RESUMO
Hereditary thoracic aorta diseases (HTADs) are a heterogeneous group of rare disorders whose major manifestation is represented by aneurysm and/or dissection frequently located at the level of the ascending thoracic aorta. The diseases have an insidious evolution and can be encountered as an isolated manifestation or can also be associated with systemic, extra-aortic manifestations (syndromic HTADs). Along with the development of molecular testing technologies, important progress has been made in deciphering the heterogeneous etiology of HTADs. The aim of this study is to identify the genetic variants associated with a group of patients who presented clinical signs suggestive of a syndromic form of HTAD. Genetic testing based on next-generation sequencing (NGS) technology was performed using a gene panel (Illumina TruSight Cardio Sequencing Panel) or whole exome sequencing (WES). In the majority of cases (8/10), de novo mutations in the FBN1 gene were detected and correlated with the Marfan syndrome phenotype. In another case, a known mutation in the TGFBR2 gene associated with Loeys-Dietz syndrome was detected. Two other pathogenic heterozygous variants (one de novo and the other a known mutation) in the SLC2A10 gene (compound heterozygous genotype) were identified in a patient diagnosed with arterial tortuosity syndrome (ATORS). We presented the genotype-phenotype correlations, especially related to the clinical evolution, highlighting the particularities of each patient in a family context. We also emphasized the importance of genetic testing and patient monitoring to avoid acute aortic events.
Assuntos
Aneurisma da Aorta Torácica , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Feminino , Masculino , Adulto , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/diagnóstico , Pessoa de Meia-Idade , Mutação , Fibrilina-1/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Predisposição Genética para Doença , Aorta Torácica/patologia , Síndrome de Loeys-Dietz/genética , Síndrome de Marfan/genética , Sequenciamento do Exoma/métodos , Adolescente , Variação Genética , Adulto Jovem , Fenótipo , Linhagem , AdipocinasRESUMO
OBJECTIVE: To investigate the direct effect of growth differentiation factor 9 (GDF9) on androgen production in human theca cells. DESIGN: Experimental study. SETTING: Tertiary hospital-based research laboratory. PATIENT(S): Women who underwent in vitro fertilization and intracytoplasmic sperm injections at our clinic were included in this study. INTERVENTION(S): Primary cultured human theca cells from women undergoing in vitro fertilization and intracytoplasmic sperm injection treatment were treated with GDF9, an activin receptor-like kinase 5 (ALK5) inhibitor, and a SMAD4 agonist. MAIN OUTCOME MEASURE(S): The expression of androgen synthesis-related genes StAR, CYP17A1, and LHCGR, levels of androstenedione and testosterone, phosphorylation of SMAD2/3, and the interaction between bone morphogenic protein-activated type II receptor and ALK5 were evaluated using reverse transcription-quantitative polymerase chain reaction, Western blot, enzyme-linked immunosorbent assays, and coimmunoprecipitation assays, respectively. RESULT(S): Growth differentiation factor 9 decreased StAR, CYP17A1, and LHCGR expression levels in human theca cells, which was prevented by treatment with the ALK5 inhibitor, and suppressed production of androgen in human theca cells. Growth differentiation factor 9 increased SMAD2/3 phosphorylation, and the ALK5 inhibitor also suppressed this effect. Bone morphogenic protein-activated type II receptor and ALK5 bound to each other after GDF9 stimulation. The SMAD4 agonist kartogenin also decreased messenger RNA levels of StAR and CYP17A1 and protein levels of StAR in human theca cells. CONCLUSION(S): Growth differentiation factor 9 can activate the bone morphogenic protein-activated type II receptor-ALK5-SMAD2/3 signaling pathway, suppress CYP17A1 expression, and decrease androgen production in human theca cells.
Assuntos
Fator 9 de Diferenciação de Crescimento , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta , Proteína Smad2 , Proteína Smad3 , Esteroide 17-alfa-Hidroxilase , Células Tecais , Humanos , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismo , Células Tecais/metabolismo , Células Tecais/efeitos dos fármacos , Feminino , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Fator 9 de Diferenciação de Crescimento/metabolismo , Fator 9 de Diferenciação de Crescimento/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Proteína Smad2/metabolismo , Proteína Smad2/genética , Proteína Smad3/metabolismo , Proteína Smad3/genética , Androgênios/metabolismo , Receptores do LH/genética , Receptores do LH/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteína Smad4/metabolismo , Proteína Smad4/genética , Fosforilação/efeitos dos fármacos , Células Cultivadas , Oócitos/metabolismo , Oócitos/efeitos dos fármacos , Androstenodiona/metabolismo , Testosterona/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Pancreatic cancer is associated with an oncogenic KRAS mutation in approximately 90% of cases. However, a non-negligible proportion of pancreatic cancer cases harbor wild-type KRAS (KRAS-WT). This study establishes genetically engineered mouse models that develop spontaneous pancreatic cancer in the context of KRAS-WT. The Trp53loxP/loxP;Smad4loxP/loxP;Pdx1-Cre (PPSSC) mouse model harbors KRAS-WT and loss of Trp53/Smad4. The Trp53loxP/loxP;Tgfbr2loxP/loxP;Pdx1-Cre (PPTTC) mouse model harbors KRAS-WT and loss of Trp53/Tgfbr2. We identify that either Trp53/Smad4 loss or Trp53/Tgfbr2 loss can induce spontaneous pancreatic tumor formation in the absence of an oncogenic KRAS mutation. The Trp53/Smad4 loss and Trp53/Tgfbr2 loss mouse models exhibit distinct pancreatic tumor histological features, as compared to oncogenic KRAS-driven mouse models. Furthermore, KRAS-WT pancreatic tumors with Trp53/Smad4 loss reveal unique histological features of pancreatic adenosquamous carcinoma (PASC). Single-cell RNA sequencing (scRNA-seq) analysis reveals the distinct tumor immune microenvironment landscape of KRAS-WT (PPSSC) pancreatic tumors as compared with that of oncogenic KRAS-driven pancreatic tumors.
Assuntos
Mutação , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Proteína Smad4 , Proteína Supressora de Tumor p53 , Proteína Smad4/genética , Proteína Smad4/metabolismo , Animais , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Mutação/genética , Camundongos , Humanos , Carcinoma Adenoescamoso/genética , Carcinoma Adenoescamoso/patologia , Carcinoma Adenoescamoso/metabolismo , Modelos Animais de Doenças , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismoRESUMO
We present a TALEN-based workflow to generate and maintain dual-edited (IL-15+/+/TGFßR2-/-) iPSCs that produce enhanced iPSC-derived natural killer (iNK) cells for cancer immunotherapy. It involves using a cell lineage promoter for knocking in (KI) gene(s) to minimize the potential effects of expression of any exogenous genes on iPSCs. As a proof-of-principle, we KI IL-15 under the endogenous B2M promoter and show that it results in high expression of the sIL-15 in iNK cells but minimal expression in iPSCs. Furthermore, given that it is known that knockout (KO) of TGFßR2 in immune cells can enhance resistance to the suppressive TGF-ß signaling in the tumor microenvironment, we develop a customized medium containing Nodal that can maintain the pluripotency of iPSCs with TGFßR2 KO, enabling banking of these iPSC clones. Ultimately, we show that the dual-edited IL-15+/+/TGFßR2-/- iPSCs can be efficiently differentiated into NK cells that show enhanced autonomous growth and are resistant to the suppressive TGF-ß signaling.
Assuntos
Células-Tronco Pluripotentes Induzidas , Interleucina-15 , Células Matadoras Naturais , Receptor do Fator de Crescimento Transformador beta Tipo II , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Humanos , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Diferenciação Celular , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Edição de Genes/métodosRESUMO
Skin wound is an emerging health challenge on account of the high-frequency trauma, surgery and chronic refractory ulcer. Further study on the disease biology will help to develop new effective approaches for wound healing. Here, we identified a wound-stress responsive gene, activating transcription factor 3 (ATF3), and then investigated its biological action and mechanism in wound healing. In the full-thickness skin wound model, ATF3 was found to promote fibroblast activation and collagen production, resulted in accelerated wound healing. Mechanically, ATF3 transcriptionally activated TGF-ß receptor â ¡ via directly binding to its specific promoter motif, followed by the enhanced TGF-ß/Smad pathway in fibroblasts. Moreover, the increased ATF3 upon skin injury was partly resulted from hypoxia stimulation with Hif-1α dependent manner. Altogether, this work gives novel insights into the biology and mechanism of stress-responsive gene ATF3 in wound healing, and provides a potential therapeutic target for treatment.
Assuntos
Fator 3 Ativador da Transcrição , Colágeno , Fibroblastos , Pele , Cicatrização , Fator 3 Ativador da Transcrição/metabolismo , Fator 3 Ativador da Transcrição/genética , Cicatrização/genética , Fibroblastos/metabolismo , Animais , Colágeno/metabolismo , Pele/metabolismo , Pele/lesões , Pele/patologia , Camundongos , Humanos , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Regiões Promotoras Genéticas , Masculino , Ativação Transcricional , Transdução de Sinais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Transcrição GênicaRESUMO
Organisms from the five kingdoms of life use minerals to harden their tissues and make teeth, shells and skeletons, in the process of biomineralization. The sea urchin larval skeleton is an excellent system to study the biological regulation of biomineralization and its evolution. The gene regulatory network (GRN) that controls sea urchin skeletogenesis is known in great details and shows similarity to the GRN that controls vertebrates' vascularization while it is quite distinct from the GRN that drives vertebrates' bone formation. Yet, transforming growth factor beta (TGF-ß) signaling regulates both sea urchin and vertebrates' skeletogenesis. Here, we study the upstream regulation and identify transcriptional targets of TGF-ß in the Mediterranean Sea urchin species, Paracentrotus lividus. TGF-ßRII is transiently active in the skeletogenic cells downstream of vascular endothelial growth factor (VEGF) signaling, in P. lividus. Continuous perturbation of TGF-ßRII activity significantly impairs skeletal elongation and the expression of key skeletogenic genes. Perturbation of TGF-ßRII after skeletal initiation leads to a delay in skeletal elongation and minor changes in gene expression. TGF-ß targets are distinct from its transcriptional targets during vertebrates' bone formation, suggesting that the role of TGF-ß in biomineralization in these two phyla results from convergent evolution.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Larva , Paracentrotus , Animais , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/genética , Paracentrotus/genética , Paracentrotus/metabolismo , Paracentrotus/embriologia , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Osteogênese/genética , Redes Reguladoras de Genes , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Recent cancer genome analyses have identified frequently mutated genes that are responsible for the development and malignant progression of cancers, including colorectal cancer (CRC). We previously constructed mouse models that carried major driver mutations of CRC, namely Apc, Kras, Tgfbr2, Trp53, and Fbxw7, in combinations. Comprehensive histological analyses of the models showed a link between mutation combinations and malignant phenotypes, such as invasion, epithelial-mesenchymal transition (EMT), and metastasis. The major cause of cancer-related death is metastasis, making it important to understand the mechanism underlying metastasis in order to develop novel therapeutic strategies. To this end, we have established intestinal tumor-derived organoids from different genotyped mice and generated liver metastasis models via transplantation of the organoids into the spleen. Through histological and imaging analyses of the transplantation models, we have determined that the combination of Apc, Kras, Tgfbr2, and Trp53 mutations promotes liver metastasis at a high incidence. We also demonstrated polyclonal metastasis of tumor cell clusters consisting of genetically and phenotypically distinct cells through our model analysis. These organoid transplantation models recapitulate human CRC metastasis, constituting a useful tool for basic and clinical cancer research as a preclinical model. We herein report the experimental protocols of the organoid culture and generation of metastasis models.
Assuntos
Neoplasias Hepáticas , Mutação , Organoides , Animais , Organoides/patologia , Camundongos , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Genótipo , Modelos Animais de Doenças , Proteína Supressora de Tumor p53/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Metástase Neoplásica , Humanos , Proteína da Polipose Adenomatosa do Colo/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Transição Epitelial-Mesenquimal/genéticaRESUMO
Obesity can increase the risk of bone fragility, even when bone mass is intact. This fragility stems from poor bone quality, potentially caused by deficiencies in bone matrix material properties. However, cellular and molecular mechanisms leading to obesity-related bone fragility are not fully understood. Using male mouse models of obesity, we discovered TGF-ß signaling plays a critical role in mediating the effects of obesity on bone. High-carbohydrate and high-fat diets increase TGF-ß signaling in osteocytes, which impairs their mitochondrial function, increases cellular senescence, and compromises perilacunar/canalicular remodeling and bone quality. By specifically inhibiting TGF-ß signaling in mouse osteocytes, some of the negative effects of high-fat and high-carbohydrate diets on bones, including the lacunocanalicular network, perilacunar/canalicular remodeling, senescence, and mechanical properties such as yield stress, were mitigated. DMP1-Cre-mediated deletion of TGF-ß receptor II also blunted adverse effects of high-fat and high-carbohydrate diets on energy balance and metabolism. These findings suggest osteocytes are key in controlling bone quality in response to high-fat and high-carbohydrate diets. Calibrating osteocyte function could mitigate bone fragility associated with metabolic diseases while reestablishing energy balance.
Assuntos
Dieta Hiperlipídica , Obesidade , Osteócitos , Fator de Crescimento Transformador beta , Animais , Osteócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Masculino , Obesidade/metabolismo , Transdução de Sinais , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Remodelação Óssea , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Osso e Ossos/metabolismo , Densidade Óssea/efeitos dos fármacos , Carboidratos da Dieta/efeitos adversos , Carboidratos da Dieta/administração & dosagemRESUMO
Chimeric antigen receptor (CAR) T cells have shown significant efficacy in hematological diseases. However, CAR T therapy has demonstrated limited efficacy in solid tumors, including glioblastoma (GBM). One of the most important reasons is the immunosuppressive tumor microenvironment (TME), which promotes tumor growth and suppresses immune cells used to eliminate tumor cells. The human transforming growth factor ß (TGF-ß) plays a crucial role in forming the suppressive GBM TME and driving the suppression of the anti-GBM response. To mitigate TGF-ß-mediated suppressive activity, we combined a dominant-negative TGF-ß receptor II (dnTGFßRII) with our previous bicistronic CART-EGFR-IL13Rα2 construct, currently being evaluated in a clinical trial, to generate CART-EGFR-IL13Rα2-dnTGFßRII, a tri-modular construct we are developing for clinical application. We hypothesized that this approach would more effectively subvert resistance mechanisms observed with GBM. Our data suggest that CART-EGFR-IL13Rα2-dnTGFßRII significantly augments T cell proliferation, enhances functional responses, and improves the fitness of bystander cells, particularly by decreasing the TGF-ß concentration in a TGF-ß-rich TME. In addition, in vivo studies validate the safety and efficacy of the dnTGFßRII cooperating with CARs in targeting and eradicating GBM in an NSG mouse model.
Assuntos
Glioblastoma , Imunoterapia Adotiva , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Antígenos Quiméricos , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Glioblastoma/terapia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/imunologia , Imunoterapia Adotiva/métodos , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Subunidade alfa2 de Receptor de Interleucina-13/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Nasopharyngeal carcinoma (NPC), a squamous cell carcinoma originating in the nasopharynx, is a leading malignancy in south China and other south and east Asia areas. It is frequently associated with Epstein-Barr virus (EBV) infection, while there are also some NPC patients without EBV infection. Here, it is shown that the EBV+ (EBV positive) and EBV- (EBV negative) NPCs contain both shared and distinct genetic abnormalities, among the latter are increased mutations in TP53. To investigate the functional roles of NPC-associated genetic alterations, primary, orthotopic, and genetically defined NPC models were developed in mice, a key tool missed in the field. These models, initiated with gene-edited organoids of normal nasopharyngeal epithelium, faithfully recapitulated the pathological features of human disease. With these models, it is found that Trp53 and Cdkn2a deficiency are crucial for NPC initiation and progression. And latent membrane protein1 (LMP1), an EBV-coding oncoprotein, significantly promoted the distal metastasis. Further, loss of TGFBR2, which is frequently disrupted both in EBV- and EBV+ NPCs, dramatically accelerated the progression and lung metastasis of NPC probably by altering tumor microenvironment. Taken together, this work establishes a platform to dissect the genetic mechanisms underlying NPC pathogenesis and might be of value for future translational studies.
Assuntos
Modelos Animais de Doenças , Progressão da Doença , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Animais , Camundongos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Infecções por Vírus Epstein-Barr/genética , Humanos , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Herpesvirus Humano 4/genéticaRESUMO
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Transforming growth factor beta (TGF-ß) is highly expressed in the liver tumor microenvironment and is known to inhibit immune cell activity. Here, we used human induced pluripotent stem cells (iPSCs) to produce natural killer (NK) cells engineered to mediate improved anti-HCC activity. Specifically, we produced iPSC-NK cells with either knockout TGF-ß receptor 2 (TGFBR2-KO) or expression of a dominant negative (DN) form of the TGF-ß receptor 2 (TGFBR2-DN) combined with chimeric antigen receptors (CARs) that target either GPC3 or AFP. The TGFBR2-KO and TGFBR2-DN iPSC-NK cells are resistant to TGF-ß inhibition and improved anti-HCC activity. However, expression of anti-HCC CARs on iPSC-NK cells did not lead to effective anti-HCC activity unless there was also inhibition of TGF-ß activity. Our findings demonstrate that TGF-ß signaling blockade is required for effective NK cell function against HCC and potentially other malignancies that express high levels of TGF-ß.
Assuntos
Carcinoma Hepatocelular , Células-Tronco Pluripotentes Induzidas , Células Matadoras Naturais , Neoplasias Hepáticas , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/imunologia , Fator de Crescimento Transformador beta/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Animais , Linhagem Celular Tumoral , CamundongosRESUMO
The transforming growth factor ß (TGFß) superfamily is a master regulator of development, adult homeostasis, and wound repair. Dysregulated TGFß signaling can lead to cancer, fibrosis, and musculoskeletal malformations. We previously demonstrated that TGFß receptor 2 (Tgfbr2) signaling regulates odontoblast differentiation, dentin mineralization, root elongation, and sensory innervation during tooth development. Sensory innervation also modulates the homeostasis and repair response in adult teeth. We hypothesized that Tgfbr2 regulates the neuro-pulpal responses to dentin injury. To test this, we performed a shallow dentin injury with a timed deletion of Tgfbr2 in the dental pulp mesenchyme of mice and analyzed the levels of tertiary dentin and calcitonin gene-related peptide (CGRP) axon sprouting. Microcomputed tomography imaging and histology indicated lower dentin volume in Tgfbr2cko M1s compared to WT M1s 21 days post-injury, but the volume was comparable by day 56. Immunofluorescent imaging of peptidergic afferents demonstrated that the duration of axon sprouting was longer in injured Tgfbr2cko compared to WT M1s. Thus, CGRP+ sensory afferents may provide Tgfbr2-deficient odontoblasts with compensatory signals for healing. Harnessing these neuro-pulpal signals has the potential to guide the development of treatments for enhanced dental healing and to help patients with TGFß-related diseases.
Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Polpa Dentária , Dentina , Receptor do Fator de Crescimento Transformador beta Tipo II , Transdução de Sinais , Animais , Polpa Dentária/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Dentina/metabolismo , Camundongos Knockout , Odontoblastos/metabolismoRESUMO
To investigate the cell linkage between tooth dentin and bones, we studied TGF-ß roles during postnatal dentin development using TGF-ß receptor 2 (Tgfßr2) cKO models and cell lineage tracing approaches. Micro-CT showed that the early Tgfßr2 cKO exhibit short roots and thin root dentin (n = 4; p<0.01), a switch from multilayer pre-odontoblasts/odontoblasts to a single-layer of bone-like cells with a significant loss of ~85% of dentinal tubules (n = 4; p<0.01), and a matrix shift from dentin to bone. Mechanistic studies revealed a statistically significant decrease in odontogenic markers, and a sharp increase in bone markers. The late Tgfßr2 cKO teeth displayed losses of odontoblast polarity, a significant reduction in crown dentin volume, and the onset of massive bone-like structures in the crown pulp with high expression levels of bone markers and low levels of dentin markers. We thus concluded that bones and tooth dentin are in the same evolutionary linkage in which TGF-ß signaling defines the odontogenic fate of dental mesenchymal cells and odontoblasts. This finding also raises the possibility of switching the pulp odontogenic to the osteogenic feature of pulp cells via a local manipulation of gene programs in future treatment of tooth fractures.
Assuntos
Dentina , Odontoblastos , Receptores de Fatores de Crescimento Transformadores beta , Transdução de Sinais , Fator de Crescimento Transformador beta , Dentina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Odontoblastos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Camundongos , Dente/metabolismo , Osso e Ossos/metabolismo , Microtomografia por Raio-X , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Camundongos KnockoutRESUMO
BACKGROUND/AIM: Transforming growth factor-ß (TGF-ß) plays a significant role in the formation of different cancer subtypes. There is evidence that TGF-ß pathways promote cancerogenic cell characteristics but also have tumor-suppressor capabilities. The tyrosine kinase inhibitors nilotinib, dasatinib, erlotinib, gefitinib, and everolimus are approved as targeted therapies for several tumor entities, including head and neck squamous cell carcinoma (HNSCC). This study aimed to investigate the effects of these substances on the expression levels of TGFß1 and TGF-ß receptor type 2 (TGFßR2) in HPV-negative and HPV-positive SCC cell cultures. MATERIALS AND METHODS: Expression patterns of TGFß1 and TGFßR2 were determined using enzyme-linked immunosorbent assay (ELISA) in three HNSCC cell lines (i.e., HNSCC-11A, HNSCC-14C, and CERV196). These cells were incubated with nilotinib, dasatinib, erlotinib, gefitinib, and everolimus (20 µmol/l) and compared to a chemonaive control. An assessment of concentration levels was conducted after 24, 48, 72, and 96 h of treatment. RESULTS: Statistically significant changes in the expression levels of TGFß1 and TGFßR2 were found in all tested cell cultures (p<0.05) compared to the negative control. An increase in TGFß-R2 expression was detected after treatment with most of the tested tyrosine kinase inhibitors, whereas a reduction in TGFß1 was observed. The addition of everolimus had the opposite effect on both TGFßR2 and TGF-B1- expression. CONCLUSION: Expression of TGFß1 and TGFßR2 was detected in all cultured HNSCC cell lines. Nilotinib, dasatinib, erlotinib, gefitinib, and everolimus had an impact on the expression levels of TGFß1 and TGFßR2 in vitro.
Assuntos
Dasatinibe , Everolimo , Inibidores de Proteínas Quinases , Receptor do Fator de Crescimento Transformador beta Tipo II , Fator de Crescimento Transformador beta1 , Humanos , Everolimo/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Dasatinibe/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Gefitinibe/farmacologia , Cloridrato de Erlotinib/farmacologia , Pirimidinas/farmacologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologiaRESUMO
TGF-ß1/Smads is a classic signaling pathway, which plays important roles in the development process of organisms. Black porgy Acanthopagrus schlegelii and red porgy Pagrus major are valuable economic fishes, and their hybrid offspring show excellent heterosis traits. Yet the molecular regulation mechanism of the heterosis traits is less clear. Here, we explored the TGF-ß1/Smads pathway's molecular genetic information for heterosis in A. schlegelii â × P. major â (AP) and A. schlegelii â × P. major â (PA) in terms of growth and development. The mRNA expression levels of TGF-ß1, TßR-I, TßR-II, and Smad2 genes in different developmental stages of A. schlegelii were detected. Furthermore, the expression levels of TGF-ß1, TßR-I, TßR-II, and Smad2 genes in different tissues of adult (mRNA level) and larva (mRNA and protein level) of A. schlegelii, P. major, and their hybrids were determined by both real-time quantitative PCR and Western blot techniques. The results indicated the ubiquitous expression of these genes in all developmental stages of A. schlegelii and in all tested tissues of A. schlegelii, P. major, and its hybrids. Among them, the mRNA of TGF-ß1, TßR-I, and TßR-II genes is highly expressed in the liver, gill, kidney, and muscle of black porgy, red porgy, and their hybrid offspring. There are significant changes in gene and protein expression levels in hybrid offspring, which indirectly reflect hybrid advantage. In addition, there was no correlation between protein and mRNA expression levels of Smad2 protein. The results provide novel data for the differential expression of growth and development genes between the reciprocal hybridization generation of black porgy and red porgy and its parents, which is conducive to further explaining the molecular regulation mechanism of heterosis in the growth and development of hybrid porgy.
Assuntos
Vigor Híbrido , Proteína Smad2 , Fator de Crescimento Transformador beta1 , Animais , Proteína Smad2/genética , Proteína Smad2/metabolismo , Vigor Híbrido/genética , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Hibridização Genética , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Perciformes/genética , Perciformes/crescimento & desenvolvimento , Perciformes/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Feminino , Masculino , Regulação da Expressão Gênica no DesenvolvimentoRESUMO
Hepatocellular carcinoma (HCC) is a common malignancy with a poor prognosis. It has been proven that long non-coding RNAs (lncRNAs) play an essential role in regulating HCC progression. However, the involvement of LINC01094 in regulating epithelial-mesenchymal transition (EMT) in HCC remains unclear. LINC01094 expression in HCC patients was retrieved from the Cancer Genome Atlas database. Overexpressing and downregulating LINC01094 were conducted to investigate its biological functions using Hep3B, SNU-387, and HuH-7 cells. Western blotting and morphological observation were performed to study the EMT in HCC cells. Transwell assay was adopted to determine the migration and invasion of HCC cells. The underlying mechanism of competitive endogenous RNAs (ceRNAs) was investigated using bioinformatics analysis, quantitative reverse-transcription polymerase chain reaction, and rescue experiments. Elevated LINC01094 expression was observed in HCC and associated with a poor prognosis. Knockdown of LINC01094 expression in SNU-387 and HuH-7 cells could inhibit migration, invasion, and EMT markers. Overexpression of LINC01094 indicated that LINC01094 promoted EMT via the TGF-ß/SMAD signaling pathway. The bioinformatics analysis revealed that miR-122-5p was a target of LINC01094. The miRWalk database analysis showed that TGFBR2, SMAD2, and SMAD3 were downstream targets of miR-122-5p. Mechanically, LINC01094 acted as a ceRNA that facilitated HCC metastasis by sponging miR-122-5p to regulate the expression of TGFBR2, SMAD2, and SMAD3. Further, TGF-ß1 could enhance the expression of LINC01094, forming a positive feedback loop. TGF-ß1-induced LINC01094 expression promotes HCC cell migration and invasion by targeting the miR-122-5p/TGFBR2-SMAD2-SMAD3 axis. LINC01094 may be a potential prognostic biomarker and therapeutic target for HCC metastasis.
Assuntos
Carcinoma Hepatocelular , Transição Epitelial-Mesenquimal , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Receptor do Fator de Crescimento Transformador beta Tipo II , Proteína Smad3 , Fator de Crescimento Transformador beta1 , Humanos , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteína Smad3/metabolismo , Proteína Smad3/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Transdução de SinaisRESUMO
Vascular calcification, which is a major complication of diabetes mellitus, is an independent risk factor for cardiovascular disease. Osteogenic differentiation of vascular smooth muscle cells (VSMCs) is one of the key mechanisms underlying vascular calcification. Emerging evidence suggests that macrophage-derived extracellular vesicles (EVs) may be involved in calcification within atherosclerotic plaques in patients with diabetes mellitus. However, the role of macrophage-derived EVs in the progression of vascular calcification is largely unknown. In this study, we investigated whether macrophage-derived EVs contribute to the osteogenic differentiation of VSMCs under high glucose conditions. We isolated EVs that were secreted by murine peritoneal macrophages under normal glucose (EVs-NG) or high glucose (EVs-HG) conditions. miRNA array analysis in EVs from murine macrophages showed that miR-17-5p was significantly increased in EVs-HG compared with EVs-NG. Prediction analysis with miRbase identified transforming growth factor ß receptor type II (TGF-ß RII) as a potential target of miR-17-5p. EVs-HG as well as miR-17-5p overexpression with lipid nanoparticles inhibited the gene expression of Runx2, and TGF-ß RII. Furthermore, we demonstrated that VSMCs transfected with miR-17-5p mimic inhibited calcium deposition. Our findings reveal a novel role of macrophage-derived EVs in the negative regulation of osteogenic differentiation in VSMCs under high glucose conditions.
Assuntos
Diferenciação Celular , Vesículas Extracelulares , Glucose , MicroRNAs , Músculo Liso Vascular , Miócitos de Músculo Liso , Osteogênese , Transdução de Sinais , Fator de Crescimento Transformador beta , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Glucose/farmacologia , Glucose/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Fator de Crescimento Transformador beta/metabolismo , Camundongos , Miócitos de Músculo Liso/metabolismo , Vesículas Extracelulares/metabolismo , Calcificação Vascular/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/patologia , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Masculino , Camundongos Endogâmicos C57BL , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genéticaRESUMO
Core needle biopsy (CNB) has become a paradigm in preoperative breast cancer (BC) diagnosis. Although considered safe, it is an invasive procedure, which changes the tumor microenvironment. It facilitates a tumor supportive immune response, induces epithelial-mesenchymal transition (EMT), and enables the release of circulating tumor cells. The cytokine Transforming Growth Factor ß (TGFß) with its pleiotropic immunologic functions has an important role in this process. The aim of this study was to clarify the specific impact of CNB on the activity of the TGFß pathway in early BC. We compared formalin fixed paraffin embedded samples from CNBs to the corresponding surgical resection specimens (SRSs) of 49 patients with BC. We found that the expression of TGFß1 at protein level was significantly higher in both tumor epithelial and benign stromal cells in the SRSs (p=0.001), whereas the expression of TGFßRII in tumor cells was lower (p=0.001). The frequency of intra tumoral CD8 and CD4 positive T lymphocytes was lower in SRSs (p=0081 and p=0001, respectively), while in the peripheral stroma their prevalence was increased (p=0001 and p=0012, respectively). Our results show that CNB changes the hallmarks of the TGFß path way in early BC. These CNB-induced changes in the tumor and in its microenvironment suggest that the procedure may change the immunological anti-tumor response of the host.
Assuntos
Neoplasias da Mama , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Receptor do Fator de Crescimento Transformador beta Tipo II , Fator de Crescimento Transformador beta1 , Microambiente Tumoral , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Biópsia com Agulha de Grande Calibre , Pessoa de Meia-Idade , Linfócitos T CD4-Positivos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Idoso , Adulto , Microambiente Tumoral/imunologiaRESUMO
OBJECTIVE: To investigate the effects of an adeno-associated virus (AAV2) vector expressing secretory transforming growth factor-ß (TGF-ß) type â ¡ receptor (sTßRâ ¡) extracellular domain-IgG2a Fc fusion protein (sTßRâ ¡-Fc) on proliferation and migration of triple-negative murine breast cancer 4T1 cells in mice. METHODS: The pAAV-sTßRâ ¡-Fc vector expressing sTßRâ ¡-Fc fusion protein constructed by molecular cloning, the capsid protein-expressing vector pAAV2 and the helper vector were co-transfected into HEK 293T cells to prepare the recombinant AAV2-sTßRâ ¡ virus, which was purified by density gradient centrifugation with iodixanol. Western blotting was used to examine the effects of AAV-sTßRâ ¡ virus on Smad2/3 phosphorylation in 4T1 cells and on expression levels of E-cadherin, vimentin and p-Smad2/3 in 4T1 cell xenografts in mice. BALB/c mice bearing subcutaneous xenografts of luciferase-expressing 4T1 cells received intravenous injections of AAV-sTßRâ ¡ virus, AAV-GFP virus or PBS (n=6) through the tail vein, and the proliferation and migration of 4T1 cells were analyzed with in vivo imaging. Ki67 expression in the tumor tissues and sTßRâ ¡ protein expressions in mouse livers were detected with immunohistochemistry and immunofluorescence staining, and tumor metastases in the vital organs were examined with HE staining. RESULTS: The recombinant pAAV-sTßRâ ¡-Fc vector successfully expressed sTßRâ ¡ in HEK 293T cells. Infection with AAV2-sTßRâ ¡ virus significantly reduced TGF-ß1-induced Smad2/3 phosphorylation in 4T1 cells and effectively inhibited proliferation and lung metastasis of 4T1 xenografts in mice (P<0.05). In the tumor-bearing mice, intravenous injection of AAV-sTßRâ ¡ virus significantly increased E-cadherin expression, reduced vimentin and Ki67 protein expressions and Smad2/3 phosphorylation level in the tumor tissues (P<0.05 or 0.01), and induced liver-specific sTßRâ ¡ expression without causing body weight loss or heart, liver, spleen or kidney pathologies. CONCLUSION: The recombinant AVV2 vector encoding sTßRâ ¡ extracellular domain is capable of blocking the TGF-ß signaling pathway to inhibit the proliferation and lung metastasis of 4T1 cells in mice.
Assuntos
Proliferação de Células , Dependovirus , Vetores Genéticos , Neoplasias Pulmonares , Camundongos Endogâmicos BALB C , Receptor do Fator de Crescimento Transformador beta Tipo II , Animais , Camundongos , Dependovirus/genética , Humanos , Células HEK293 , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Feminino , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Caderinas/metabolismo , Caderinas/genética , Proteína Smad3/metabolismo , Proteína Smad3/genética , Movimento Celular , Proteína Smad2/metabolismo , Proteína Smad2/genéticaRESUMO
BACKGROUND: The present study aims to identify the differential miRNA expression profile in middle ear cholesteatoma and explore their potential roles in its pathogenesis. METHODS: Cholesteatoma and matched normal retroauricular skin tissue samples were collected from patients diagnosed with acquired middle ear cholesteatoma. The miRNA expression profiling was performed using small RNA sequencing, which further validated by quantitative real-time PCR (qRT-PCR). Target genes of differentially expressed miRNAs in cholesteatoma were predicted. The interaction network of 5 most significantly differentially expressed miRNAs was visualized using Cytoscape. Further Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analyses were processed to investigate the biological functions of miRNAs in cholesteatoma. RESULTS: The miRNA expression profile revealed 121 significantly differentially expressed miRNAs in cholesteatoma compared to normal skin tissues, with 56 upregulated and 65 downregulated. GO and KEGG pathway enrichment analyses suggested their significant roles in the pathogenesis of cholesteatoma. The interaction network of the the 2 most upregulated (hsa-miR-21-5p and hsa-miR-142-5p) and 3 most downregulated (hsa-miR-508-3p, hsa-miR-509-3p and hsa-miR-211-5p) miRNAs identified TGFBR2, MBNL1, and NFAT5 as potential key target genes in middle ear cholesteatoma. CONCLUSIONS: This study provides a comprehensive miRNA expression profile in middle ear cholesteatoma, which may aid in identifying therapeutic targets for its management.