Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.397
Filtrar
1.
Exp Gerontol ; 191: 112448, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697555

RESUMO

BACKGROUND: Stroke is a debilitating condition with high morbidity, disability, and mortality that significantly affects the quality of life of patients. In China, the WenYang FuYuan recipe is widely used to treat ischemic stroke. However, the underlying mechanism remains unknown, so exploring the potential mechanism of action of this formula is of great practical significance for stroke treatment. OBJECTIVE: This study employed network pharmacology, molecular docking, and in vivo experiments to clarify the active ingredients, potential targets, and molecular mechanisms of the WenYang FuYuan recipe in cerebral ischemia-reperfusion injury, with a view to providing a solid scientific foundation for the subsequent study of this recipe. MATERIALS AND METHODS: Active ingredients of the WenYang FuYuan recipe were screened using the traditional Chinese medicine systems pharmacology database and analysis platform. Network pharmacology approaches were used to explore the potential targets and mechanisms of action of the WenYang FuYuan recipe for the treatment of cerebral ischemia-reperfusion injury. The Middle Cerebral Artery Occlusion/Reperfusion 2 h Sprague Dawley rat model was prepared, and TTC staining and modified neurological severity score were applied to examine the neurological deficits in rats. HE staining and Nissl staining were applied to examine the pathological changes in rats. Immunofluorescence labeling and Elisa assay were applied to examine the expression levels of certain proteins and associated factors, while qRT-PCR and Western blotting were applied to examine the expression levels of linked proteins and mRNAs in disease-related signaling pathways. RESULTS: We identified 62 key active ingredients in the WenYang FuYuan recipe, with 222 highly significant I/R targets, forming 138 pairs of medication components and component-targets, with the top five being Quercetin, Kaempferol, Luteolin, ß-sitosterol, and Stigmasterol. The key targets included TP53, RELA, TNF, STAT1, and MAPK14 (p38MAPK). Targets related to cerebral ischemia-reperfusion injury were enriched in chemical responses, enzyme binding, endomembrane system, while enriched pathways included lipid and atherosclerosis, fluid shear stress and atherosclerosis, AGE-RAGE signaling in diabetic complications. In addition, the main five active ingredients and targets in the WenYang FuYuan recipe showed high binding affinity (e.g. Stigmasterol and MAPK14, total energy <-10.5 Kcal/mol). In animal experiments, the WenYang FuYuan recipe reduced brain tissue damage, increased the number of surviving neurons, and down-regulated S100ß and RAGE protein expression. Moreover, the relative expression levels of key targets such as TP53, RELA and p38MAPK mRNA were significantly down-regulated in the WenYang FuYuan recipe group, and serum IL-6 and TNF-a factor levels were reduced. After WenYang FuYuan recipe treatment, the AGE-RAGE signaling pathway and downstream NF-kB/p38MAPK signaling pathway-related proteins were significantly modulated. CONCLUSION: This study utilized network pharmacology, molecular docking, and animal experiments to identify the potential mechanism of the WenYang FuYuan recipe, which may be associated with the regulation of the AGE-RAGE signaling pathway and the inhibition of target proteins and mRNAs in the downstream NF-kB/p38MAPK pathway.


Assuntos
Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , NF-kappa B , Farmacologia em Rede , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Masculino , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732159

RESUMO

The receptor for advanced glycation end-products (RAGE) has a central function in orchestrating inflammatory responses in multiple disease states including chronic obstructive pulmonary disease (COPD). RAGE is a transmembrane pattern recognition receptor with particular interest in lung disease due to its naturally abundant pulmonary expression. Our previous research demonstrated an inflammatory role for RAGE following acute exposure to secondhand smoke (SHS). However, chronic inflammatory mechanisms associated with RAGE remain ambiguous. In this study, we assessed transcriptional outcomes in mice exposed to chronic SHS in the context of RAGE expression. RAGE knockout (RKO) and wild-type (WT) mice were delivered nose-only SHS via an exposure system for six months and compared to control mice exposed to room air (RA). We specifically compared WT + RA, WT + SHS, RKO + RA, and RKO + SHS. Analysis of gene expression data from WT + RA vs. WT + SHS showed FEZ1, Slpi, and Msln as significant at the three-month time point; while RKO + SHS vs. WT + SHS identified cytochrome p450 1a1 and Slc26a4 as significant at multiple time points; and the RKO + SHS vs. WT + RA revealed Tmem151A as significant at the three-month time point as well as Gprc5a and Dynlt1b as significant at the three- and six-month time points. Notable gene clusters were functionally analyzed and discovered to be specific to cytoskeletal elements, inflammatory signaling, lipogenesis, and ciliogenesis. We found gene ontologies (GO) demonstrated significant biological pathways differentially impacted by the presence of RAGE. We also observed evidence that the PI3K-Akt and NF-κB signaling pathways were significantly enriched in DEGs across multiple comparisons. These data collectively identify several opportunities to further dissect RAGE signaling in the context of SHS exposure and foreshadow possible therapeutic modalities.


Assuntos
Pulmão , Camundongos Knockout , Receptor para Produtos Finais de Glicação Avançada , Poluição por Fumaça de Tabaco , Transcriptoma , Animais , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Camundongos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Poluição por Fumaça de Tabaco/efeitos adversos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Perfilação da Expressão Gênica
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731953

RESUMO

Cardiac disorders in cancer patients pose significant challenges to disease prognosis. While it has been established that these disorders are linked to cancer cells, the precise underlying mechanisms remain elusive. In this study, we investigated the impact of cancerous ascites from the rat colonic carcinoma cell line RCN9 on H9c2 cardiomyoblast cells. We found that the ascites reduced mitochondrial volume, increased oxidative stress, and decreased membrane potential in the cardiomyoblast cells, leading to apoptosis and autophagy. Although the ascites fluid contained a substantial amount of high-mobility group box-1 (HMGB1), we observed that neutralizing HMGB1 with a specific antibody mitigated the damage inflicted on myocardial cells. Our mechanistic investigations revealed that HMGB1 activated both nuclear factor κB and phosphoinositide 3-kinases-AKT signals through HMGB1 receptors, namely the receptor for advanced glycation end products and toll-like receptor-4, thereby promoting apoptosis and autophagy. In contrast, treatment with berberine (BBR) induced the expression of miR-181c-5p and miR-340-5p while suppressing HMGB1 expression in RCN9 cells. Furthermore, BBR reduced HMGB1 receptor expression in cardiomyocytes, consequently mitigating HMGB1-induced damage. We validated the myocardial protective effects of BBR in a cachectic rat model. These findings underscore the strong association between HMGB1 and cancer cachexia, highlighting BBR as a promising therapeutic agent for myocardial protection through HMGB1 suppression and modulation of the signaling system.


Assuntos
Apoptose , Berberina , Caquexia , Proteína HMGB1 , Animais , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Berberina/farmacologia , Ratos , Caquexia/metabolismo , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/patologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Autofagia/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Masculino , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Ratos Sprague-Dawley , Neoplasias/metabolismo , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/patologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
Food Res Int ; 183: 114224, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760143

RESUMO

During infant formula production, proteins are always heated, potentially affecting their digestibility and the bioactivities of resulting peptides. Although plant proteins are a promising dairy alternative for infant formula, they remain understudied, necessitating further investigations. Therefore, this research aimed to fill this gap by assessing the impact of different heating modes on soy protein (SP) and pea protein (PP), focusing on glycation levels, peptide formation during in vitro infant digestion, and immune protection potential (sRAGE-binding and antimicrobial activities) of the resulting peptides. Consequently, dry heating led to increased glycation and glycated peptide production, particularly with higher glycation in PP than SP. Moreover, PP exhibited an overall stronger sRAGE-binding capacity than SP, regardless of heating and digestion conditions. Regarding antimicrobial activity, both SP and PP-derived peptides displayed reduced effectiveness against Enterobacter cloacae after dry heating. Additionally, Staphylococcus epidermidis was differently inhibited, where PP-derived peptides showed inherent inhibition. The primary determinant of sRAGE-binding and antimicrobial potential in digestion-derived peptides was the protein source. Subsequent bioinformatics analysis predicted 519 and 133 potential antimicrobial peptides in SP and PP, respectively. This study emphasises the importance of protein source for infant formula to ensure infant health.


Assuntos
Digestão , Temperatura Alta , Fórmulas Infantis , Proteínas de Ervilha , Proteínas de Soja , Proteínas de Soja/metabolismo , Humanos , Fórmulas Infantis/química , Lactente , Proteínas de Ervilha/metabolismo , Proteínas de Ervilha/química , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Peptídeos Antimicrobianos/metabolismo , Anti-Infecciosos/farmacologia
5.
J Mol Model ; 30(6): 170, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753123

RESUMO

CONTEXT: In the pursuit of novel therapeutic possibilities, repurposing existing drugs has gained prominence as an efficient strategy. The findings from our study highlight the potential of repurposed drugs as promising candidates against receptor for advanced glycation endproducts (RAGE) that offer therapeutic implications in cancer, neurodegenerative conditions and metabolic syndromes. Through careful analyses of binding affinities and interaction patterns, we identified a few promising candidates, ultimately focusing on sertindole and temoporfin. These candidates exhibited exceptional binding affinities, efficacy, and specificity within the RAGE binding pocket. Notably, they displayed a pronounced propensity to interact with the active site of RAGE. Our investigation further revealed that sertindole and temoporfin possess desirable pharmacological properties that highlighted them as attractive candidates for targeted drug development. Overall, our integrated computational approach provides a comprehensive understanding of the interactions between repurposed drugs, sertindole and temoporfin and RAGE that pave the way for future experimental validation and drug development endeavors. METHODS: We present an integrated approach utilizing molecular docking and extensive molecular dynamics (MD) simulations to evaluate the potential of FDA-approved drugs, sourced from DrugBank, against RAGE. To gain deeper insights into the binding mechanisms of the elucidated candidate repurposed drugs, sertindole and temoporfin with RAGE, we conducted extensive all-atom MD simulations, spanning 500 nanoseconds (ns). These simulations elucidated the conformational dynamics and stability of the RAGE-sertindole and RAGE-temoporfin complexes.


Assuntos
Reposicionamento de Medicamentos , Imidazóis , Indóis , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptor para Produtos Finais de Glicação Avançada , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/química , Humanos , Indóis/química , Indóis/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Ligação Proteica , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Sítios de Ligação
6.
BMC Complement Med Ther ; 24(1): 149, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581015

RESUMO

BACKGROUND: Diabetes Mellitus is associated with disturbances in male reproductive function and fertility. Studies have shown that oxidative stress with the subsequent inflammation and apoptosis cause these complications in diabetes. Garlic (G) (Allium sativum L) and Citrullus colocynthis (L.) Schrad (C) both have antidiabetic and antioxidant properties. Recently, we demonstrated their synergistic effects in alleviating reproductive complications when administered concomitantly. However, as even medicinal plants in long term usage may lead to some unwanted side effects of their own, we examined whether with half the original doses of these two medicinal plants we could achieve the desired results. METHODS: Thirty-five male Wistar rats were divided into five groups (n = 7/group): Control, Diabetic, Diabetic + G (0.5 ml/100 g BW), Diabetic + C (5 mg/kg BW) and Diabetic + GC (0.5 ml/100 g BW of garlic and 5 mg/kg BW of C. colocynthis) groups. The experimental period was 30 days. RESULTS: Oxidative stress, advanced glycation end products (AGEs), immunoexpression of caspase-3, and expression of mRNAs for receptor for advanced glycation end products (RAGE), NADPH oxidase-4 (NOX-4) and nuclear factor kappa B increased in testis of diabetic rats. Treatment with garlic and C. colocynthis alone showed some beneficial effects, but in the combination form the effectiveness was more profound. CONCLUSIONS: We conclude that the combination therapy of diabetic rats with lower doses is still as efficient as higher doses; therefore, the way forward for reducing complications in long term consumption.


Assuntos
Citrullus colocynthis , Diabetes Mellitus Experimental , Alho , Animais , Masculino , Ratos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Alho/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais
7.
Cytokine ; 179: 156616, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38626647

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory disease induced by TNF-α, which increases fibroblast-like synoviocytes inflammation, resulting in cartilage destruction. The current work sought to comprehend the pathophysiological importance of TNF-α stimulation on differential protein expression and their regulation by apigenin using in-vitro and in-vivo models of RA. METHODS: The human RA synovial fibroblast cells were stimulated with or without TNF-α (10 ng/ml) and treated with 40 µM apigenin. In-silico, in-vitro and in-vivo studies were performed to confirm the pathophysiological significance of apigenin on pro-inflammatory cytokines and on differential expression of TTR and RAGE proteins. RESULTS: TNF-α induced inflammatory response in synoviocytes revealed higher levels of IL-6, IL-1ß, and TNF-α cytokines and upregulated differential expression of TTR and RAGE. In-silico results demonstrated that apigenin has a binding affinity towards TNF-α, indicating its potential effect in the inflammatory process. Both in-vitro and in-vivo results obtained by Western Blot analysis suggested that apigenin reduced the level of p65 (p = 0.005), TTR (p = 0.002), and RAGE (p = 0.020). CONCLUSION: The findings of this study suggested that TNF-α promotes the differential expression of pro-inflammatory cytokines, TTR, and RAGE via NF-kB pathways activation. Anti-inflammatory effect of apigenin impedes TNF-α mediated dysregulation or expression associated with RA pathogenesis.


Assuntos
Apigenina , Artrite Reumatoide , Receptor para Produtos Finais de Glicação Avançada , Fator de Necrose Tumoral alfa , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Apigenina/farmacologia , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Sinoviócitos/metabolismo , Sinoviócitos/efeitos dos fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/patologia , Citocinas/metabolismo , Animais , Inflamação/metabolismo , Inflamação/tratamento farmacológico
8.
Exp Gerontol ; 190: 112422, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599502

RESUMO

The onset of Alzheimer's disease is related to neuron damage caused by massive deposition of Aß in the brain. Recent studies suggest that excessive Aß in the brain mainly comes from peripheral blood, and BBB is the key to regulate Aß in and out of the brain. In this study, we explored the pathogenesis of AD from the perspective of Aß transport through the BBB and the effect of QKL injection in AD mice. The results showed that QKL could improve the cognitive dysfunction of AD mice, decrease the level of Aß and Aß transporter-RAGE, which was supported by the results of network pharmacology, molecular docking and molecular dynamics simulation. In conclusion, RAGE is a potential target for QKL's therapeutic effect on AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Receptor para Produtos Finais de Glicação Avançada , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Camundongos , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , Camundongos Transgênicos , Simulação de Dinâmica Molecular , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo
9.
Biomolecules ; 14(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38672429

RESUMO

In 1992, a transcendental report suggested that the receptor of advanced glycation end-products (RAGE) functions as a cell surface receptor for a wide and diverse group of compounds, commonly referred to as advanced glycation end-products (AGEs), resulting from the non-enzymatic glycation of lipids and proteins in response to hyperglycemia. The interaction of these compounds with RAGE represents an essential element in triggering the cellular response to proteins or lipids that become glycated. Although initially demonstrated for diabetes complications, a growing body of evidence clearly supports RAGE's role in human diseases. Moreover, the recognizing capacities of this receptor have been extended to a plethora of structurally diverse ligands. As a result, it has been acknowledged as a pattern recognition receptor (PRR) and functionally categorized as the RAGE axis. The ligation to RAGE leads the initiation of a complex signaling cascade and thus triggering crucial cellular events in the pathophysiology of many human diseases. In the present review, we intend to summarize basic features of the RAGE axis biology as well as its contribution to some relevant human diseases such as metabolic diseases, neurodegenerative, cardiovascular, autoimmune, and chronic airways diseases, and cancer as a result of exposure to AGEs, as well as many other ligands.


Assuntos
Produtos Finais de Glicação Avançada , Inflamação , Receptor para Produtos Finais de Glicação Avançada , Humanos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Inflamação/metabolismo , Transdução de Sinais , Neoplasias/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Metabólicas/metabolismo , Doenças Autoimunes/metabolismo
10.
Nat Immunol ; 25(4): 671-681, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448779

RESUMO

Cognitive impairment is a frequent manifestation of neuropsychiatric systemic lupus erythematosus, present in up to 80% of patients and leading to a diminished quality of life. In the present study, we used a model of lupus-like cognitive impairment that is initiated when antibodies that crossreact with excitatory neuronal receptors penetrate the hippocampus, causing immediate, self-limited, excitotoxic death of hippocampal neurons, which is then followed by a significant loss of dendritic complexity in surviving neurons. This injury creates a maladaptive equilibrium that is sustained in mice for at least 1 year. We identified a feedforward loop of microglial activation and microglia-dependent synapse elimination dependent on neuronal secretion of high mobility group box 1 protein (HMGB1) which binds the receptor for advanced glycation end products (RAGE) and leads to microglial secretion of C1q, upregulation of interleukin-10 with consequent downregulation of leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1), an inhibitory receptor for C1q. Treatment with a centrally acting angiotensin-converting enzyme inhibitor or with an angiotensin-receptor blocker restored a healthy equilibrium, microglial quiescence and intact spatial memory.


Assuntos
Autoanticorpos , Proteína HMGB1 , Animais , Camundongos , Complemento C1q , Proteína HMGB1/metabolismo , Doenças Neuroinflamatórias , Qualidade de Vida , Receptor para Produtos Finais de Glicação Avançada/metabolismo
11.
Biopharm Drug Dispos ; 45(2): 93-106, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488691

RESUMO

Alzheimer's disease is a complex multifactorial neurodegenerative disorder wherein age is a major risk factor. The appropriateness of the Hartley guinea pig (GP), which displays high sequence homologies of its amyloid-ß (Aß40 and Aß42) peptides, Mdr1 and APP (amyloid precursor protein) and similarity in lipid handling to humans, was appraised among 9-40 weeks old guinea pigs. Protein expression levels of P-gp (Abcb1) and Cyp46a1 (24(S)-hydroxylase) for Aß40, and Aß42 efflux and cholesterol metabolism, respectively, were decreased with age, whereas those for Lrp1 (low-density lipoprotein receptor related protein 1), Rage (receptor for advanced glycation endproducts) for Aß efflux and influx, respectively, and Abca1 (the ATP binding cassette subfamily A member 1) for cholesterol efflux, were unchanged among the ages examined. There was a strong, negative correlation of the brain Aß peptide concentrations and Abca1 protein expression levels with free cholesterol. The correlation of Aß peptide concentrations with Cyp46a1 was, however, not significant, and concentrations of the 24(S)-hydroxycholesterol metabolite revealed a decreasing trend from 20 weeks old toward 40 weeks old guinea pigs. The composite data suggest a role for free cholesterol on brain Aß accumulation. The decreases in P-gp and Lrp1 protein levels should further exacerbate the accumulation of Aß peptides in guinea pig brain.


Assuntos
Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Cobaias , Humanos , Animais , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Encéfalo/metabolismo , Envelhecimento , Colesterol/metabolismo
12.
Clin Immunol ; 262: 110178, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460892

RESUMO

Controlling the excessive inflammatory response is one of the key ways to reduce the severity and mortality of severe influenza virus infections. RAGE is involved in inflammatory responses and acute lung injuries. Here, we investigated the role of RAGE and its potential application as a target for severe influenza treatment through serological correlation analysis for influenza patients, and treatment with the RAGE inhibitor FPS-ZM1 on A549 cells or mice with influenza A (H1N1) infection. The results showed high levels of RAGE were correlated with immunopathological injury and severity of influenza, and FPS-ZM1 treatment increased the viability of A549 cells with influenza A infection and decreased morbidity and mortality of influenza A virus infection in mice. The RAGE/NF-κb inflammatory signaling pathway is a major targeting pathway for FPS-ZM1 treatment in severe influenza. These findings provide further insights into the immune injury of severe influenza and a potential targeting candidate for the disease treatment.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Camundongos , Animais , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Benzamidas/farmacologia
13.
J Clin Hypertens (Greenwich) ; 26(4): 431-440, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38523455

RESUMO

We measured the levels of High-Mobility Group Box 1 (HMGB1), Receptor for Advanced Glycation Endproducts (RAGE), T Helper 17 cells (Th17), Regulatory T cells (Treg), and related cytokines in the peripheral blood of patients with severe preeclampsia (SPE) complicated with acute heart failure (AHF) to explore the expression changes in these indicators. In total, 96 patients with SPE admitted to Gansu Provincial Maternity and Child-care Hospital between June 2020 and June 2022 were included in the study. The patients were divided into SPE+AHF (40 patients) and SPE (56 patients) groups based on whether they suffered from AHF. Additionally, 56 healthy pregnant women who either received prenatal examinations or were admitted to our hospital for delivery during the same period were selected as the healthy control group. An enzyme-linked immunosorbent assay was performed to detect the expression levels of HMGB1, RAGE, interleukin (IL)-17, IL-6, transforming growth factor ß (TGF-ß), IL-10, and NT-proBNP in plasma. Flow cytometry was employed to determine the percentages of Th17 and Treg cells. Compared to the healthy control group, the SPE+AHF and SPE groups had higher plasma levels of HMGB1 and RAGE expression, higher Th17 percentage and Th17/Treg ratio, and lower Treg percentage. Compared to the SPE group, the SPE+AHF group had higher plasma levels of HMGB1 and RAGE expression, higher Th17 percentage and Th17/Treg ratio, and lower Treg percentage (P < .05). In patients with SPE with AHF, plasma HMGB1 was positively correlated with RAGE, Th17, Th17/Treg, IL-17, and IL-6 and was negatively correlated with TGF-ß and IL-10 (P < .05). Our findings revealed that patients with SPE with AHF had elevated levels of HMGB1 and RAGE while exhibiting Th17/Treg immune imbalance, suggesting that the abnormal expression of these indicators may be involved in the pathogenesis of SPE with AHF.


Assuntos
Proteína HMGB1 , Pré-Eclâmpsia , Feminino , Humanos , Gravidez , Citocinas , Produtos Finais de Glicação Avançada/metabolismo , Proteína HMGB1/metabolismo , Hipertensão/metabolismo , Interleucina-10/metabolismo , Interleucina-6 , Pré-Eclâmpsia/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/metabolismo
14.
J Nat Med ; 78(3): 488-504, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38530577

RESUMO

Osteoporosis (OP) is closely related to iron overload. Bajitianwan (BJTW) is a traditional Chinese medicine formulation used for treating senile diseases such as dementia and osteoporosis. Modern pharmacological researches have found that BJTW has beneficial effect on bone loss and memory impairment in aging rats. This paper aimed to explore the role and mechanism of BJTW in ameliorating iron overload-induced bone loss. Furthermore, BJTW effectively improved the bone micro-structure of the femur in mice, and altered bone metabolism biomarkers alkaline phosphatase (ALP) and osteocalcin (OCN) in serum, as well as oxidative indexes superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) glutathione (GSH) and malondialdehyde (MDA) in liver. As for network pharmacology, 73 components collected from BJTW regulated 99 common targets merged in the BJTW and OP. The results of RNA-seq indicated that there were 418 potential targets in BJTW low dose group (BJTW-L) and 347 potential targets in BJTW high dose group (BJTW-H). Intriguingly, both PI3K-AKT signaling pathway and the AGEs-RAGE signaling pathway were contained in the KEGG pathways enrichment results of network pharmacology and transcriptomics, which were considered as the potential mechanism. Additionally, we verified that BJTW regulated the expression of related proteins in RAGE/PI3K-AKT pathways in MC3T3-E1 cells. In summary, BJTW has potent effect on protecting against iron overload-induced OP, and its mechanism may be related to the activation of the RAGE/PI3K-AKT signaling pathways.


Assuntos
Medicamentos de Ervas Chinesas , Sobrecarga de Ferro , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Sobrecarga de Ferro/tratamento farmacológico , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Masculino , Osteoporose/tratamento farmacológico , Perfilação da Expressão Gênica
15.
Eur J Neurosci ; 59(10): 2628-2645, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491850

RESUMO

Over the past few decades, diabetes gradually has become one of the top non-communicable disorders, affecting 476.0 million in 2017 and is predicted to reach 570.9 million people in 2025. It is estimated that 70 to 100% of all diabetic patients will develop some if not all, diabetic complications over the course of the disease. Despite different symptoms, mechanisms underlying the development of diabetic complications are similar, likely stemming from deficits in both neuronal and vascular components supplying hyperglycaemia-susceptible tissues and organs. Diaph1, protein diaphanous homolog 1, although mainly known for its regulatory role in structural modification of actin and related cytoskeleton proteins, in recent years attracted research attention as a cytoplasmic partner of the receptor of advanced glycation end-products (RAGE) a signal transduction receptor, whose activation triggers an increase in proinflammatory molecules, oxidative stressors and cytokines in diabetes and its related complications. Both Diaph1 and RAGE are also a part of the RhoA signalling cascade, playing a significant role in the development of neurovascular disturbances underlying diabetes-related complications. In this review, based on the existing knowledge as well as compelling findings from our past and present studies, we address the role of Diaph1 signalling in metabolic stress and neurovascular degeneration in diabetic complications. In light of the most recent developments in biochemical, genomic and transcriptomic research, we describe current theories on the aetiology of diabetes complications, highlighting the function of the Diaph1 signalling system and its role in diabetes pathophysiology.


Assuntos
Forminas , Transdução de Sinais , Humanos , Animais , Forminas/metabolismo , Transdução de Sinais/fisiologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Complicações do Diabetes/metabolismo , Neuropatias Diabéticas/metabolismo
16.
Protein J ; 43(2): 243-258, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431537

RESUMO

S100A8 and S100A9 belong to the calcium-binding, damage associated molecular pattern (DAMP) proteins shown to aggravate the pathogenesis of rheumatoid arthritis (RA) through their interaction with the TLR4, RAGE and CD36 receptors. S100A8 and S100A9 proteins tend to exist in monomeric, homo and heterodimeric forms, which have been implicated in the pathogenesis of RA, via interacting with Pattern Recognition receptors (PRRs). The study aims to assess the influence of changes in the structure and biological assembly of S100A8 and S100A9 proteins as well as their interaction with significant receptors in RA through computational methods and surface plasmon resonance (SPR) analysis. Molecular docking analysis revealed that the S100A9 homodimer and S100A8/A9 heterodimer showed higher binding affinity towards the target receptors. Most S100 proteins showed good binding affinity towards TLR4 compared to other receptors. Based on the 50 ns MD simulations, TLR4, RAGE, and CD36 formed stable complexes with the monomeric and dimeric forms of S100A8 and S100A9 proteins. However, SPR analysis showed that the S100A8/A9 heterodimers formed stable complexes and exhibited high binding affinity towards the receptors. SPR data also indicated that TLR4 and its interactions with S100A8/A9 proteins may play a primary role in the pathogenesis of RA, with additional contributions from CD36 and RAGE interactions. Subsequent in vitro and in vivo investigations are warranted to corroborate the involvement of S100A8/A9 and the expression of TLR4, RAGE, and CD36 in the pathophysiology of RA.


Assuntos
Antígenos CD36 , Calgranulina A , Calgranulina B , Simulação de Acoplamento Molecular , Receptor para Produtos Finais de Glicação Avançada , Receptor 4 Toll-Like , Calgranulina B/química , Calgranulina B/metabolismo , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/metabolismo , Calgranulina A/química , Calgranulina A/metabolismo , Calgranulina A/genética , Humanos , Antígenos CD36/química , Antígenos CD36/metabolismo , Antígenos CD36/genética , Receptor para Produtos Finais de Glicação Avançada/química , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Ligação Proteica , Simulação de Dinâmica Molecular , Ressonância de Plasmônio de Superfície , Multimerização Proteica , Artrite Reumatoide/metabolismo
17.
Front Immunol ; 15: 1303937, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384464

RESUMO

Introduction: Chemotherapy-induced neuropathic pain (CINP) is one of the main adverse effects of chemotherapy treatment. At the spinal level, CINP modulation involves glial cells that upregulate Toll-like receptor 4 (TLR4) and signaling pathways, which can be activated by pro-inflammatory mediators as the high mobility group box-1 (HMGB1). Objective: To evaluate the spinal role of HMGB1 in the paclitaxel-induced neuropathic pain via receptor for advanced glycation end products (RAGE) and TLR4 activation expressed in glial cells. Methods: Male C57BL/6 Wild type and TLR4 deficient mice were used in the paclitaxel-induced neuropathic pain model. The nociceptive threshold was measured using the von Frey filament test. In addition, recombinant HMGB1 was intrathecally (i.t.) injected to confirm its nociceptive potential. To evaluate the spinal participation of RAGE, TLR4, NF-kB, microglia, astrocytes, and MAPK p38 in HMGB1-mediated nociceptive effect during neuropathic pain and recombinant HMGB1-induced nociception, the drugs FPS-ZM1, LPS-RS, PDTC, minocycline, fluorocitrate, and SML0543 were respectively administrated by i.t. rout. Microglia, astrocytes, glial cells, RAGE, and TLR4 protein expression were analyzed by Western blot. ELISA immunoassay was also used to assess HMGB1, IL-1ß, and TNF-α spinal levels. Results: The pharmacological experiments demonstrated that spinal RAGE, TLR4, microglia, astrocytes, as well as MAPK p38 and NF-kB signaling are involved with HMGB1-induced nociception and paclitaxel-induced neuropathic pain. Furthermore, HMGB1 spinal levels were increased during the early stages of neuropathic pain and associated with RAGE, TLR4 and microglial activation. RAGE and TLR4 blockade decreased spinal levels of pro-inflammatory cytokines during neuropathic pain. Conclusion: Taken together, our findings indicate that HMGB1 may be released during the early stages of paclitaxel-induced neuropathic pain. This molecule activates RAGE and TLR4 receptors in spinal microglia, upregulating pro-inflammatory cytokines that may contribute to neuropathic pain.


Assuntos
Proteína HMGB1 , Neuralgia , Animais , Masculino , Camundongos , Citocinas/metabolismo , Proteína HMGB1/metabolismo , Hiperalgesia/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , NF-kappa B , Paclitaxel/toxicidade , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor 4 Toll-Like/metabolismo
18.
Exp Mol Med ; 56(3): 630-645, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424194

RESUMO

The meniscus is vital for maintaining knee homeostasis and function. Meniscal calcification is one of the earliest radiological indicators of knee osteoarthritis (KOA), and meniscal calcification is associated with alterations in biomechanical properties. Meniscal calcification originates from a biochemical process similar to vascular calcification. Advanced glycation end products (AGEs) and their receptors (RAGEs) reportedly play critical roles in vascular calcification. Herein, we investigated whether targeting AGE-RAGE is a potential treatment for meniscal calcification. In our study, we demonstrated that AGE-RAGE promotes the osteogenesis of meniscal cells and exacerbates meniscal calcification. Mechanistically, AGE-RAGE activates mTOR and simultaneously promotes ATF4 accumulation, thereby facilitating the ATF4-mTOR positive feedback loop that enhances the osteogenic capacity of meniscal cells. In this regard, mTOR inhibits ATF4 degradation by reducing its ubiquitination, while ATF4 activates mTOR by increasing arginine uptake. Our findings substantiate the unique role of AGE-RAGE in the meniscus and reveal the role of the ATF4-mTOR positive feedback loop during the osteogenesis of meniscal cells; these results provide potential therapeutic targets for KOA.


Assuntos
Menisco , Osteoartrite do Joelho , Calcificação Vascular , Humanos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Retroalimentação , Produtos Finais de Glicação Avançada/metabolismo , Menisco/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Serina-Treonina Quinases TOR , Calcificação Vascular/metabolismo
19.
Chemistry ; 30(20): e202303255, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317623

RESUMO

RAGE is a transmembrane receptor of immunoglobulin family that can bind various endogenous and exogenous ligands, initiating the inflammatory downstream signaling pathways, including inflammaging. Therefore, RAGE represents an attractive drug target for age-related diseases. For the development of small-molecule RAGE antagonists, we employed protein-templated dynamic combinatorial chemistry (ptDCC) using RAGE's VC1 domain as a template, the first application of this approach in the context of RAGE. The affinities of DCC hits were validated using microscale thermophoresis. Subsequent screening against AGE2 (glyceraldehyde-modified AGE)-sRAGE (solubleRAGE) (AGE2-BSA/sRAGE) interaction using ELISA tests led to the identification of antagonists with micromolar potency. Our findings not only demonstrate the successful application of ptDCC on RAGE but also highlight its potential to address the pressing need for alternative strategies for the development of small-molecule RAGE antagonists, an area of research that has experienced a slowdown in recent years.


Assuntos
Transdução de Sinais , Receptor para Produtos Finais de Glicação Avançada/química , Receptor para Produtos Finais de Glicação Avançada/metabolismo
20.
FEBS J ; 291(9): 1944-1957, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38335056

RESUMO

The transmembrane receptor for advanced glycation end products (RAGE) is a signaling receptor for many damage- and pathogen-associated molecules. Activation of RAGE is associated with inflammation and an increase in reactive oxygen species (ROS) production. Although several sources of ROS have been previously suggested, how RAGE induces ROS production is still unclear, considering the multiple targets of pathogen-associated molecules. Here, using acute brain slices and primary co-culture of cortical neurons and astrocytes, we investigated the effects of a range of synthetic peptides corresponding to the fragments of the RAGE V-domain on redox signaling. We found that the synthetic fragment (60-76) of the RAGE V-domain induces activation of ROS production in astrocytes and neurons from the primary co-culture and acute brain slices. This effect occurred through activation of RAGE and could be blocked by a RAGE inhibitor. Activation of RAGE by the synthetic fragment stimulates ROS production in NADPH oxidase (NOX). This RAGE-induced NOX activation produced only minor decreases in glutathione levels and increased the rate of lipid peroxidation, although it also reduced basal and ß-amyloid induced cell death in neurons and astrocytes. Thus, specific activation of RAGE induces redox signaling through NOX, which can be a part of a cell protective mechanism.


Assuntos
Astrócitos , Técnicas de Cocultura , NADPH Oxidases , Neurônios , Espécies Reativas de Oxigênio , Receptor para Produtos Finais de Glicação Avançada , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Animais , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Neuroproteção , Células Cultivadas , Oxirredução , Transdução de Sinais , Camundongos , Peroxidação de Lipídeos/efeitos dos fármacos , Ratos , Ativação Enzimática/efeitos dos fármacos , Glutationa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA