16(35): 45917-45928, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39178210

RESUMO

Effective activation of an antigen-specific immune response hinges upon the intracellular delivery of cancer antigens to antigen-presenting cells (APCs), marking the initial stride in cancer vaccine development. Leveraging biomimetic topological morphology, we employed virus-like mesoporous silica nanoparticles (VMSNs) coloaded with antigens and toll-like receptor 9 (TLR9) agonists to craft a potent cancer vaccine. Our VMSNs could be efficiently internalized by APCs to a greater extent than their nonviral structured counterparts, thereby promoting the activation of APCs by upregulating the TLR9 pathway and cross-presenting ovalbumin (OVA) epitopes. In in vivo animal study, VMSN-based nanovaccines triggered substantial CD4+ and CD8+ lymphocyte populations in both lymph nodes and spleen while inducing the effector memory of adaptive T cells. Consequently, VMSN-based nanovaccines suppressed tumor progression and increased the survival rate of B16-OVA-bearing mice in both prophylactic and therapeutic studies. The combination of immune checkpoint blockade (ICB) with the VMSN-based nanovaccine has synergistic effects in significantly preventing tumor progression under therapeutic conditions. These findings highlight the potential of viral structure-mimicking mesoporous silica nanoparticles as promising candidates for antigen-delivering nanocarriers in vaccine development.


Assuntos
Camundongos Endogâmicos C57BL , Nanopartículas , Dióxido de Silício , Dióxido de Silício/química , Animais , Nanopartículas/química , Camundongos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Ovalbumina/química , Ovalbumina/imunologia , Porosidade , Imunidade Adaptativa/efeitos dos fármacos , Humanos , Células Apresentadoras de Antígenos/imunologia , Neoplasias/imunologia , Feminino , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/agonistas , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/química , Linhagem Celular Tumoral
2.
J Immunol ; 213(2): 109-114, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38950331

RESUMO

ATPase cation transporting 13A2 (ATP13A2) is an endolysosomal P-type ATPase known to be a polyamine transporter, explored mostly in neurons. As endolysosomal functions are also crucial in innate immune cells, we aimed to explore the potential role of ATP13A2 in the human immunocellular compartment. We found that human plasmacytoid dendritic cells (pDCs), the professional type I IFN-producing immune cells, especially have a prominent enrichment of ATP13A2 expression in endolysosomal compartments. ATP13A2 knockdown in human pDCs interferes with cytokine induction in response to TLR9/7 activation in response to bona fide ligands. ATP13A2 plays this crucial role in TLR9/7 activation in human pDCs by regulating endolysosomal pH and mitochondrial reactive oxygen generation. This (to our knowledge) hitherto unknown regulatory mechanism in pDCs involving ATP13A2 opens up a new avenue of research, given the crucial role of pDC-derived type I IFNs in protective immunity against infections as well as in the immunopathogenesis of myriad contexts of autoreactive inflammation.


Assuntos
Células Dendríticas , Endossomos , Lisossomos , Receptor Toll-Like 9 , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Lisossomos/metabolismo , Lisossomos/imunologia , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/imunologia , Endossomos/metabolismo , Endossomos/imunologia , ATPases Translocadoras de Prótons/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/imunologia , Células Cultivadas , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Receptor 7 Toll-Like
3.
Front Immunol ; 15: 1354055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007143

RESUMO

Recombinant adeno-associated virus (AAV) vectors have emerged as the preferred platform for gene therapy of rare human diseases. Despite the clinical promise, host immune responses to AAV vectors and transgene remain a major barrier to the development of successful AAV-based human gene therapies. Here, we assessed the human innate immune response to AAV9, the preferred serotype for AAV-mediated gene therapy of the CNS. We showed that AAV9 induced type I interferon (IFN) and IL-6 responses in human blood from healthy donors. This innate response was replicated with AAV6, required full viral particles, but was not observed in every donor. Depleting CpG motifs from the AAV transgene or inhibiting TLR9 signaling reduced type I IFN response to AAV9 in responding donors, highlighting the importance of TLR9-mediated DNA sensing for the innate response to AAV9. Remarkably, we further demonstrated that only seropositive donors with preexisting antibodies to AAV9 capsid mounted an innate immune response to AAV9 in human whole blood and that anti-AAV9 antibodies were necessary and sufficient to promote type I IFN release and plasmacytoid dendritic (pDC) cell activation in response to AAV9. Thus, our study reveals a previously unidentified requirement for AAV preexisting antibodies for TLR9-mediated type I IFN response to AAV9 in human blood.


Assuntos
Dependovirus , Vetores Genéticos , Imunidade Humoral , Interferon Tipo I , Receptor Toll-Like 9 , Humanos , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/genética , Dependovirus/genética , Dependovirus/imunologia , Interferon Tipo I/imunologia , Vetores Genéticos/genética , Imunidade Inata , Células Dendríticas/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Terapia Genética , Interleucina-6/sangue , Interleucina-6/imunologia
4.
Signal Transduct Target Ther ; 9(1): 163, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880789

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterised by persistent airway inflammation even after cigarette smoking cessation. Neutrophil extracellular traps (NETs) have been implicated in COPD severity and acute airway inflammation induced by short-term cigarette smoke (CS). However, whether and how NETs contribute to sustained airway inflammation in COPD remain unclear. This study aimed to elucidate the immunoregulatory mechanism of NETs in COPD, employing human neutrophils, airway epithelial cells (AECs), dendritic cells (DCs), and a long-term CS-induced COPD mouse model, alongside cyclic guanosine monophosphate-adenosine monophosphate synthase and toll-like receptor 9 knockout mice (cGAS--/-, TLR9-/-); Additionally, bronchoalveolar lavage fluid (BALF) of COPD patients was examined. Neutrophils from COPD patients released greater cigarette smoke extract (CSE)-induced NETs (CSE-NETs) due to mitochondrial respiratory chain dysfunction. These CSE-NETs, containing oxidatively-damaged DNA (NETs-DNA), promoted AECs proliferation, nuclear factor kappa B (NF-κB) activation, NF-κB-dependent cytokines and type-I interferons production, and DC maturation, which were ameliorated/reversed by silencing/inhibition of cGAS/TLR9. In the COPD mouse model, blocking NETs-DNA-sensing via cGAS-/- and TLR9-/- mice, inhibiting NETosis using mitoTEMPO, and degrading NETs-DNA with DNase-I, respectively, reduced NETs infiltrations, airway inflammation, NF-κB activation and NF-κB-dependent cytokines, but not type-I interferons due to IFN-α/ß receptor degradation. Elevated NETs components (myeloperoxidase and neutrophil elastase activity) in BALF of COPD smokers correlated with disease severity and NF-κB-dependent cytokine levels, but not type-I interferon levels. In conclusion, NETs-DNA promotes NF-κB-dependent autoimmunity via cGAS/TLR9 in long-term CS exposure-induced COPD. Therefore, targeting NETs-DNA and cGAS/TLR9 emerges as a potential strategy to alleviate persistent airway inflammation in COPD.


Assuntos
Armadilhas Extracelulares , NF-kappa B , Neutrófilos , Nucleotidiltransferases , Doença Pulmonar Obstrutiva Crônica , Receptor Toll-Like 9 , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/imunologia , Animais , Humanos , NF-kappa B/genética , NF-kappa B/imunologia , NF-kappa B/metabolismo , Camundongos , Neutrófilos/imunologia , Neutrófilos/patologia , Camundongos Knockout , Autoimunidade/genética , Masculino , DNA/genética , DNA/imunologia , Feminino , Modelos Animais de Doenças , Pessoa de Meia-Idade
5.
Hum Gene Ther ; 35(13-14): 451-463, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38887999

RESUMO

Adeno-associated virus (AAV) based viral vectors are widely used in human gene therapy and form the basis of approved treatments for several genetic diseases. Immune responses to vector and transgene products, however, substantially complicate these applications in clinical practice. The role of innate immune recognition of AAV vectors was initially unclear, given that inflammatory responses early after vector administration were typically mild in animal models. However, more recent research continues to identify innate immune pathways that are triggered by AAV vectors and that serve to provide activation signals for antigen-presenting cells and initiation of adaptive immune responses. Sensing of the AAV genome by the endosomal DNA receptor toll-like receptor 9 (TLR9) promotes early inflammatory response and interferon expression. Thus, activation of the TLR9>MyD88 pathway in plasmacytoid dendritic cells (pDCs) leads to the conditioning of antigen cross-presenting DCs through type I interferon (IFN-I) and ultimately CD8+ T cell activation. Alternatively, pDCs may also promote CD8+ T cell responses in a TLR9-independent manner by the production of IL-1 cytokines, thereby activating the IL-1R1>MyD88 signaling pathway. AAV can induce cytokine expression in monocyte-derived DCs, which in turn increases antibody formation. Binding of AAV capsid to complement components likely further elevates B cell activation. At high systemic vector doses in humans and in non-human primates, AAV vectors can trigger complement activation, with contributions by classical and alternative pathways, leading to severe toxicities. Finally, evidence for activation of TLR2 by the capsid and of additional innate receptors for nucleic acids has been presented. These observations show that AAV vectors can initiate several and likely redundant innate immune pathways resulting in an exaggerated adaptive immune response.


Assuntos
Dependovirus , Vetores Genéticos , Imunidade Inata , Dependovirus/genética , Dependovirus/imunologia , Humanos , Vetores Genéticos/imunologia , Vetores Genéticos/genética , Animais , Células Dendríticas/imunologia , Terapia Genética , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/imunologia , Transdução de Sinais
7.
Clin Immunol ; 264: 110234, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740111

RESUMO

BACKGROUND: Natural anti-cytokine autoantibodies can regulate homeostasis of infectious and inflammatory diseases. The anti-cytokine autoantibody profile and relevance to the pathogenesis of asthma are unknown. We aim to identify key anti-cytokine autoantibodies in asthma patients, and reveal their immunological function and clinical significance. METHODS: A Luciferase Immunoprecipitation System was used to screen serum autoantibodies against 11 key cytokines in patients with allergic asthma and healthy donors. The antigen-specificity, immunomodulatory functions and clinical significance of anti-cytokine autoantibodies were determined by ELISA, qPCR, neutralization assays and statistical analysis, respectively. Potential conditions for autoantibody induction were revealed by in vitro immunization. RESULTS: Of 11 cytokines tested, only anti-IL-33 autoantibody was significantly increased in asthma, compare to healthy controls, and the proportion positive was higher in patients with mild-to-moderate than severe allergic asthma. In allergic asthma patients, the anti-IL-33 autoantibody level correlated negatively with serum concentration of pathogenic cytokines (e.g., IL-4, IL-13, IL-25 and IL-33), IgE, and blood eosinophil count, but positively with mid-expiratory flow FEF25-75%. The autoantibodies were predominantly IgG isotype, polyclonal and could neutralize IL-33-induced pathogenic responses in vitro and in vivo. The induction of the anti-IL-33 autoantibody in blood B-cells in vitro required peptide IL-33 antigen along with a stimulation cocktail of TLR9 agonist and cytokines IL-2, IL-4 or IL-21. CONCLUSIONS: Serum natural anti-IL-33 autoantibodies are selectively induced in some asthma patients. They ameliorate key asthma inflammatory responses, and may improve lung function of allergic asthma.


Assuntos
Asma , Autoanticorpos , Interleucina-33 , Humanos , Asma/imunologia , Autoanticorpos/imunologia , Autoanticorpos/sangue , Interleucina-33/imunologia , Feminino , Adulto , Masculino , Pessoa de Meia-Idade , Animais , Anticorpos Neutralizantes/imunologia , Citocinas/imunologia , Citocinas/sangue , Camundongos , Adulto Jovem , Imunoglobulina E/imunologia , Imunoglobulina E/sangue , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/agonistas , Índice de Gravidade de Doença , Imunoglobulina G/imunologia , Imunoglobulina G/sangue
8.
Eur J Immunol ; 54(8): e2350736, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38700378

RESUMO

CD11c, FcRL5, or T-bet are commonly expressed by B cells expanding during inflammation, where they can make up >30% of mature B cells. However, the association between the proteins and differentiation and function in the host response remains largely unclear. We have assessed the co-expression of CD11c, T-bet, and FcRL5 in an in vitro B-cell culture system to determine how stimulation via the BCR, toll-like receptor 9 (TLR9), and different cytokines influence CD11c, T-bet, and FcRL5 expression. We observed different expression dynamics for all markers, but a largely overlapping regulation of CD11c and FcRL5 in response to BCR and TLR9 activation, while T-bet was strongly dependent on IFN-γ signaling. Investigating plasma cell differentiation and APC functions, there was no association between marker expression and antibody secretion or T-cell help. Rather the functions were associated with TLR9-signalling and B-cell-derived IL-6 production, respectively. These results suggest that the expression of CD11c, FcRL5, and T-bet and plasma cell differentiation and improved APC functions occur in parallel and are regulated by similar activation signals, but they are not interdependent.


Assuntos
Linfócitos B , Antígeno CD11c , Ativação Linfocitária , Proteínas com Domínio T , Receptor Toll-Like 9 , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Antígeno CD11c/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/imunologia , Ativação Linfocitária/imunologia , Transdução de Sinais/imunologia , Diferenciação Celular/imunologia , Humanos , Animais , Receptores Fc/metabolismo , Receptores Fc/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Células Cultivadas , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/imunologia , Regulação da Expressão Gênica/imunologia , Camundongos , Interleucina-6/metabolismo
10.
J Immunol ; 212(11): 1680-1692, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38607278

RESUMO

Plasmacytoid dendritic cells (pDCs) are strongly implicated as a major source of IFN-I in systemic lupus erythematosus (SLE), triggered through TLR-mediated recognition of nucleic acids released from dying cells. However, relatively little is known about how TLR signaling and IFN-I production are regulated in pDCs. In this article, we describe a role for integrin αvß3 in regulating TLR responses and IFN-I production by pDCs in mouse models. We show that αv and ß3-knockout pDCs produce more IFN-I and inflammatory cytokines than controls when stimulated through TLR7 and TLR9 in vitro and in vivo. Increased cytokine production was associated with delayed acidification of endosomes containing TLR ligands, reduced LC3 conjugation, and increased TLR signaling. This dysregulated TLR signaling results in activation of B cells and promotes germinal center (GC) B cell and plasma cell expansion. Furthermore, in a mouse model of TLR7-driven lupus-like disease, deletion of αvß3 from pDCs causes accelerated autoantibody production and pathology. We therefore identify a pDC-intrinsic role for αvß3 in regulating TLR signaling and preventing activation of autoreactive B cells. Because αvß3 serves as a receptor for apoptotic cells and cell debris, we hypothesize that this regulatory mechanism provides important contextual cues to pDCs and functions to limit responses to self-derived nucleic acids.


Assuntos
Autoimunidade , Células Dendríticas , Integrina alfaVbeta3 , Lúpus Eritematoso Sistêmico , Camundongos Knockout , Transdução de Sinais , Receptor 7 Toll-Like , Animais , Camundongos , Células Dendríticas/imunologia , Integrina alfaVbeta3/imunologia , Integrina alfaVbeta3/metabolismo , Autoimunidade/imunologia , Receptor 7 Toll-Like/imunologia , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , Lúpus Eritematoso Sistêmico/imunologia , Transdução de Sinais/imunologia , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Citocinas/imunologia , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo , Linfócitos B/imunologia , Autoanticorpos/imunologia , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Ativação Linfocitária/imunologia , Modelos Animais de Doenças
11.
Cell Immunol ; 399-400: 104823, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38520831

RESUMO

AAV-mediated gene transfer is a promising platform still plagued by potential host-derived, antagonistic immune responses to therapeutic components. CpG-mediated TLR9 stimulation activates innate immune cells and leads to cognate T cell activation and suppression of transgene expression. Here, we demonstrate that CpG depletion increased expression of an antibody transgene product by 2-3-fold as early as 24 h post-vector administration in mice. No significant differences were noted in anti-transgene product/ anti-AAV capsid antibody production or cytotoxic gene induction. Instead, CpG depletion significantly reduced the presence of a pDC-like myeloid cell population, which was able to directly bind the antibody transgene product via Fc-FcγR interactions. Thus, we extend the mechanisms of TLR9-mediated antagonism of transgene expression in AAV gene therapy to include the actions of a previously unreported pDC-like cell population.


Assuntos
Células Dendríticas , Dependovirus , Terapia Genética , Vetores Genéticos , Camundongos Endogâmicos C57BL , Receptor Toll-Like 9 , Transgenes , Animais , Células Dendríticas/imunologia , Dependovirus/genética , Camundongos , Terapia Genética/métodos , Receptor Toll-Like 9/imunologia , Ilhas de CpG/genética , Ilhas de CpG/imunologia , Receptores de IgG/imunologia , Receptores de IgG/genética , Receptores de IgG/metabolismo
12.
Nature ; 628(8006): 145-153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538785

RESUMO

As hippocampal neurons respond to diverse types of information1, a subset assembles into microcircuits representing a memory2. Those neurons typically undergo energy-intensive molecular adaptations, occasionally resulting in transient DNA damage3-5. Here we found discrete clusters of excitatory hippocampal CA1 neurons with persistent double-stranded DNA (dsDNA) breaks, nuclear envelope ruptures and perinuclear release of histone and dsDNA fragments hours after learning. Following these early events, some neurons acquired an inflammatory phenotype involving activation of TLR9 signalling and accumulation of centrosomal DNA damage repair complexes6. Neuron-specific knockdown of Tlr9 impaired memory while blunting contextual fear conditioning-induced changes of gene expression in specific clusters of excitatory CA1 neurons. Notably, TLR9 had an essential role in centrosome function, including DNA damage repair, ciliogenesis and build-up of perineuronal nets. We demonstrate a novel cascade of learning-induced molecular events in discrete neuronal clusters undergoing dsDNA damage and TLR9-mediated repair, resulting in their recruitment to memory circuits. With compromised TLR9 function, this fundamental memory mechanism becomes a gateway to genomic instability and cognitive impairments implicated in accelerated senescence, psychiatric disorders and neurodegenerative disorders. Maintaining the integrity of TLR9 inflammatory signalling thus emerges as a promising preventive strategy for neurocognitive deficits.


Assuntos
Região CA1 Hipocampal , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Inflamação , Memória , Receptor Toll-Like 9 , Animais , Feminino , Masculino , Camundongos , Envelhecimento/genética , Envelhecimento/patologia , Região CA1 Hipocampal/fisiologia , Centrossomo/metabolismo , Disfunção Cognitiva/genética , Condicionamento Clássico , Matriz Extracelular/metabolismo , Medo , Instabilidade Genômica/genética , Histonas/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Memória/fisiologia , Transtornos Mentais/genética , Doenças Neurodegenerativas/genética , Doenças Neuroinflamatórias/genética , Neurônios/metabolismo , Neurônios/patologia , Membrana Nuclear/patologia , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo
13.
Nat Med ; 29(10): 2547-2558, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37696935

RESUMO

Inducing antiretroviral therapy (ART)-free virological control is a critical step toward a human immunodeficiency virus type 1 (HIV-1) cure. In this phase 2a, placebo-controlled, double-blinded trial, 43 people (85% males) with HIV-1 on ART were randomized to (1) placebo/placebo, (2) lefitolimod (TLR9 agonist)/placebo, (3) placebo/broadly neutralizing anti-HIV-1 antibodies (bNAbs) or (4) lefitolimod/bNAb. ART interruption (ATI) started at week 3. Lefitolimod was administered once weekly for the first 8 weeks, and bNAbs were administered twice, 1 d before and 3 weeks after ATI. The primary endpoint was time to loss of virologic control after ATI. The median delay in time to loss of virologic control compared to the placebo/placebo group was 0.5 weeks (P = 0.49), 12.5 weeks (P = 0.003) and 9.5 weeks (P = 0.004) in the lefitolimod/placebo, placebo/bNAb and lefitolimod/bNAb groups, respectively. Among secondary endpoints, viral doubling time was slower for bNAb groups compared to non-bNAb groups, and the interventions were overall safe. We observed no added benefit of lefitolimod. Despite subtherapeutic plasma bNAb levels, 36% (4/11) in the placebo/bNAb group compared to 0% (0/10) in the placebo/placebo group maintained virologic control after the 25-week ATI. Although immunotherapy with lefitolimod did not lead to ART-free HIV-1 control, bNAbs may be important components in future HIV-1 curative strategies. ClinicalTrials.gov identifier: NCT03837756 .


Assuntos
Infecções por HIV , HIV-1 , Receptor Toll-Like 9 , Feminino , Humanos , Masculino , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes/uso terapêutico , Anticorpos Anti-HIV/uso terapêutico , Receptor Toll-Like 9/antagonistas & inibidores , Receptor Toll-Like 9/imunologia
14.
Proc Natl Acad Sci U S A ; 119(31): e2201146119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878041

RESUMO

Aberrant immune responses, including hyperresponsiveness to Toll-like receptor (TLR) ligands, underlie acute respiratory distress syndrome (ARDS). Type I interferons confer antiviral activities and could also regulate the inflammatory response, whereas little is known about their actions to resolve aberrant inflammation. Here we report that interferon-ß (IFN-ß) exerts partially overlapping, but also cooperative actions with aspirin-triggered 15-epi-lipoxin A4 (15-epi-LXA4) and 17-epi-resolvin D1 to counter TLR9-generated cues to regulate neutrophil apoptosis and phagocytosis in human neutrophils. In mice, TLR9 activation impairs bacterial clearance, prolongs Escherichia coli-evoked lung injury, and suppresses production of IFN-ß and the proresolving lipid mediators 15-epi-LXA4 and resolvin D1 (RvD1) in the lung. Neutralization of endogenous IFN-ß delays pulmonary clearance of E. coli and aggravates mucosal injury. Conversely, treatment of mice with IFN-ß accelerates clearance of bacteria, restores neutrophil phagocytosis, promotes neutrophil apoptosis and efferocytosis, and accelerates resolution of airway inflammation with concomitant increases in 15-epi-LXA4 and RvD1 production in the lungs. Pharmacological blockade of the lipoxin receptor ALX/FPR2 partially prevents IFN-ß-mediated resolution. These findings point to a pivotal role of IFN-ß in orchestrating timely resolution of neutrophil and TLR9 activation-driven airway inflammation and uncover an IFN-ß-initiated resolution program, activation of an ALX/FPR2-centered, proresolving lipids-mediated circuit, for ARDS.


Assuntos
Interferon beta , Lipoxinas , Síndrome do Desconforto Respiratório , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Escherichia coli , Infecções por Escherichia coli/imunologia , Humanos , Inflamação/tratamento farmacológico , Interferon beta/imunologia , Interferon beta/farmacologia , Lipoxinas/farmacologia , Camundongos , Receptores de Formil Peptídeo/antagonistas & inibidores , Síndrome do Desconforto Respiratório/tratamento farmacológico , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Ativação Transcricional/efeitos dos fármacos
15.
Comput Math Methods Med ; 2022: 8660752, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35132333

RESUMO

Swine pneumonia commonly known as swine pasteurellosis is an infectious disease of swine caused by Pasteurella multocida infection. It has been reported that Toll-like receptors (TLRs) play a vital role in swine pneumonia progression. However, the underlying mechanism has not been elucidated. This research was aimed at investigating the molecular mechanism by which TLR9 regulates swine pneumonia progression. Our findings illustrated that the HD-13 strain of Pasteurella multocida D (HD-13) accelerated TLR9 expression in porcine alveolar macrophage 3D4/21 cells; HD-13 activated the inflammatory response via accelerating TLR9 expression. Mechanistically, HD-13 activated mitogen-activated protein kinase (MAPK) and nuclear factor kB (NF-κB) signals. In conclusion, HD-13 may activate MAPK and NF-κB pathways via accelerating TLR9 expression, thereby accelerating the inflammatory response in the progression of swine pneumonia. TLR9 may serve as a novel therapeutic target for swine pneumonia. Our research may provide a theoretical basis for the prevention and treatment of swine pneumonia.


Assuntos
Infecções por Pasteurella/veterinária , Pasteurella multocida/patogenicidade , Pneumonia/veterinária , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Receptor Toll-Like 9/imunologia , Animais , Células Cultivadas , Biologia Computacional , Citocinas/genética , Citocinas/imunologia , Progressão da Doença , Sistema de Sinalização das MAP Quinases/imunologia , NF-kappa B/imunologia , Infecções por Pasteurella/imunologia , Infecções por Pasteurella/microbiologia , Pasteurella multocida/classificação , Pasteurella multocida/imunologia , Pneumonia/imunologia , Pneumonia/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/imunologia , Sus scrofa , Suínos , Doenças dos Suínos/genética , Receptor Toll-Like 9/genética , Regulação para Cima
16.
Cell Prolif ; 55(3): e13192, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35084069

RESUMO

OBJECTIVES: Synthetic oligodeoxynucleotides (ODNs) that contain unmethylated cytosine-phosphate-guanine (CpG) motifs serve as immune adjuvants in disease treatment. However, the poor cell permeability and safety concerns limit their medical applications, and biocompatible strategies for efficient delivery of functional CpG ODNs are highly desirable. MATERIALS AND METHODS: Self-assembled, cell membrane-coated CpG nanoparticles (NP) are prepared, and their physicochemical properties are characterized. The uncoated and membrane-coated CpG NP are compared for their biocompatibility, cellular uptake kinetics, endocytic pathways, subcellular localization, and immunostimulatory activities in macrophages and microglia. RESULTS: Macrophage- or microglia-derived cell membrane camouflaging alters the endocytic pathways of CpG NP, promotes their targeted delivery to the cells with homologous membrane, ensures their endosomal localization, and enhances their immunomodulatory effects. CONCLUSIONS: We design a type of biomimetic NP consisting of self-assembled CpG NP core and cell membrane shell, and demonstrate its advantages in the modulation of peripheral and central immune cells. Our study provides a new strategy for the application of CpG ODNs.


Assuntos
Imunomodulação/imunologia , Macrófagos/imunologia , Nanopartículas/metabolismo , Oligodesoxirribonucleotídeos/imunologia , Animais , Citosina/metabolismo , Macrófagos/metabolismo , Oligodesoxirribonucleotídeos/metabolismo , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo
17.
Virology ; 566: 98-105, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896902

RESUMO

The innate and acquired immune response induced by a commercial inactivated vaccine against Bovine Herpesvirus-1 (BoHV-1) and protection conferred against the virus were analyzed in cattle. Vaccination induced high levels of BoHV-1 antibodies at 30, 60, and 90 days post-vaccination (dpv). IgG1 and IgG2 isotypes were detected at 90 dpv, as well as virus-neutralizing antibodies. An increase of anti-BoHV-1 IgG1 in nasal swabs was detected 6 days post-challenge in vaccinated animals. After viral challenge, lower virus excretion and lower clinical score were observed in vaccinated as compared to unvaccinated animals, as well as BoHV-1-specific proliferation of lymphocytes and production of IFNγ, TNFα, and IL-4. Downregulation of the expression of endosome Toll-like receptors 8-9 was detected after booster vaccination. This is the first thorough study of the immunity generated by a commercial vaccine against BoHV-1 in cattle.


Assuntos
Anticorpos Neutralizantes/biossíntese , Herpesvirus Bovino 1/imunologia , Vacinas contra Herpesvirus/administração & dosagem , Imunoglobulina G/biossíntese , Rinotraqueíte Infecciosa Bovina/prevenção & controle , Receptor 8 Toll-Like/imunologia , Receptor Toll-Like 9/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Anticorpos Antivirais , Bovinos , Proliferação de Células , Endossomos/imunologia , Endossomos/metabolismo , Expressão Gênica , Herpesvirus Bovino 1/patogenicidade , Imunidade Inata/efeitos dos fármacos , Imunização Secundária/métodos , Rinotraqueíte Infecciosa Bovina/genética , Rinotraqueíte Infecciosa Bovina/imunologia , Rinotraqueíte Infecciosa Bovina/virologia , Interferon gama/genética , Interferon gama/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Linfócitos/imunologia , Linfócitos/virologia , Masculino , Cavidade Nasal/imunologia , Cavidade Nasal/virologia , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/genética , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Vacinação/métodos , Vacinas de Produtos Inativados
18.
Eur J Immunol ; 52(2): 270-284, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34773640

RESUMO

Recognition of pathogen-associated molecular patterns (PAMPs) through Toll-like receptors (TLRs) plays a pivotal role in first-line pathogen defense. TLRs are also likely triggered during a Plasmodium infection in vivo by parasite-derived components. However, the contribution of innate responses to liver infection and to the subsequent clinical outcome of a blood infection is not well understood. To assess the potential effects of enhanced TLR-signalling on Plasmodium infection, we systematically examined the effect of agonist-primed immune responses to sporozoite inoculation in the P. berghei/C57Bl/6 murine malaria model. We could identify distinct stage-specific effects on the course of infection after stimulation with two out of four TLR-ligands tested. Priming with a TLR9 agonist induced killing of pre-erythrocytic stages in the liver that depended on macrophages and the expression of inducible nitric oxide synthase (iNOS). These factors have previously not been recognized as antigen-independent effector mechanisms against Plasmodium liver stages. Priming with TLR4 and -9 agonists also translated into blood stage-specific protection against experimental cerebral malaria (ECM). These insights are relevant to the activation of TLR signalling pathways by adjuvant systems of antimalaria vaccine strategies. The protective role of TLR4-activation against ECM might also explain some unexpected clinical effects observed with pre-erythrocytic vaccine approaches.


Assuntos
Hepatopatias , Fígado , Ativação de Macrófagos , Macrófagos/imunologia , Malária , Plasmodium berghei/imunologia , Transdução de Sinais , Receptor Toll-Like 9/imunologia , Animais , Feminino , Fígado/imunologia , Fígado/parasitologia , Hepatopatias/genética , Hepatopatias/imunologia , Hepatopatias/parasitologia , Malária/genética , Malária/imunologia , Camundongos , Camundongos Transgênicos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor Toll-Like 9/genética
20.
Front Immunol ; 12: 698420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497606

RESUMO

Siglec-H is a DAP12-associated receptor on plasmacytoid dendritic cells (pDCs) and microglia. Siglec-H inhibits TLR9-induced IFN-α production by pDCs. Previously, it was found that Siglec-H-deficient mice develop a lupus-like severe autoimmune disease after persistent murine cytomegalovirus (mCMV) infection. This was due to enhanced type I interferon responses, including IFN-α. Here we examined, whether other virus infections can also induce autoimmunity in Siglec-H-deficient mice. To this end we infected Siglec-H-deficient mice with influenza virus or with Lymphocytic Choriomeningitis virus (LCMV) clone 13. With both types of viruses we did not observe induction of autoimmune disease in Siglec-H-deficient mice. This can be explained by the fact that both types of viruses are ssRNA viruses that engage TLR7, rather than TLR9. Also, Influenza causes an acute infection that is rapidly cleared and the chronicity of LCMV clone 13 may not be sufficient and may rather suppress pDC functions. Siglec-H inhibited exclusively TLR-9 driven type I interferon responses, but did not affect type II or type III interferon production by pDCs. Siglec-H-deficient pDCs showed impaired Hck expression, which is a Src-family kinase expressed in myeloid cells, and downmodulation of the chemokine receptor CCR9, that has important functions for pDCs. Accordingly, Siglec-H-deficient pDCs showed impaired migration towards the CCR9 ligand CCL25. Furthermore, autoimmune-related genes such as Klk1 and DNase1l3 are downregulated in Siglec-H-deficient pDCs as well. From these findings we conclude that Siglec-H controls TLR-9-dependent, but not TLR-7 dependent inflammatory responses after virus infections and regulates chemokine responsiveness of pDCs.


Assuntos
Infecções por Arenaviridae/imunologia , Doenças Autoimunes/imunologia , Interferon Tipo I/imunologia , Lectinas/imunologia , Infecções por Orthomyxoviridae/imunologia , Receptores de Superfície Celular/imunologia , Animais , Doenças Autoimunes/virologia , Autoimunidade/imunologia , Quimiotaxia de Leucócito/imunologia , Células Dendríticas/imunologia , Vírus da Influenza A Subtipo H3N2 , Lectinas/deficiência , Vírus da Coriomeningite Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Superfície Celular/deficiência , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA