Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Phys Chem Lett ; 15(22): 5862-5867, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38804506

RESUMO

An artificial tactile receptor is crucial for e-skin in next-generation robots, mimicking the mechanical sensing, signal encoding, and preprocessing functionalities of human skin. In the neural network, pressure signals are encoded in spike patterns and efficiently transmitted, exhibiting low power consumption and robust tolerance for bit error rates. Here, we introduce a highly sensitive artificial tactile receptor system integrating a pressure sensor, axon-hillock circuit, and neurotransmitter release device to achieve pressure signal coding with patterned spikes and controlled neurotransmitter release. Owing to the heightened sensitivity of the axon-hillock circuit to pressure-mediated current signals, the artificial tactile receptor achieves a detection limit of 10 Pa that surpasses the human tactile receptors, with a wide response range from 10 to 5 × 105 Pa. Benefiting from the appreciable pressure-responsive performance, the potential application of an artificial tactile receptor in robotic tactile perception has been demonstrated, encompassing tasks such as finger touch and human pulse detection.


Assuntos
Pressão , Tato , Humanos , Robótica , Receptores Artificiais/química , Receptores Artificiais/metabolismo , Neurotransmissores/química
2.
Sci Rep ; 14(1): 5801, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461201

RESUMO

Mimicry of receptor functions by designing synthetic receptors would be one of the recently hot research trends in cell engineering. While several types of synthetic receptors have been designed to induce desired cell fates in response to external stimuli, little is known about which receptor type signals more efficiently for inducing a certain cell fate. In this study, we compared the performance of three types of synthetic receptor scaffolds, i.e. myristoylated, cytosolic, and transmembrane types that signal through JAK-dependent phosphorylation of tyrosine motifs to transduce growth signaling. As a result, the phosphorylation levels of JAK and subsequent downstream signaling molecules were significantly maintained in the cytosolic type receptors, leading to more efficient cell growth than the other types. In contrast, the phosphorylation levels of JAK decreased in a motif-dependent manner in the transmembrane type receptors. Although various studies on receptor engineering based on domain or motif engineering have been reported, to our knowledge this study is the first to demonstrate that synthetic receptor scaffolds significantly affect the efficiency of cell fate signals. These findings are important for both receptor biology and receptor engineering, providing guidelines for rationally designing synthetic receptors that can transduce as efficient signaling as possible.


Assuntos
Receptores Artificiais , Receptores Artificiais/metabolismo , Transdução de Sinais , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Diferenciação Celular
3.
J Biol Chem ; 299(11): 105270, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734558

RESUMO

Synthetic cytokine receptors can modulate cellular functions based on an artificial ligand to avoid off-target and/or unspecific effects. However, ligands that can modulate receptor activity so far have not been used clinically because of unknown toxicity and immunity against the ligands. Here, we developed a fully synthetic cytokine/cytokine receptor pair based on the antigen-binding domain of the respiratory syncytial virus-approved mAb Palivizumab as a synthetic cytokine and a set of anti-idiotype nanobodies (AIPVHH) as synthetic receptors. Importantly, Palivizumab is neither cross-reactive with human proteins nor immunogenic. For the synthetic receptors, AIPVHH were fused to the activating interleukin-6 cytokine receptor gp130 and the apoptosis-inducing receptor Fas. We found that the synthetic cytokine receptor AIPVHHgp130 was efficiently activated by dimeric Palivizumab single-chain variable fragments. In summary, we created an in vitro nonimmunogenic full-synthetic cytokine/cytokine receptor pair as a proof of concept for future in vivo therapeutic strategies utilizing nonphysiological targets during immunotherapy.


Assuntos
Receptores Artificiais , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Palivizumab/farmacologia , Palivizumab/uso terapêutico , Receptores Artificiais/metabolismo , Receptores Artificiais/uso terapêutico , Receptores de Citocinas , Citocinas , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Ligantes , Antivirais/farmacologia , Antivirais/uso terapêutico
4.
J Am Chem Soc ; 145(4): 2315-2321, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656150

RESUMO

Chemically synthetic receptors that establish cells a new sense-and-respond capability to interact with outer worlds are highly desired, but rarely reported. In this work, we develop a membrane-anchored synthetic receptor (Ts-pHLIP-Pr) using DNA and peptide as the building block to equip cells with artificial signaling pathways. Upon sensing external pH stimuli, the Pr module can be translocated across the cell membrane via the conformation switch of pHLIP, enabling membrane-proximal recruitment of specific proteins to trigger downstream signaling cascades. Our experimental results demonstrate the capability of Ts-pHLIP-Pr for regulating PKCε-related signaling events upon responding to external pH reduction. With a modular feature, this receptor can be extended to elicit T cell activation through low-pH environment-induced directional movement of cytoplasmic ZAP70. Our work is expected to offer a new paradigm for intelligent synthetic biology and customized cell engineering.


Assuntos
Receptores Artificiais , Receptores Artificiais/metabolismo , Proteínas de Membrana/química , Membrana Celular/metabolismo , Transdução de Sinais , Citoplasma/metabolismo , Concentração de Íons de Hidrogênio
5.
Bioconjug Chem ; 34(1): 212-217, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36534758

RESUMO

Advancements in the molecular recognition of insulin by nonantibody-based means would facilitate the development of methodology for the continuous detection of insulin for the management of diabetes mellitus. Herein, we report a novel insulin derivative that binds to the synthetic receptor cucurbit[7]uril (Q7) at a single site and with high nanomolar affinity. The insulin derivative was prepared by a four-step protein semisynthetic method to present a 4-aminomethyl group on the side chain of the PheB1 position. The resulting aminomethyl insulin binds to Q7 with an equilibrium dissociation constant value of 99 nM in neutral phosphate buffer, as determined by isothermal titration calorimetry. This 6.8-fold enhancement in affinity versus native insulin was gained by an atom-economical modification (-CH2NH2). To the best of our knowledge, this is the highest reported binding affinity for an insulin derivative by a synthetic receptor. This strategy for engineering protein affinity tags induces minimal change to the protein structure while increasing affinity and selectivity for a synthetic receptor.


Assuntos
Insulina , Receptores Artificiais , Insulina/síntese química , Insulina/química , Receptores Artificiais/química , Receptores Artificiais/metabolismo
6.
Neurotherapeutics ; 19(5): 1546-1565, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917087

RESUMO

Abnormal productions of amyloid beta (Aß) plaque and chronic neuroinflammation are commonly observed in the brain of patients with Alzheimer's disease, and both of which induce neuronal cell death, loss of memory, and cognitive dysfunction. However, many of the drugs targeting the production of Aß peptides have been unsuccessful in treating Alzheimer's disease. In this study, we identified synthetic novel peroxisome proliferator-activating receptor (PPAR) agonist, DTMB, which can ameliorate the chronic inflammation and Aß pathological progression of Alzheimer's disease. We discovered that DTMB attenuated the proinflammatory cytokine production of microglia by reducing the protein level of NF-κB. DTMB also improved the learning and memory defects and reduced the amount of Aß plaque in the brain of 5xFAD mice. This reduction in Aß pathology was attributed to the changes in gliosis and chronic inflammation level. Additionally, bulk RNA-sequencing showed that genes related to inflammation and cognitive function were changed in the hippocampus and cortex of DTMB-treated mice. Our findings demonstrate that DTMB has the potential to be a novel therapeutic agent for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Receptores Artificiais , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Peptídeos beta-Amiloides/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/farmacologia , Receptores Ativados por Proliferador de Peroxissomo/uso terapêutico , Camundongos Transgênicos , NF-kappa B/metabolismo , Proliferadores de Peroxissomos/metabolismo , Proliferadores de Peroxissomos/farmacologia , Proliferadores de Peroxissomos/uso terapêutico , Receptores Artificiais/metabolismo , Receptores Artificiais/uso terapêutico , Modelos Animais de Doenças , Placa Amiloide/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas/metabolismo , RNA/metabolismo , RNA/farmacologia , RNA/uso terapêutico
7.
Langmuir ; 38(7): 2354-2362, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35143209

RESUMO

Influenza A virus (IAV) binds to sialylated glycans on the cell membrane before endocytosis and fusion. Cell-surface glycans are highly heterogeneous in length and glycosylation density, which leads to variations in the distance and rigidity with which IAV is held away from the cell membrane. To gain mechanistic insight into how receptor length and rigidity impact the mechanism of IAV entry, we employed synthetic DNA-lipids as highly tunable surrogate receptors. We tethered IAV to target membranes with a panel of DNA-lipids to investigate the effects of the distance and tether flexibility between virions and target membranes on the kinetics of IAV binding and fusion. Tether length and the presence of a flexible linker led to higher rates of IAV binding, while the efficiencies of lipid and content mixing were typically lower for longer and more rigid DNA tethers. For all DNA tether modifications, we found that the rates of IAV lipid and content mixing were unchanged. These results suggest that variations in the interface between IAV and a target membrane do not significantly impact the rate-limiting step of fusion or the low-pH-triggered engagement of viral fusion peptides with the target membrane. However, our results imply that the flexibility of the viral receptor is important for ensuring that hemifusion events are able to successfully proceed to pore formation.


Assuntos
Vírus da Influenza A , Receptores Artificiais , DNA/genética , DNA/metabolismo , Lipídeos , Fusão de Membrana , Receptores Artificiais/metabolismo , Internalização do Vírus
8.
Cell Death Dis ; 13(2): 114, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121743

RESUMO

Obesity creates a localized inflammatory reaction in the adipose, altering secretion of adipocyte-derived factors that contribute to pathologies including cancer. We have previously shown that adiponectin inhibits pancreatic cancer by antagonizing leptin-induced STAT3 activation. Yet, the effects of adiponectin on pancreatic cancer cell metabolism have not been addressed. In these studies, we have uncovered a novel metabolic function for the synthetic adiponectin-receptor agonist, AdipoRon. Treatment of PDAC cells with AdipoRon led to mitochondrial uncoupling and loss of ATP production. Concomitantly, AdipoRon-treated cells increased glucose uptake and utilization. This metabolic switch further correlated with AMPK mediated inhibition of the prolipogenic factor acetyl coenzyme A carboxylase 1 (ACC1), which is known to initiate fatty acid catabolism. Yet, measurements of fatty acid oxidation failed to detect any alteration in response to AdipoRon treatment, suggesting a deficiency for compensation. Additional disruption of glycolytic dependence, using either a glycolysis inhibitor or low-glucose conditions, demonstrated an impairment of growth and survival of all pancreatic cancer cell lines tested. Collectively, these studies provide evidence that pancreatic cancer cells utilize metabolic plasticity to upregulate glycolysis in order to adapt to suppression of oxidative phosphorylation in the presence of AdipoRon.


Assuntos
Neoplasias Pancreáticas , Receptores Artificiais , Adiponectina/metabolismo , Adiponectina/farmacologia , Ácidos Graxos , Glicólise , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Piperidinas , Receptores de Adiponectina/metabolismo , Receptores Artificiais/metabolismo , Neoplasias Pancreáticas
9.
Curr Opin Immunol ; 74: 9-17, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34571290

RESUMO

Adoptive cell therapy with T cells engineered with customized receptors that redirect antigen specificity to cancer cells has emerged as an effective therapeutic approach for many malignancies. Toxicity due to on target or off target effects, antigen heterogeneity on cancer cells, and acquired T cell dysfunction have been identified as barriers that can hinder successful therapy. This review will discuss recent advances in T cell engineering that have enabled the application of logic gates in T cells that can mimic the integration of natural signaling pathways and act in a cell intrinsic or extrinsic fashion to precisely target tumor cells and regulate effector functions, potentially overcoming these barriers to effective therapy.


Assuntos
Neoplasias , Receptores Artificiais , Antígenos/metabolismo , Humanos , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores Artificiais/metabolismo , Linfócitos T
10.
Methods Mol Biol ; 2312: 15-33, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34228282

RESUMO

Synthetic receptors control cell behavior in response to environmental stimuli for applications in basic research and cell therapy. However, the integration of synthetic receptors in unexplored contexts is cumbersome, especially for nonspecialist laboratories. Here, I provide a detailed protocol on how to use receptors of the generalized extracellular molecule sensor (GEMS) platform. GEMS is a modular receptor system that can be adapted to sense molecules of choice by using affinity domains that dimerize in response to the target. GEMS consist of an erythropoietin receptor scaffold that has been mutated to no longer bind to erythropoietin. N-terminal fusions with affinity domains, such as single chain variable fragments (scFvs), that bind to two epitopes on the same target activate the receptor. The intracellular receptor domain can be chosen from several signal transduction domains of single-pass transmembrane receptors to activate endogenous signaling pathways. As of now, GEMS have been used for sensing prostate specific antigen (PSA), the synthetic azo dye RR120, caffeine, nicotine, rapamycin, the SunTag peptide, and a de novo designed protein displaying two viral epitopes. The tested intracellular domains were derived from FGFR1, IL-6RB, and VEGFR2, and were used to drive transgene expression from reporter plasmids responsive to the endogenous transcription factors STAT3, NFAT, NF-κB, and a synthetic transcription factor activated by the MAPK pathway. In this protocol, I focus on transient transfections of HEK293T cells and include several general notes about cell handling. While the described methods are optimized for experiments with GEMS, most of the described techniques are general procedures to set up synthetic biology experiments in mammalian cell culture. I outline how to generate stable cell lines and share tips on how to adapt GEMS for new ligands. The main objective of this protocol is to make the GEMS technology accessible also to nonspecialist laboratories to facilitate the use of synthetic receptors in new research contexts.


Assuntos
Técnicas Biossensoriais , Engenharia Celular , Engenharia de Proteínas , Receptores Artificiais/genética , Receptores da Eritropoetina/genética , Anticorpos de Cadeia Única/genética , Biologia Sintética , Afinidade de Anticorpos , Receptor gp130 de Citocina/genética , Epitopos , Genes Reporter , Células HEK293 , Humanos , Ligantes , Mutação , Domínios e Motivos de Interação entre Proteínas , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptores Artificiais/metabolismo , Receptores da Eritropoetina/metabolismo , Transdução de Sinais , Anticorpos de Cadeia Única/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
11.
ACS Appl Mater Interfaces ; 13(12): 14004-14014, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33728894

RESUMO

Developing novel activatable photosensitizers with excellent plasma membrane targeting ability is urgently needed for smart photodynamic therapy (PDT). Herein, a tumor acidity-activatable photosensitizer combined with a two-step bioorthogonal pretargeting strategy to anchor photosensitizers on the plasma membrane for effective PDT is developed. Briefly, artificial receptors are first anchored on the cell plasma membrane using cell-labeling agents (Az-NPs) via the enhanced permeability and retention effect to achieve the tumor cell labeling. Then, pH-sensitive nanoparticles (S-NPs) modified with dibenzocyclooctyne (DBCO) and chlorin e6 (Ce6) accumulate in tumor tissue and disassemble upon protonation of their tertiary amines in response to the acidic tumor environment, exposing the contained DBCO and Ce6. The selective, highly specific click reactions between DBCO and azide groups enable Ce6 to be anchored on the tumor cell surface. Upon laser irradiation, the cell membrane is severely damaged by the cytotoxic reactive oxygen species, resulting in remarkable cellular apoptosis. Taken together, the membrane-localized PDT by our bioorthogonal pretargeting strategy to anchor activatable photosensitizers on the plasma membrane provides a simple but effective method for enhancing the therapeutic efficacy of photosensitizers in anticancer therapy.


Assuntos
Membrana Celular/metabolismo , Ciclo-Octanos/administração & dosagem , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/administração & dosagem , Porfirinas/administração & dosagem , Animais , Linhagem Celular Tumoral , Clorofilídeos , Ciclo-Octanos/farmacocinética , Ciclo-Octanos/uso terapêutico , Humanos , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/uso terapêutico , Neoplasias/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacocinética , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/farmacocinética , Porfirinas/uso terapêutico , Receptores Artificiais/metabolismo
12.
Science ; 371(6534): 1166-1171, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33632893

RESUMO

Overexpressed tumor-associated antigens [for example, epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2)] are attractive targets for therapeutic T cells, but toxic "off-tumor" cross-reaction with normal tissues that express low levels of target antigen can occur with chimeric antigen receptor (CAR)-T cells. Inspired by natural ultrasensitive response circuits, we engineered a two-step positive-feedback circuit that allows human cytotoxic T cells to discriminate targets on the basis of a sigmoidal antigen-density threshold. In this circuit, a low-affinity synthetic Notch receptor for HER2 controls the expression of a high-affinity CAR for HER2. Increasing HER2 density thus has cooperative effects on T cells-it increases both CAR expression and activation-leading to a sigmoidal response. T cells with this circuit show sharp discrimination between target cells expressing normal amounts of HER2 and cancer cells expressing 100 times as much HER2, both in vitro and in vivo.


Assuntos
Engenharia Celular , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Animais , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva , Células K562 , Camundongos , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Receptores Artificiais/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Esferoides Celulares , Ensaios Antitumorais Modelo de Xenoenxerto
13.
PLoS One ; 15(4): e0230804, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32236103

RESUMO

Cytokine signaling is transmitted by cell surface receptors which act as natural biological switches to control cellular functions such as immune reactions. Recently, we have designed synthetic cytokine receptors (SyCyRs) consisting of green fluorescent protein (GFP)- and mCherry-nanobodies fused to the transmembrane and intracellular domains of cytokine receptors. Following stimulation with homo- and heterodimeric GFP-mCherry fusion proteins, the resulting receptors phenocopied signaling induced by physiologically occurring cytokines. GFP and mCherry fusion proteins were produced in E. coli or CHO-K1 cells, but the overall yield and stability was low. Therefore, we applied two alternative multimerization strategies and achieved immunoglobulin Fc-mediated dimeric and coiled-coil GCN4pII-mediated trimeric assemblies. GFP- and/or mCherry-Fc homodimers activated synthetic gp130 cytokine receptors, which naturally respond to Interleukin 6 family cytokines. Activation of these synthetic gp130 receptors resulted in STAT3 and ERK phosphorylation and subsequent proliferation of Ba/F3-gp130 cells. Half-maximal effective concentrations (EC50) of 8.1 ng/ml and 0.64 ng/ml were determined for dimeric GFP-Fc and mCherry-Fc, respectively. This is well within the expected EC50 range of the native cytokines. Moreover, we generated tetrameric and hexameric GFP-mCherry-Fc fusion proteins, which were also biologically active. This highlighted the importance of close juxtaposition of two cytokine receptors for efficient receptor activation. Finally, we used a trimeric GCN4pII motif to generate homo-trimeric GFP and mCherry complexes. These synthetic cytokines showed improved EC50 values (GFP3: 0.58 ng/ml; mCherrry3: 0.37 ng/ml), over dimeric Fc fused variants. In conclusion, we successfully generated highly effective and stable multimeric synthetic cytokine receptor ligands for activation of synthetic cytokine receptors.


Assuntos
Multimerização Proteica , Receptores Artificiais/síntese química , Receptores de Citocinas/metabolismo , Animais , Antígenos CD/metabolismo , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Receptor gp130 de Citocina/metabolismo , Humanos , Interleucina-6/metabolismo , Ligantes , Modelos Teóricos , Receptores Artificiais/metabolismo , Receptores de Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
14.
Commun Biol ; 3(1): 116, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170210

RESUMO

Notch signaling is highly conserved in most animals and plays critical roles during neurogenesis as well as embryonic development. Synthetic Notch-based systems, modeled from Notch receptors, have been developed to sense and respond to a specific extracellular signal. Recent advancement of synNotch has shown promise for future use in cellular engineering to treat cancers. However, synNotch from Morsut et al. (2016) has a high level of ligand-independent activation, which limits its application. Here we show that adding an intracellular hydrophobic sequence (QHGQLWF, named as RAM7) present in native Notch, significantly reduced ligand-independent activation. Our enhanced synthetic Notch receptor (esNotch) demonstrates up to a 14.6-fold reduction in ligand-independent activation, without affecting its antigen-induced activation efficiency. Our work improves a previously reported transmembrane receptor and provides a powerful tool to develop better transmembrane signaling transduction modules for further advancement of eukaryotic synthetic biology.


Assuntos
Engenharia Celular/métodos , Receptores Artificiais/química , Receptores Artificiais/metabolismo , Receptores Notch/química , Receptores Notch/metabolismo , Sequência de Aminoácidos , Antígenos/metabolismo , Membrana Celular/metabolismo , Clonagem Molecular/métodos , Células HEK293 , Humanos , Ligantes , Plasmídeos/genética , Domínios Proteicos , Proteólise , Receptores Notch/genética , Transdução de Sinais/genética , Anticorpos de Cadeia Única , Biologia Sintética/métodos , Transfecção
15.
Nat Commun ; 11(1): 1299, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157077

RESUMO

The responses of cells to their surroundings are mediated by the binding of cell surface proteins (CSPs) to extracellular signals. Such processes are regulated via dynamic changes in the structure, composition, and expression levels of CSPs. In this study, we demonstrate the possibility of decorating bacteria with artificial, self-assembled receptors that imitate the dynamic features of CSPs. We show that the local concentration of these receptors on the bacterial membrane and their structure can be reversibly controlled using suitable chemical signals, in a way that resembles changes that occur with CSP expression levels or posttranslational modifications (PTMs), respectively. We also show that these modifications can endow the bacteria with programmable properties, akin to the way CSP responses can induce cellular functions. By programming the bacteria to glow, adhere to surfaces, or interact with proteins or mammalian cells, we demonstrate the potential to tailor such biomimetic systems for specific applications.


Assuntos
Escherichia coli/metabolismo , Receptores Artificiais/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Fluorescência , Humanos
16.
Chem Asian J ; 15(7): 1035-1038, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32043821

RESUMO

Catecholamines play important roles in biology but their structural similarity makes it challenging to construct synthetic receptors with selective binding. A combination of covalent and noncovalent binding groups in the hydrophobic core of water-soluble nanoparticles enabled them to recognize dopamine and epinephrine with an association constant (Ka ) of 3-4×104  M-1 in water, an order of magnitude higher than those of previously reported synthetic hosts. In addition, minute structural changes among analogues were detected including the addition or removal of a single hydroxyl or methyl group.


Assuntos
Dopamina/metabolismo , Epinefrina/metabolismo , Impressão Molecular , Nanopartículas/química , Receptores Artificiais/metabolismo , Sítios de Ligação , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Receptores Artificiais/química , Água
17.
Chem Asian J ; 15(7): 986-994, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32017445

RESUMO

Many biomolecules exist as internal ion pairs or zwitterions within a biologically relevant pH range. Despite their importance, the molecular recognition of this type of systems is specially challenging due to their strong solvation in aqueous media, and their trend to form folded or self-assembled structures by pairing of charges of different sign. In this Minireview, we will discuss the molecular recognition of zwitterions using non-natural, synthetic receptors. This contribution does not intend to make a full in-depth revision of the existing research in the field, but a personal overview with selected representative examples from the recent literature.


Assuntos
Íons/metabolismo , Receptores Artificiais/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Conformação Molecular , Solubilidade
18.
Sci Rep ; 10(1): 765, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964907

RESUMO

Many physiology experiments demonstrate that an organism's cortex and receptor system can be artificially extended, giving the organism new types of perceptual capabilities. To examine artificial extension of the cortex-receptor system, I propose a computational model that allows new types of sensory pathways to be added directly to the computational model itself in an online manner. A synapse expandable artificial neuron model that can grow new synapses, forming a bridge between the novel perceptual information and the existing neural network is introduced to absorb the novel sensory pathway. The experimental results show that the computational model can effectively integrate sudden emerged sensory channels and the neural circuits in the computational model can be reused for novel modalities without influencing the original modality.


Assuntos
Córtex Cerebral/fisiologia , Receptores Artificiais/metabolismo , Sinapses/fisiologia , Animais , Simulação por Computador , Humanos , Modelos Neurológicos
19.
Chem Soc Rev ; 48(22): 5488-5505, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31552920

RESUMO

Glycans - simple or complex carbohydrates - play key roles as recognition determinants and modulators of numerous physiological and pathological processes. Thus, many biotechnological, diagnostic and therapeutic opportunities abound for molecular recognition entities that can bind glycans with high selectivity and affinity. This review begins with an overview of the current biologically and synthetically derived glycan-binding scaffolds that include antibodies, lectins, aptamers and boronic acid-based entities. It is followed by a more detailed discussion on various aspects of their generation, structure and recognition properties. It serves as the basis for highlighting recent key developments and technical challenges that must be overcome in order to fully deal with the specific recognition of a highly diverse and complex range of glycan structures.


Assuntos
Anticorpos/química , Aptâmeros de Nucleotídeos/química , Ácidos Borônicos/química , Lectinas/química , Polissacarídeos/química , Receptores Artificiais/química , Anticorpos/metabolismo , Aptâmeros de Nucleotídeos/metabolismo , Ácidos Borônicos/metabolismo , Humanos , Lectinas/metabolismo , Polissacarídeos/síntese química , Polissacarídeos/metabolismo , Receptores Artificiais/metabolismo
20.
J Am Chem Soc ; 141(22): 9087-9095, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31079455

RESUMO

The cavities of artificial receptors are defined by how their components fit together. The encapsulation of specific molecules can thus be engineered by considering geometric principles; however, intermolecular interactions and steric fit scale with receptor size, such that the ability to bind multiple guests from a specific class of compounds remains a current challenge. By employing metal-organic self-assembly, we have prepared a triangular prism from two different ligands that is capable of binding more than 20 different natural products, drugs, and steroid derivatives within its prolate cavity. Encapsulation inflates the host, enhancing its ability to bind other guests in peripheral pockets and thus enabling our system to bind combinations of different drug and natural product cargoes in different locations simultaneously. This new mode of entropically favorable self-assembly thus enables central encapsulation to amplify guest-binding events around the periphery of an artificial receptor.


Assuntos
Alcaloides Indólicos/metabolismo , Metaloporfirinas/metabolismo , Derivados da Morfina/metabolismo , Receptores Artificiais/metabolismo , Esteroides/metabolismo , Sítios de Ligação , Entropia , Metaloporfirinas/síntese química , Metaloporfirinas/química , Receptores Artificiais/síntese química , Receptores Artificiais/química , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA