Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
2.
Exp Cell Res ; 441(2): 114195, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39098466

RESUMO

Chondrocyte ferroptosis induces the occurrence of osteoarthritis (OA). As a key gene of OA, C5a receptor 1 (C5AR1) is related to ferroptosis. Here, we investigated whether C5AR1 interferes with chondrocyte ferroptosis during OA occurrence. C5AR1 was downregulated in PA-treated chondrocytes. Overexpression of C5AR1 increased the cell viability and decreased ferroptosis in chondrocytes. Moreover, Tumor necrosis factor superfamily member 13B (TNFSF13B) was downregulated in PA-treated chondrocytes, and knockdown of TNFSF13B eliminated the inhibitory effect of C5AR1 on ferroptosis in chondrocytes. More importantly, the PI3K/Akt/GSK3ß/Nrf2/HO-1 pathway inhibitor LY294002 reversed the inhibition of C5AR1 or TNFSF13B on ferroptosis in chondrocytes. Finally, we found that C5AR1 alleviated joint tissue lesions and ferroptosis in rats and inhibited the progression of OA in the rat OA model constructed by anterior cruciate ligament transection (ACLT), which was reversed by interfering with TNFSF13B. This study shows that C5AR1 reduces the progression of OA by upregulating TNFSF13B to activate the PI3K/Akt/GSK3ß/Nrf2/HO-1 pathway and thereby inhibiting chondrocyte sensitivity to ferroptosis, indicating that C5AR1 may be a potential therapeutic target for ferroptosis-related diseases.


Assuntos
Condrócitos , Ferroptose , Glicogênio Sintase Quinase 3 beta , Fator 2 Relacionado a NF-E2 , Osteoartrite , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Receptor da Anafilatoxina C5a , Animais , Ferroptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Condrócitos/metabolismo , Condrócitos/patologia , Condrócitos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Ratos , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Masculino , Receptor da Anafilatoxina C5a/metabolismo , Receptor da Anafilatoxina C5a/genética , Transdução de Sinais , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase (Desciclizante)
3.
Nat Commun ; 15(1): 7028, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147742

RESUMO

Alzheimer's disease (AD) is the leading cause of dementia in older adults, and the need for effective, sustainable therapeutic targets is imperative. The complement pathway has been proposed as a therapeutic target. C5aR1 inhibition reduces plaque load, gliosis, and memory deficits in animal models, however, the cellular bases underlying this neuroprotection were unclear. Here, we show that the C5aR1 antagonist PMX205 improves outcomes in the Arctic48 mouse model of AD. A combination of single cell and single nucleus RNA-seq analysis of hippocampi derived from males and females identified neurotoxic disease-associated microglia clusters in Arctic mice that are C5aR1-dependent, while microglial genes associated with synapse organization and transmission and learning were overrepresented in PMX205-treated mice. PMX205 also reduced neurotoxic astrocyte gene expression, but clusters associated with protective responses to injury were unchanged. C5aR1 inhibition promoted mRNA-predicted signaling pathways between brain cell types associated with cell growth and repair, while suppressing inflammatory pathways. Finally, although hippocampal plaque load was unaffected, PMX205 prevented deficits in short-term memory in female Arctic mice. In conclusion, C5aR1 inhibition prevents cognitive loss, limits detrimental glial polarization while permitting neuroprotective responses, as well as leaving most protective functions of complement intact, making C5aR1 antagonism an attractive therapeutic strategy for AD.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Hipocampo , Microglia , Receptor da Anafilatoxina C5a , Transdução de Sinais , Animais , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Receptor da Anafilatoxina C5a/metabolismo , Receptor da Anafilatoxina C5a/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Camundongos , Feminino , Masculino , Transdução de Sinais/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Camundongos Transgênicos , Humanos , Camundongos Endogâmicos C57BL
4.
Sci Rep ; 14(1): 17232, 2024 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060563

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has become the first major chronic liver disease in developed countries. 10-20% of NAFLD patients will progress to non-alcoholic steatohepatitis (NASH), and up to 25% of NASH patients may develop cirrhosis within 10 years. Therefore, it is critical to find key targets that may treat this disease. Here, we identified C5aR1 as a highly-expressed gene in NASH mouse model through analyzing Gene Expression Omnibus (GEO) database and confirmed its higher expression in livers of NASH patients than that of NAFL patients. Meanwhile, we verified its positive correlation with patients' serum alanine transaminase (ALT) and aspartate transaminase (AST) levels. In vivo and in vitro experiments revealed that knocking down C5aR1 in liver significantly reduced liver weight ratio and serum ALT and AST levels and attenuated inflammatory cell infiltration and cell apoptosis in the liver of NASH mice as well as enhanced the efferocytotic ability of liver macrophages, suggesting that C5aR1 may play a crucial role in the efferocytosis of liver macrophages. Furthermore, we also found that the expression levels of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3), caspase-1, IL-1ß and other inflammation-related factors in the liver were significantly reduced. Our work demonstrates a potential mechanism of how C5aR1 deficiency protects against diet-induced NASH by coordinating the regulation of inflammatory factors and affecting hepatic macrophage efferocytosis.


Assuntos
Fígado , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Hepatopatia Gordurosa não Alcoólica , Fagocitose , Receptor da Anafilatoxina C5a , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Receptor da Anafilatoxina C5a/metabolismo , Receptor da Anafilatoxina C5a/genética , Camundongos , Macrófagos/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Masculino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Apoptose , Alanina Transaminase/sangue , Alanina Transaminase/metabolismo , Aspartato Aminotransferases/sangue , Aspartato Aminotransferases/metabolismo , Eferocitose
5.
J Immunol Res ; 2024: 2899154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021433

RESUMO

As another receptor for complement activation product C5a, C5aR2 has been paid much attention these years. Although controversial and complex, its specific signals or roles in modulating the classic receptor C5aR1 have been investigated and gradually revealed. The hypothesis of the heterodimer of C5aR1 and C5aR2 has also been suggested and observed under extremely high C5a concentrations. In this article, we tried to investigate whether C5aR2 would affect C5aR1 expression under normal or inflammatory conditions in WT and C5ar2 -/- mice of C57BL/6 background. We focused on the innate immune cells-neutrophils and macrophages. The mRNA levels of C5ar1 in normal kidney, liver, and the mRNA or protein levels of naïve-bone marrow and peripheral blood leukocytes and peritoneal Mφs were comparable between WT and C5ar2 -/- mice, indicating the technique of C5aR2 knockout did not affect the transcription of its neighboring gene C5aR1. However, the mean fluorescence intensity of surface C5aR1 on naïve circulating C5ar2 -/- neutrophils detected by FACS was reduced, which might be due to the reduced internalization of C5aR1 on C5ar2 -/- neutrophils. In the peritonitis model induced by i.p. injection of thioglycollate, more neutrophils were raised after 10 hr in C5ar2 -/- peritoneal cavity, indicating the antagonism of C5aR2 on C5aR1 signal in neutrophil chemotaxis. After 3 days of thioglycollate injection, the mainly infiltrating macrophages were comparable between WT and C5ar2 -/- mice, but the C5ar1 mRNA and surface or total C5aR1 protein expression were both reduced in C5ar2 -/- macrophages, combined with our previous study of reduced chemokines and cytokines expression in C5ar2 -/- peritoneal macrophages, indicating that C5aR2 in macrophages may cooperate with C5aR1 inflammatory signals. Our article found C5aR2 deficiency lessened C5aR1 distribution and expression in neutrophils and macrophages with different functions, indicating C5aR2 might function differently in different cells.


Assuntos
Macrófagos , Neutrófilos , Peritonite , Receptor da Anafilatoxina C5a , Animais , Camundongos , Complemento C5a/metabolismo , Complemento C5a/imunologia , Modelos Animais de Doenças , Imunidade Inata , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peritonite/imunologia , Receptor da Anafilatoxina C5a/metabolismo , Receptor da Anafilatoxina C5a/genética
6.
Front Immunol ; 15: 1411315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979410

RESUMO

Pregnancy is a fascinating immunological phenomenon because it allows allogeneic fetal and placental tissues to survive inside the mother. As a component of innate immunity with high inflammatory potential, the complement system must be tightly regulated during pregnancy. Dysregulation of the complement system plays a role in pregnancy complications including pre-eclampsia and intrauterine growth restriction. Complement components are also used as biomarkers for pregnancy complications. However, the mechanisms of detrimental role of complement in pregnancy is poorly understood. C5a is the most potent anaphylatoxin and generates multiple immune reactions via two transmembrane receptors, C5aR1 and C5aR2. C5aR1 is pro-inflammatory, but the role of C5aR2 remains largely elusive. Interestingly, murine NK cells have been shown to express C5aR2 without the usual co-expression of C5aR1. Furthermore, C5aR2 appears to regulate IFN-γ production by NK cells in vitro. As IFN-γ produced by uterine NK cells is one of the major factors for the successful development of a vital pregnancy, we investigated the role anaphylatoxin C5a and its receptors in the establishment of pregnancy and the regulation of uterine NK cells by examinations of murine C5ar2-/- pregnancies and human placental samples. C5ar2-/- mice have significantly reduced numbers of implantation sites and a maternal C5aR2 deficiency results in increased IL-12, IL-18 and IFN-γ mRNA expression as well as reduced uNK cell infiltration at the maternal-fetal interface. Human decidual leukocytes have similar C5a receptor expression patterns showing clinical relevance. In conclusion, this study identifies C5aR2 as a key contributor to dNK infiltration and pregnancy success.


Assuntos
Células Matadoras Naturais , Camundongos Knockout , Receptor da Anafilatoxina C5a , Útero , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/metabolismo , Feminino , Animais , Gravidez , Camundongos , Útero/imunologia , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Placenta/imunologia , Placenta/metabolismo , Complemento C5a/imunologia , Complemento C5a/metabolismo , Camundongos Endogâmicos C57BL , Interferon gama/metabolismo , Interferon gama/imunologia
7.
JCI Insight ; 9(12)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38912583

RESUMO

Patients with autosomal dominant polycystic kidney disease (ADPKD), a genetic disease due to mutations of the PKD1 or PKD2 gene, show signs of complement activation in the urine and cystic fluid, but their pathogenic role in cystogenesis is unclear. We tested the causal relationship between complement activation and cyst growth using a Pkd1KO renal tubular cell line and newly generated conditional Pkd1-/- C3-/- mice. Pkd1-deficient tubular cells have increased expression of complement-related genes (C3, C5, CfB, C3ar, and C5ar1), while the gene and protein expression of complement regulators DAF, CD59, and Crry is decreased. Pkd1-/- C3-/- mice are unable to fully activate the complement cascade and are characterized by a significantly slower kidney cystogenesis, preserved renal function, and reduced intrarenal inflammation compared with Pkd1-/- C3+/+ controls. Transgenic expression of the cytoplasmic C-terminal tail of Pkd1 in Pkd1KO cells lowered C5ar1 expression, restored Daf levels, and reduced cell proliferation. Consistently, both DAF overexpression and pharmacological inhibition of C5aR1 (but not C3aR) reduced Pkd1KO cell proliferation. In conclusion, the loss of Pkd1 promotes unleashed activation of locally produced complement by downregulating DAF expression in renal tubular cells. Increased C5a formation and C5aR1 activation in tubular cells promotes cyst growth, offering a new therapeutic target.


Assuntos
Antígenos CD55 , Complemento C3 , Camundongos Knockout , Rim Policístico Autossômico Dominante , Animais , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Dominante/metabolismo , Camundongos , Antígenos CD55/genética , Antígenos CD55/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Receptor da Anafilatoxina C5a/genética , Modelos Animais de Doenças , Ativação do Complemento , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Humanos , Proliferação de Células , Masculino , Linhagem Celular , Receptores de Complemento 3b/genética , Receptores de Complemento 3b/metabolismo
8.
Fish Shellfish Immunol ; 151: 109706, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897310

RESUMO

The complement component 5a/complement component 5 receptor 1 (C5a/C5aR1) pathway plays a crucial role in the onset and development of inflammation, but relevant studies in fish are lacking. In this study, we successfully characterized the relationship between half-smooth tongue sole (Cynoglossus semilaevis) C5aR1 (CsC5aR1) and bacterial inflammation. First, we showed that the overexpression of CsC5aR1 significantly increased bacterial pathological damage in the liver and intestine, whereas inhibition attenuated the damage. The in vitro experiments suggested that CsC5aR1 was able to positively regulate the phagocytic activity and respiratory burst of tongue sole macrophages. In terms of both transcriptional and translational levels, overexpression/inhibition of CsC5aR1 was followed by a highly consistent up-regulation/decrease of its downstream canonical inflammatory factor interleukin-6 (CsIL-6). Furthermore, we stimulated macrophages by lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and found a broad-spectrum response to bacterial infections by the C5a/C5aR1 complement pathway together with the downstream inflammatory factor CsIL-6. Subsequently, we directly elucidated that CsIL-6 is an indicator of C5a/C5aR1-mediated inflammation at different infection concentrations, different infectious bacteria (Vibrio anguillarum and Mycobacterium marinum), and different detection levels. These results might provide a new inflammation bio-marker for early warning of bacteria-induced hyperinflammation leading to fish mortality and a promising target for the treatment of bacterial inflammation in teleost.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Linguados , Interleucina-6 , Receptor da Anafilatoxina C5a , Animais , Linguados/imunologia , Linguados/genética , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Vibrioses/veterinária , Vibrioses/imunologia , Vibrio/fisiologia , Inflamação/imunologia , Inflamação/veterinária , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética
9.
Nat Commun ; 15(1): 4485, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802355

RESUMO

Although Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have been approved in multiple diseases, including BRCA1/2 mutant breast cancer, responses are usually transient requiring the deployment of combination therapies for optimal efficacy. Here we thus explore mechanisms underlying sensitivity and resistance to PARPi using two intrinsically PARPi sensitive (T22) and resistant (T127) syngeneic murine breast cancer models in female mice. We demonstrate that tumor associated macrophages (TAM) potentially contribute to the differential sensitivity to PARPi. By single-cell RNA-sequencing, we identify a TAM_C3 cluster, expressing genes implicated in anti-inflammatory activity, that is enriched in PARPi resistant T127 tumors and markedly decreased by PARPi in T22 tumors. Rps19/C5aR1 signaling is selectively elevated in TAM_C3. C5aR1 inhibition or transferring C5aR1hi cells increases and decreases PARPi sensitivity, respectively. High C5aR1 levels in human breast cancers are associated with poor responses to immune checkpoint blockade. Thus, targeting C5aR1 may selectively deplete pro-tumoral macrophages and engender sensitivity to PARPi and potentially other therapies.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Inibidores de Poli(ADP-Ribose) Polimerases , Receptor da Anafilatoxina C5a , Macrófagos Associados a Tumor , Animais , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Humanos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Linhagem Celular Tumoral , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Receptor da Anafilatoxina C5a/metabolismo , Receptor da Anafilatoxina C5a/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos
10.
Mol Ther ; 32(5): 1540-1560, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38449312

RESUMO

Podocytes are essential to maintaining the integrity of the glomerular filtration barrier, but they are frequently affected in lupus nephritis (LN). Here, we show that the significant upregulation of Drp1S616 phosphorylation in podocytes promotes mitochondrial fission, leading to mitochondrial dysfunction and podocyte injury in LN. Inhibition or knockdown of Drp1 promotes mitochondrial fusion and protects podocytes from injury induced by LN serum. In vivo, pharmacological inhibition of Drp1 reduces the phosphorylation of Drp1S616 in podocytes in lupus-prone mice. Podocyte injury is reversed when Drp1 is inhibited, resulting in the alleviation of proteinuria. Mechanistically, complement component C5a (C5a) upregulates the phosphorylation of Drp1S616 and promotes mitochondrial fission in podocytes. Moreover, the expression of C5a receptor 1 (C5aR1) is notably upregulated in podocytes in LN. C5a-C5aR1 axis-controlled phosphorylation of Drp1S616 and mitochondrial fission are substantially suppressed when C5aR1 is knocked down by siRNA. Moreover, lupus-prone mice treated with C5aR inhibitor show reduced phosphorylation of Drp1S616 in podocytes, resulting in significantly less podocyte damage. Together, this study uncovers a novel mechanism by which the C5a-C5aR1 axis promotes podocyte injury by enhancing Drp1-mediated mitochondrial fission, which could have significant implications for the treatment of LN.


Assuntos
Complemento C5a , Dinaminas , Nefrite Lúpica , Dinâmica Mitocondrial , Podócitos , Receptor da Anafilatoxina C5a , Podócitos/metabolismo , Podócitos/patologia , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Nefrite Lúpica/etiologia , Animais , Receptor da Anafilatoxina C5a/metabolismo , Receptor da Anafilatoxina C5a/genética , Camundongos , Dinaminas/metabolismo , Dinaminas/genética , Complemento C5a/metabolismo , Humanos , Fosforilação , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Transdução de Sinais , Feminino
11.
Sci Rep ; 14(1): 3105, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326494

RESUMO

Recent studies have indicated the involvement of neutrophil-mediated inflammatory responses in the process leading to intracranial aneurysm (IA) rupture. Receptors mediating neutrophil recruitment could thus be therapeutic targets of unruptured IAs. In this study, complement C5a receptor 1 (C5AR1) was picked up as a candidate that may cause neutrophil-dependent inflammation in IA lesions from comprehensive gene expression profile data acquired from rat and human samples. The induction of C5AR1 in IA lesions was confirmed by immunohistochemistry; the up-regulations of C5AR1/C5ar1 stemmed from infiltrated neutrophils, which physiologically express C5AR1/C5ar1, and adventitial fibroblasts that induce C5AR1/C5ar1 in human/rat IA lesions. In in vitro experiments using NIH/3T3, a mouse fibroblast-like cell line, induction of C5ar1 was demonstrated by starvation or pharmacological inhibition of mTOR signaling by Torin1. Immunohistochemistry and an experiment in a cell-free system using recombinant C5 protein and recombinant Plasmin indicated that the ligand of C5AR1, C5a, could be produced through the enzymatic digestion by Plasmin in IA lesions. In conclusion, we have identified a potential contribution of the C5a-C5AR1 axis to neutrophil infiltration as well as inflammatory responses in inflammatory cells and fibroblasts of IA lesions. This cascade may become a therapeutic target to prevent the rupture of IAs.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Animais , Humanos , Camundongos , Ratos , Complemento C5a/metabolismo , Fibrinolisina/metabolismo , Inflamação , Receptor da Anafilatoxina C5a/genética , Transdução de Sinais
12.
Hypertension ; 81(1): 138-150, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37909169

RESUMO

BACKGROUND: Complement may drive the pathology of hypertension through effects on innate and adaptive immune responses. Recently an injurious role for the anaphylatoxin receptors C3aR (complement component 3a receptor) and C5aR1 (complement component 5a receptor) in the development of hypertension was shown through downregulation of Foxp3+ (forkhead box protein 3) regulatory T cells. Here, we deepen our understanding of the therapeutic potential of targeting both receptors in hypertension. METHODS: Data from the European Renal cDNA Bank, single cell sequencing and immunohistochemistry were examined in hypertensive patients. The effect of C3aR or C3aR/C5aR1 double deficiency was assessed in two models of Ang II (angiotensin II)-induced hypertension in knockout mice. RESULTS: We found increased expression of C3aR, C5aR1 and Foxp3 cells in kidney biopsies of patients with hypertensive nephropathy. Expression of both receptors was mainly found in myeloid cells. No differences in blood pressure, renal injury (albuminuria, glomerular filtration rate, glomerular and tubulointerstitial injury, inflammation) or cardiac injury (cardiac fibrosis, heart weight, gene expression) between control and mutant mice was discerned in C3aR-/- as well as C3aR/C5aR1-/- double knockout mice. The number of renal Tregs was not decreased in Ang II as well as in DOCA salt induced hypertension. CONCLUSIONS: Hypertensive nephropathy in mice and men is characterized by an increase of renal regulatory T cells and enhanced expression of anaphylatoxin receptors. Our investigations do not corroborate a role for C3aR/C5aR1 axis in Ang II-induced hypertension hence challenging the concept of anaphylatoxin receptor targeting in the treatment of hypertensive disease.


Assuntos
Complemento C3a , Hipertensão , Animais , Humanos , Camundongos , Anafilatoxinas , Angiotensina II , Complemento C3a/metabolismo , Complemento C5a/metabolismo , Fatores de Transcrição Forkhead , Hipertensão/genética , Camundongos Knockout , Receptor da Anafilatoxina C5a/genética , Receptores de Complemento/genética , Receptores de Complemento/metabolismo
13.
Mol Ther ; 32(2): 469-489, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38098230

RESUMO

Macrophages play a crucial role in shaping the immune state within the tumor microenvironment (TME) and are often influenced by tumors to hinder antitumor immunity. However, the underlying mechanisms are still elusive. Here, we observed abnormal expression of complement 5a receptor (C5aR) in human ovarian cancer (OC), and identified high levels of C5aR expression on tumor-associated macrophages (TAMs), which led to the polarization of TAMs toward an immunosuppressive phenotype. C5aR knockout or inhibitor treatment restored TAM antitumor response and attenuated tumor progression. Mechanistically, C5aR deficiency reprogrammed macrophages from a protumor state to an antitumor state, associating with the upregulation of immune response and stimulation pathways, which in turn resulted in the enhanced antitumor response of cytotoxic T cells in a manner dependent on chemokine (C-X-C motif) ligand 9 (CXCL9). The pharmacological inhibition of C5aR also improved the efficacy of immune checkpoint blockade therapy. In patients, C5aR expression associated with CXCL9 production and infiltration of CD8+ T cells, and a high C5aR level predicted poor clinical outcomes and worse benefits from anti-PD-1 therapy. Thus, our study sheds light on the mechanisms underlying the modulation of TAM antitumor immune response by the C5a-C5aR axis and highlights the potential of targeting C5aR for clinical applications.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Quimiocina CXCL9/genética , Imunidade , Neoplasias/patologia , Receptor da Anafilatoxina C5a/genética , Microambiente Tumoral , Macrófagos Associados a Tumor/metabolismo , Feminino
14.
Front Immunol ; 14: 1197709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275893

RESUMO

Introduction: The function of the second receptor for the complement cleavage product C5a, C5aR2, is poorly understood and often neglected in the immunological context. Using mice with a global deficiency of C5aR2, we have previously reported an important role of this receptor in the pathogenesis of the neutrophil-driven autoimmune disease epidermolysis bullosa acquisita (EBA). Based on in vitro analyses, we hypothesized that the absence of C5aR2 specifically on neutrophils is the cause of the observed differences. Here, we report the generation of a new mouse line with a LysM-specific deficiency of C5aR2. Methods: LysM-specific deletion of C5aR2 was achieved by crossing LysMcre mice with tdTomato-C5ar2fl/fl mice in which the tdTomato-C5ar2 gene is flanked by loxP sites. Passive EBA was induced by subcutaneous injection of rabbit anti-mouse collagen type VII IgG. The effects of targeted deletion of C5ar2 on C5a-induced effector functions of neutrophils were examined in in vitro assays. Results: We confirm the successful deletion of C5aR2 at both the genetic and protein levels in neutrophils. The mice appeared healthy and the expression of C5aR1 in bone marrow and blood neutrophils was not negatively affected by LysM-specific deletion of C5aR2. Using the antibody transfer mouse model of EBA, we found that the absence of C5aR2 in LysM-positive cells resulted in an overall amelioration of disease progression, similar to what we had previously found in mice with global deficiency of C5aR2. Neutrophils lacking C5aR2 showed decreased activation after C5a stimulation and increased expression of the inhibitory Fcγ receptor FcγRIIb. Discussion: Overall, with the data presented here, we confirm and extend our previous findings and show that C5aR2 in neutrophils regulates their activation and function in response to C5a by potentially affecting the expression of Fcγ receptors and CD11b. Thus, C5aR2 regulates the finely tuned interaction network between immune complexes, Fcγ receptors, CD11b, and C5aR1 that is important for neutrophil recruitment and sustained activation. This underscores the importance of C5aR2 in the pathogenesis of neutrophil-mediated autoimmune diseases.


Assuntos
Doenças Autoimunes , Epidermólise Bolhosa Adquirida , Animais , Camundongos , Complemento C5a/metabolismo , Ativação de Neutrófilo , Neutrófilos , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/metabolismo , Receptores de Complemento/metabolismo , Receptores de IgG/metabolismo
15.
Sci Rep ; 13(1): 74, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593314

RESUMO

Tissue injury affects nerve fibers and triggers an immune response, leading to inflammation. The complement system gets activated during inflammatory conditions and has been reported to be involved in the regeneration process. We have demonstrated that the C5a receptor (C5aR) has crucial roles in regeneration and healing processes including nerve sprouting and hard tissue formation. Another C5a-like 2 receptor (C5AR2; C5L2) has been cloned which is still considered controversial due to limited studies. We previously established that C5L2 regulates brain-derived neurotrophic factor (BDNF) secretion in pulp fibroblasts. However, there is no study available on human dental pulp stem cells (DPSCs), especially in the inflammatory context. Stem cell therapy is an emerging technique to treat and prevent several diseases. DPSCs are a great option to be considered due to their great ability to differentiate into a variety of cells and secrete nerve regeneration factors. Here, we demonstrated that C5L2 modulates BDNF secretion in DPSCs. Our results stated that C5L2 silencing through siRNA could increase BDNF production, which could accelerate the nerve regeneration process. Moreover, stimulation with lipopolysaccharide (LPS) enhanced BDNF production in C5L2 silenced DPSCs. Finally, we quantified BDNF secretion in supernatant and cell lysates using ELISA. Our results showed enhanced BDNF production in C5L2 silenced DPSCs and hampered by the p38MAPKα inhibitor. Taken together, our data reveal that C5L2 modulates BDNF production in DPSCs via the p38MAPKα pathway.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Polpa Dentária , Receptor da Anafilatoxina C5a , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Polpa Dentária/metabolismo , Fibras Nervosas/metabolismo , Regeneração Nervosa/fisiologia , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/metabolismo , Células-Tronco/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo
16.
Biomol Biomed ; 23(3): 392-404, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508191

RESUMO

C5a receptor 1 (C5aR1) is associated with various inflammatory processes, the pathogenesis of immune diseases, and tumor growth. However, its role in the tumor microenvironment of gastric cancer (GC) remains unclear. In this study, the expression of C5aR1 in GC and normal gastric mucosa tissues was compared using data retrieved from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, and the results were validated by in vitro qRT-PCR and immunohistochemical analyses. The relationship between C5aR1 expression and the overall survival of patients with GC was analyzed using the Kaplan-Meier method. Subsequently, enrichment analysis was performed, and the signaling pathways were screened. C5aR1 expression was also correlated with genes related to the immune checkpoint and immune cell infiltration. The results revealed that C5aR1 expression was enhanced in GC tissues compared to normal gastric tissues, and that patients with high expression of C5aR1 had a worse 10-year overall survival compared to those showing low expression of C5aR1. Functional analysis revealed that C5aR1 is a gene related to theimmune system and may play a crucial role in inflammatory and tumor immune responses. Additionally, C5aR1 showed a positive correlation with most immune checkpoint-related genes and a negative correlation with natural killer cells, dendritic cells, and CD8+ T cells. Immune evasion risk was observed to be significantly greater in patients with higher expression of C5aR1 than in those with lower expression. The results of this study reveal that C5aR1 shapes a non-inflammatory tumor microenvironment in GC and mediates immune evasion.


Assuntos
Neoplasias Gástricas , Humanos , Linfócitos T CD8-Positivos , Evasão da Resposta Imune , Receptor da Anafilatoxina C5a/genética , Neoplasias Gástricas/genética , Microambiente Tumoral/genética
17.
Clin Transl Oncol ; 25(2): 440-446, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36192575

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most common malignant cancers in human, and its incidence increases gradually every year. Metastasis is an important factor leading to tumor development. The epithelial-mesenchymal transition (EMT) has been proved to be closely related to tumor metastasis, yet its related mechanism in CRC remains to be explored. METHODS: We obtained the differentially expressed gene C5aR1 with SETDB1 stable overexpression and knockdown cells by RNA-seq. Cell proliferation was tested by CCK8 and colony formation assay. Migration and invasion of CRC cells were determined by the wound healing and transwell invasion assay. The potential pathway of C5aR1 in CRC was preliminarily studied by western blotting. RESULTS: Sequencing results showed that C5aR1 was the most differentially expressed gene. By changing the expression of C5aR1 in CRC cells, this study found that C5aR1 promoted the proliferation, colony formation, migration and invasion of CRC cells in vitro. C5aR1 accelerated the EMT process and the expression of C5aR1 altered the molecular expression of key proteins in the Wnt/ß-catenin pathway. CONCLUSION: C5aR1 promotes the development of CRC and accelerates the EMT process. Furthermore, C5aR1 may involve in the regulation of Wnt/ß-catenin pathway in CRC.


Assuntos
Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Receptor da Anafilatoxina C5a , Via de Sinalização Wnt , Humanos , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Receptor da Anafilatoxina C5a/genética
18.
Sci Rep ; 12(1): 20278, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434087

RESUMO

Despite increasing knowledge about the factors involved in the progression of diabetic complications, diabetic kidney disease (DKD) continues to be a major health burden. Current therapies only slow but do not prevent the progression of DKD. Thus, there is an urgent need to develop novel therapy to halt the progression of DKD and improve disease prognosis. In our preclinical study where we administered a histone deacetylase (HDAC) inhibitor, valproic acid, to streptozotocin-induced diabetic mice, albuminuria and glomerulosclerosis were attenuated. Furthermore, we discovered that valproic acid attenuated diabetes-induced upregulation of complement C5a receptors, with a concomitant reduction in markers of cellular senescence and senescence-associated secretory phenotype. Interestingly, further examination of mice lacking the C5a receptor 1 (C5aR1) gene revealed that cellular senescence was attenuated in diabetes. Similar results were observed in diabetic mice treated with a C5aR1 inhibitor, PMX53. RNA-sequencing analyses showed that PMX53 significantly regulated genes associated with cell cycle pathways leading to cellular senescence. Collectively, these results for the first time demonstrated that complement C5a mediates cellular senescence in diabetic kidney disease. Cellular senescence has been implicated in the pathogenesis of diabetic kidney disease, thus therapies to inhibit cellular senescence such as complement inhibitors present as a novel therapeutic option to treat diabetic kidney disease.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/patologia , Ácido Valproico/farmacologia , Receptor da Anafilatoxina C5a/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Senescência Celular , Complemento C5a , Inibidores de Histona Desacetilases
19.
Front Endocrinol (Lausanne) ; 13: 1016057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246887

RESUMO

In recent years, evidence has accumulated that the complement system, an integral part of innate immunity, may be involved in the regulation of bone homeostasis as well as inflammatory bone loss, for example, in rheumatoid arthritis and periodontitis. Complement may also contribute to osteoporosis development, but investigation of the mechanism is limited. Using mice with a conditional deletion of the complement anaphylatoxin receptor C5aR1, we here demonstrated that C5aR1 in osteoblasts (C5aR1 Runx2-Cre mice) or osteoclasts (C5aR1 LysM-Cre mice) did not affect physiological bone turnover or age-related bone loss in either sex, as confirmed by micro-computed tomography, histomorphometry, and biomechanical analyses of the bone and by the measurement of bone turnover markers in the blood serum. When female mice were subjected to ovariectomy (OVX), a common model for postmenopausal osteoporosis, significant bone loss was induced in C5aR1 fl/fl and C5aR1 LysM-Cre mice, as demonstrated by a significantly reduced bone volume fraction, trabecular number and thickness as well as an increased trabecular separation in the trabecular bone compartment. Confirming this, the osteoclast number and the receptor activator of nuclear factor k-B (RANK) ligand (RANKL) serum level were significantly elevated in these mouse lines. By contrast, C5aR1 Runx2-Cre mice were protected from bone loss after OVX and the serum RANKL concentration was not increased after OVX. These data suggested that bone cell-specific C5aR1 may be redundant in bone homeostasis regulation under physiological conditions. However, C5aR1 on osteoblasts was crucial for the induction of bone resorption under osteoporotic conditions by stimulating RANKL release, whereas C5aR1 on osteoclasts did not regulate OVX-induced bone loss. Therefore, our results implicate C5aR1 on osteoblasts as a potential target for treating postmenopausal osteoporosis.


Assuntos
Osteoporose Pós-Menopausa , Osteoporose , Animais , Feminino , Camundongos , Anafilatoxinas , Subunidade alfa 1 de Fator de Ligação ao Core , Ligantes , Osteoblastos , Osteogênese , Osteoporose/genética , Osteoporose Pós-Menopausa/genética , Receptor da Anafilatoxina C5a/genética , Receptores de Complemento , Microtomografia por Raio-X
20.
Front Immunol ; 13: 947071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091045

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease of the brain causing either familial or sporadic dementia. We have previously administered the modified C5a receptor agonist (EP67) for a short period to a transgenic mouse model of AD (5XFAD) and have observed not only reduction in ß-amyloid deposition and gliosis but also improvement in cognitive impairment. Inquiring, however, on the effects of EP67 in an already heavily burdened animal, thus representing a more realistic scenario, we treated 6-month-old 5XFAD mice for a period of 14 weeks. We recorded a significant decrease in both fibrillar and pre-fibrillar ß-amyloid as well as remarkable amelioration of cognitive impairment. Following proteomic analysis and pathway association, we postulate that these events are triggered through the upregulation of ß-adrenergic and GABAergic signaling. In summary, our results reveal how inflammatory responses can be employed in inducing tangible phenotype improvements even in advanced stages of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Oligopeptídeos , Receptor da Anafilatoxina C5a , Receptores Adrenérgicos beta , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Proteômica , Receptor da Anafilatoxina C5a/agonistas , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/metabolismo , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA